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TWO-PHOTON EXCHANGE IN ELASTIC
ELECTRON SCATTERING ON HADRONIC SYSTEMS

In the present review, we discuss different aspects of the two-photon exchange (TPE) physics in
elastic 𝑒𝑝 scattering at high 𝑄2, as well as at low 𝑄2. The imaginary part of the TPE amplitude
gives rise to beam and target single-spin asymmetries. Different theoretical approaches to the
calculation of these observables are considered. The real part of the TPE amplitude influences
the unpolarized cross-section and double-spin observables and is, most likely, responsible for
the discrepancy between two methods of measurements of the proton form factors. We review
different methods of calculations of the TPE amplitudes in the framework of the “hadron” and
“quark-gluon” approaches. We discuss the dispersion approach suitable for low and intermediate
𝑄2, which includes elastic and inelastic intermediate hadronic states, as well as the connection
of TPE with the proton radius puzzle. The present situation with direct experimental searches
for the TPE amplitude in the 𝑒+𝑝/𝑒−𝑝 charge asymmetry is also discussed, as well as attempts
to extract the TPE amplitudes from existing experimental data obtained by the Rosenbluth
and double polarization techniques. The TPE physics in other processes such as elastic 𝜇𝑝,
𝑒-nucleus, and 𝑒𝜋 scattering is also reviewed.
K e yw o r d s: two-photon exchange, elastic scattering, proton form factors.

1. Introduction
Understanding the internal structure of a proton,
neutron, and other strongly interacting systems was,
for a long time, one of the fundamental problems
of particle physics. Experiments on the elastic and
inelastic scattering of ultra-relativistic electrons on
nucleons and nuclei provide a unique tool for such
a study.

Early experiments with the scattering of relativis-
tic electron beams on hadron systems were done un-
der the leadership of Robert Hofstadter in the 1950s
at High Energy Physics Laboratory (HEPL) at Stan-
ford [1] and gave information on the radii of a wide
spectrum of nuclei, as well as the electric charge dis-
tribution in them.
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Later on, the same method was used to measure the
proton size. The proton radius of 0.77 fm, extracted
in 1955 from the cross-sections of elastic electron-
proton scattering with the electron beams of ener-
gies up to 550 MeV [2], testified irrefutably that the
proton is not an “elementary” particle and has inter-
nal structure. A lot of interesting information on this
stage of experiments at HEPL is contained in the re-
view paper by Hofstadter [3].

After that, a lot of experiments were done to mea-
sure the proton size more accurately. The present
measurements give 0.8775(51) fm for the proton
radius from the electron-proton scattering [4] and
0.84087(39) fm from atomic transitions in the muonic
hydrogen [5, 6]. The cause for the difference be-
tween these data is not yet clear and is dis-
cussed intensively in the literature (very recently,
the results were published [7], where the value of
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0.831(7)(12) fm was obtained from 𝑒𝑝 scattering at
very low 𝑄2).

The first information on the internal magnetic
structure of the neutron was reported in 1958 [8].
Subsequent studies of the electron scattering, which
were carried out in various world facilities in next
decades, provide a further detailed information about
the internal structure of various strongly interacting
systems such as nucleons, pions, and nuclei.

Because of the smallness of the fine structure con-
stant 𝛼, theoretical interpretation of experimental
data was mainly done in the lowest order in 𝛼 or
one-photon exchange (OPE) approximation (meaning
the exchange of only one virtual photon between the
scattered electron and the target). A fundamental in-
gredient of such model is the hadron electromagnetic
(e.m.) current. In turn, the hadron current involves
e.m. form factors (FFs), the main objects containing
the information about the e.m. structure of a hadron
system.

Due to the 1/2 spin of a nucleon, its e.m. current
is described by two FFs 𝐹1 and 𝐹2, called Dirac and
Pauli FFs or by linear combinations of 𝐹1 and 𝐹2, the
electric and magnetic FFs, 𝐺𝐸 and 𝐺𝑀 . To separate
the FFs, two different techniques are used, the Rosen-
bluth separation method [9], which is based on the
cross-section data, and the double polarization tech-
nique elaborated at the Thomas Jefferson National
Accelerator Facility (JLab for short) [10–13].

Up to the late 1990s, only the unpolarized 𝑒𝑝 cross-
sections were measured. The Rosenbluth separation
of those data had suggested that the nucleon FFs fulfil
the approximate scaling

𝐺𝐸𝑝 ≈ 𝐺𝑀𝑝/𝜇𝑝 ≈ 𝐺𝑀𝑛/𝜇𝑛, (1)

where 𝜇𝑝 and 𝜇𝑛 are the proton and neutron mag-
netic moments. Double polarization experiments car-
ried out at JLab since 1998 have changed the situation
drastically, the ratio 𝜇𝑝𝐺𝐸𝑝/𝐺𝑀𝑝 measured by this
method was shown to decrease linearly with 𝑄2. Be-
cause radiative corrections for the Rosenbluth and po-
larization techniques are different, the discrepancy of
𝜇𝑝𝐺𝐸𝑝/𝐺𝑀𝑝 can be naturally explained as the effect
of radiative corrections. The theoretical analysis has
shown that the two-photon exchange (TPE), whose
contribution was ignored in the previous calculations,
may be responsible for the discrepancy [14, 15].

The review is organized as follows. Sections 2, 3,
and 4 have introductory purpose: we discuss the

methods of proton FF measurements, OPE and TPE
approximations, and the general structure of the TPE
amplitude for the elastic 𝑒𝑝 scattering. Section 5 deals
with calculations of the imaginary part of the TPE
amplitude and applications to single spin asymme-
tries. Section 6 reviews different approaches to the
calculation of the real part of the TPE amplitude at
both hadronic and QCD levels. Sections 7 and 8 are
devoted to the discussion of the status of experimen-
tal searches for the direct TPE effects and extraction
of the TPE amplitude from experimental data on the
𝑒𝑝 scattering. TPE in other processes (𝜇𝑝 scatter-
ing, electron scattering off the lightest nuclei, and
the 𝑒𝜋 scattering) is shortly reviewed in Sec. 9. The
Appendix contains a collection of formulae for TPE
contributions to various observables.

2. Born Approximation
and Proton Form Factors

The main process of our interest will be the elastic
electron-proton scattering:

e− + p → e− + p. (2)

Though we will consider other processes such
as electron-neutron, electron-deuteron, and muon-
proton scattering in some sections, we will mean,
by default, the electron-proton case, unless explicitly
noted otherwise.

For the convenience, we write down the definitions
of all kinematic quantities, which are related to this
process and will be used throughout the paper.

4-momenta of the initial and final particles will be
denoted by 𝑘, 𝑘′ for the electron and 𝑝, 𝑝′ for the
proton (the final ones are marked with the prime).
The momentum transfer is

𝑞 = 𝑝′ − 𝑝 = 𝑘 − 𝑘′, (3)

and its square 𝑞2 = 𝑡 = −𝑄2 < 0. The electron and
proton masses will be denoted by 𝑚 and 𝑀 , respec-
tively. It is convenient to introduce vectors

𝐾 =
1

2
(𝑘 + 𝑘′), 𝑃 =

1

2
(𝑝+ 𝑝′), (4)

for which

𝐾𝑞 = 𝑃𝑞 = 0, 𝐾2 = 𝑚2 − 𝑡/4, 𝑃 2 = 𝑀2 − 𝑡/4.

(5)
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We also denote 1

𝑠 = (𝑘+𝑝)2, 𝑢 = (𝑘′−𝑝)2, 𝜈 = 𝑠−𝑢 = 4𝑃𝐾. (6)

In the first order of perturbation theory (Born or
OPE approximation), the electron-proton scattering
is described by the only Feynman diagram (Fig. 1). In
this and all following diagrams, a thin line depicts an
electron, thick line – proton, and wavy line – pho-
ton. Since the proton is not a point particle, the ver-
tex corresponding to its interaction with the virtual
photon (depicted as a gray circle in Fig. 1) should be
written in the most general form

Γ𝜇(𝑞) = 𝐹1(𝑞
2)𝛾𝜇 − 1

4𝑀
𝐹2(𝑞

2)[𝛾𝜇, 𝑞], (7)

where 𝐹1(𝑞
2) and 𝐹2(𝑞

2) are some functions, which
characterize the electromagnetic interaction of the
proton – its form factors (FFs). 𝐹1 and is called Dirac
FF, and 𝐹2 is called Pauli FF. Instead of 𝐹1 and 𝐹2,
one often uses the linear combinations

𝐺𝐸 = 𝐹1 +
𝑞2

4𝑀2
𝐹2 and 𝐺𝑀 = 𝐹1 + 𝐹2, (8)

– electric and magnetic FF, respectively [16]. The ad-
vantage of such choice of FFs will become evident be-
low.

The amplitude corresponding to the diagram in
Fig. 1 has the form

ℳ1 = −4𝜋𝛼

𝑞2
𝑢̄′𝛾𝜇𝑢 𝑈̄

′Γ𝜇(𝑞)𝑈, (9)

where 𝑢′, 𝑈 ′ and 𝑢, 𝑈 and bispinors of the final and
initial particles, and Γ𝜇 is determined by Eq. (7). The
cross-section of the unpolarized scattering calculated
from amplitude (9) equals

𝑑𝜎 =
2𝜋𝛼2𝑑𝑡

𝐸2𝑡

1

1− 𝜀

(︀
𝜀𝐺2

𝐸 + 𝜏𝐺2
𝑀

)︀
, (10)

where 𝜏 = −𝑡/4𝑀2, 𝐸 is the energy of the initial
electron in the laboratory frame, and

𝜀 =
[︀
1 + 2(1 + 𝜏) tg2 𝜃

2

]︀−1
=

𝜈2 −𝑄2(4𝑀2 +𝑄2)

𝜈2 +𝑄2(4𝑀2 +𝑄2)
,

(11)

1 NB: in papers of other authors 𝜈 sometimes denotes the four
times smaller quantity, 𝜈 = 𝑃𝐾.

Fig. 1. First-order diagram

where 𝜃 is the scattering angle in that frame. The
quantities 𝐸, 𝜃, and 𝜏 are related by

𝐸(𝐸 − 2𝑀𝜏) =
𝑀2𝜏

sin2 𝜃/2
. (12)

The quantity 𝜀, which varies from 0 to 1, character-
izes the relative contribution of the longitudinal and
transverse photons to the cross-section: the contri-
bution of the transverse photons is independent of 𝜀,
and that of the longitudinal ones is proportional to it.

Equation (10), which was first derived (in a some-
what different form) in work [9], is called the Rosen-
bluth formula. From this equation, we see rationale
behind the FF choice in the form (8): it contains
only squares of the FFs and no interference terms.

Since FFs depend on 𝑡, but not on 𝜀, the expression

𝜎𝑅 = 𝜀𝐺2
𝐸 + 𝜏𝐺2

𝑀 , (13)

which is called a reduced cross-section, is a linear
function of 𝜀 regardless of the actual FFs.

This is the basis of the Rosenbluth method for
the extraction of FFs from the experimentally mea-
sured cross-sections. The method requires the mea-
surements to be performed at fixed 𝑡 and several dif-
ferent values of 𝜀. The resulting values of 𝜎𝑅 are plot-
ted against 𝜀, and should form the straight line. Then
the line slope gives us the electric FF, and the inter-
cept gives the magnetic FF. The linearity of the plot
was, until recently, considered as a sign of the Born
approximation validity.

The Rosenbluth method is very simple and was
widely used for the determination of FFs of nucle-
ons and light nuclei (such as 3He) from the 1960s till
today. But unfortunately, it has the following draw-
back: the error in the electric FF rapidly increases
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Fig. 2. Experimentally measured proton FF ratio. Squares –
Rosenbluth method [21–24], circles – polarization transfer
method [11, 13, 25, 26]. Blue line – Eq. (17), dashed line –
parametrization from [27]

with the momentum transfer. Indeed, since the co-
efficient in front of 𝐺2

𝑀 in Eq. (13) becomes large,
whereas 0 ≤ 𝜀 ≤ 1, the main contribution in 𝜎𝑅

comes from the second term. Thus, the relative error
Δ𝐺𝐸/𝐺𝐸 , which, in the order of magnitude, equals
Δ𝜎𝑅/𝜎𝑅 𝜎𝑅/𝐺

2
𝐸 = Δ𝜎/𝜎 𝜎𝑅/𝐺

2
𝐸 , will be much larger

than the relative error of the cross-section Δ𝜎/𝜎.
Thus, at large momentum transfers, it is more

convenient to use another method, the polarization
transfer method. It was proposed in the 1970s [17,18]
and first used in an experiment in 1998 [19].

This method is based on the fact that if the beam
electrons are longitudinally polarized, the recoil pro-
tons become polarized as well. Their spin orientation
depends on the FF ratio 𝐺𝐸/𝐺𝑀 , which allows one
to measure this ratio directly. Namely, if the initial
electrons have the helicity 𝜆, then the polarization
4-vector of the final protons is

𝑆 = 𝑆‖𝜉‖ + 𝑆⊥𝜉⊥ =

=
−𝜆

√
1− 𝜀2

𝜀𝐺2
𝐸 + 𝜏𝐺2

𝑀

(︃
𝜏𝐺2

𝑀𝜉‖ +

√︂
2𝜀𝜏

1 + 𝜀
𝐺𝑀𝐺𝐸𝜉⊥

)︃
, (14)

where 𝜉‖ and 𝜉⊥ are unit vectors

𝜉‖ =
2𝑀√︀
−𝑞2𝑃 2

(︂
𝑃 2

𝑀2
𝑝′ − 𝑃

)︂
,

𝜉⊥ =
𝜈𝑃 − 4𝑃 2𝐾√︀
𝑃 2(𝜈2 + 4𝑞2𝑃 2)

,

(15)

such that 𝜉2‖ = 𝜉2⊥ = −1, 𝜉‖𝑝
′ = 𝜉⊥𝑝

′ = 𝜉‖𝜉⊥ =
= 0. Thus, the FF ratio is expressed via the ratio of

longitudinal and transverse polarization components:

𝐺𝐸

𝐺𝑀
=

√︂
𝜏(1 + 𝜀)

2𝜀

𝑆⊥

𝑆‖
. (16)

Note that, contrary to the Rosenbluth method, the
polarization transfer method does not allow one to
determine 𝐺𝐸 and 𝐺𝑀 separately. It is also more
complicated technically, since it requires a polarized
electron beam and a measurement of the proton po-
larization. On the other hand, since only the ratio
of the polarization components is measured, there is
no need to know the beam polarization, or analyzing
power of the detector exactly. The main advantage of
the method is that the ratio 𝐺𝐸/𝐺𝑀 is determined
with higher accuracy, especially at large momentum
transfers.

From the theoretical point of view, the method
equivalent to the polarization transfer one is the
beam-target asymmetry method [20], though the ex-
perimental setup is quite different. Longitudinally po-
larized electrons are scattered on the polarized pro-
tons, and one observes the asymmetry 𝐴 = 𝜎+−𝜎−

𝜎++𝜎−
,

where 𝜎± is the cross-section for the scattering of elec-
trons with the helicity ±1/2.

In the Born approximation, 𝐴 is also expressed via
the FF ratio. Using the time reversal symmetry, one
can show that the results obtained with this method
should be identical to the results of the polarization
transfer method, even beyond the Born approxima-
tion. Further, for brevity, we will speak of the po-
larization transfer method, implying the beam-target
asymmetry method as its special case.

Proton FFs, obtained by the Rosenbluth method,
approximately obey the relation 𝜇𝐺𝐸/𝐺𝑀 ≈ 1,
where 𝜇 is the proton magnetic moment. The polar-
ization transfer measurements were first performed
at small 𝑄2 and confirmed this relation [19]. But
when the momentum transfer values were increased
up to 𝑄2 & 1 GeV2, the results become unexpected:
the ratio 𝐺𝐸/𝐺𝑀 decreased monotonically as 𝑄2 in-
creased and obviously disagreed with values obtained
by the Rosenbluth method. Since then, several other
experiments were performed by both methods, in
which the accuracy was improved, and higher mo-
mentum transfers were reached (𝑄2 up to 8.5 GeV2,
Fig. 2). The values of 𝐺𝐸/𝐺𝑀 , obtained by differ-
ent authors by the same method, agree with one an-
other well, whereas the values obtained by different
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Fig. 3. Second-order diagrams

methods, significantly disagree. In particular, the ra-
tio 𝐺𝐸/𝐺𝑀 , measured by the polarization transfer
method at not very high 𝑄2, was well described by a
linear function [28]

𝜇𝐺𝐸/𝐺𝑀 = 1− 0.135(𝑄2 − 0.24) (17)

(solid line in Fig. 2).
One should note that such asymptotic behavior of

the FFs contradicts the results obtained in the frame-
work of QCD. Perturbative QCD calculations yield
the dependence 𝐹1 ∼ 𝑄2𝐹2 at large 𝑄2, which is
equivalent to 𝐺𝐸/𝐺𝑀 ∼ const [29, 30].

The more accurate statistical analysis confirmed
the above-mentioned statements. In particular, it was
shown in Ref. [28] that

∙ the cross-sections measured in the Rosenbluth
method do not contain rough errors;

∙ the cross-section measured in different experi-
ments are consistent with each other;

∙ there is no statistically sound parametrization of
FFs compatible with the results obtained by both
methods.

This led to the suggestion that if we exclude a pos-
sibility of the rough error in the polarization transfer
measurements, the discrepancy is likely caused by the
terms of the next (second) order of perturbation the-
ory which were neglected, when deriving Eqs. (13)
and (16).

3. Second-Order Perturbation Theory

In the second order of perturbation theory, several
Feynman diagrams exist (Fig. 3): vacuum polariza-
tion (3, a), electron-photon and proton-photon vertex
corrections (3, b and 3, c, respectively), and TPE dia-
gram (3, d). We do not draw a diagram analogous to

3d with crossed photon lines, since we treat its lower
part as already symmetrized with respect to the pho-
ton interchange.

These diagrams have some new properties, which
were absent in the Born approximation.

First, there is the so-called infra-red (IR) diver-
gence. The integrals corresponding to diagrams in
Fig. 3, b, c, d are logarithmically divergent, when the
virtual photon momenta go to zero. Thus, with re-
gard for these diagrams, the elastic scattering cross-
section becomes infinite. It is well known that this
stems from the incorrect formulation of the prob-
lem. Since any detector has a finite energy resolution,
it is impossible for the experiment to separate the
elastic process from the process with the additional
emission of any number of soft photons with a total
energy less than some threshold.

Thus, the true observable is only 𝜎(Δ𝐸) – the
cross-section of such process, in which the sum of final
electron and proton energies differs from the initial
energy by not more than some Δ𝐸 > 0.

This cross-section is convenient to calculate in the
following way. Suppose that the photon has small but
non-zero mass 𝜆. Then all IR-divergent integrals be-
come finite, but instead contain terms proportional to
ln𝜆. The cross-section 𝜎(Δ𝐸) is a sum of two quan-
tities: the elastic scattering cross-section 𝜎𝑒𝑙 and the
soft photon emission cross-section 𝜎𝛾(Δ𝐸). Either of
these quantities is divergent as 𝜆 → 0, but the diver-
gent terms exactly cancel in the sum, and the quan-
tity 𝜎(Δ𝐸) appears well-defined as 𝜆 → 0.

The form of the IR-divergent terms can be deter-
mined without calculation of the scattering amplitude
and even without the expansion in 𝛼 [31]. Indeed, if
the quantity Δ𝐸 is small, then the photon emission
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Fig. 4. Number of the events 𝑁 depending on the final energy
of particles 𝐸 in the elastic scattering experiment

follows classical electrodynamics, and the photons are
emitted independently of one another. The number
of these photons will be a Poisson-distributed ran-
dom quantity; the probability of the scattering with
emitting exactly 𝑛 photons equals

𝑤𝑛 =
1

𝑛!
𝑤𝑛 exp(−𝑤),

where 𝑤 is the probability of a photon emission:

𝑤 =
𝛼

𝜋

(︂
𝐵1 ln

Δ𝐸

𝜆
+𝐵2

)︂
, (18)

where 𝐵1 and 𝐵2 are some functions of the particle
momenta, which are known explicitly. So, we have a
relation between the cross-section of the scattering
with the emission of an arbitrary number of photons
𝜎(Δ𝐸) and the cross-section of the “elastic” scatter-
ing, i.e., without any emission 𝜎el:

𝜎𝑒𝑙 = 𝑤0𝜎(Δ𝐸) = exp(−𝑤)𝜎(Δ𝐸) (19)

or
𝜎(Δ𝐸) = 𝜎el exp

[︂
𝛼

𝜋

(︂
𝐵1 ln

Δ𝐸

𝜆
+𝐵2

)︂]︂
. (20)

We see that, for the IR-divergences to cancel, the
quantity 𝜎el must have the form

𝜎el = 𝜎0 exp

[︂
𝛼

𝜋

(︂
𝐵1 ln

𝜆

𝐸
+𝐵3

)︂]︂
, (21)

where 𝜎0 is independent of 𝜆. Then

𝜎(Δ𝐸) = 𝜎0 exp

[︂
𝛼

𝜋

(︂
𝐵1 ln

Δ𝐸

𝐸
+𝐵2 +𝐵3

)︂]︂
. (22)

The auxiliary quantity 𝜆 disappears from the formu-
lae, but instead the cross-section becomes dependent
on Δ𝐸. The cross-section of exactly elastic scatter-
ing, i.e., lim

Δ𝐸→0
𝜎(Δ𝐸), is zero. This is clear from the

physical grounds: every collision of charged particles
is accompanied by the emission of the electromagnetic
waves, that is, soft photons.

Expanding (21) in series in 𝛼, one can find the
IR-divergent terms in 𝜎el in every order of perturba-
tion theory. They cancel with similar terms in the soft
photon emission cross-section 𝜎𝛾(Δ𝐸) = 𝜎(Δ𝐸)−𝜎el.

Then, what quantity is really measured in the ex-
periments on the elastic scattering? Aside from mi-
nor details, which can differ between experiments, the
elastic cross-section measurement is performed in the
following way. For every scattering event, the energy
𝐸 of the final particles (the electron and the proton)
is determined. The typical histogram of 𝐸 is shown
in Fig. 4, 𝐸0 is the initial energy. (𝐸 can be greater
than 𝐸0 because of the beam non-monochromaticity,
finite detector resolution, and so on. The ideal exper-
iment would yield the dashed curve; the solid curve,
obtained in the real experiment is a convolution with
a sort of “instrument function”). Then one chooses
some Δ𝐸, and all events with 𝐸 > 𝐸0 − Δ𝐸 are
formally counted as elastic. The corresponding cross-
section 𝜎(Δ𝐸) is proportional to the hatched area in
Fig. 4 and is called the “uncorrected” or “measured”
cross-section. Then the experimenters, starting from
the measured quantity 𝜎(Δ𝐸), try to calculate the
elastic scattering cross-section in the Born approxi-
mation, which is finally published as “the elastic cross-
section with radiative corrections” (“corrected cross-
section”) 𝜎cor. The quantity 𝜎(Δ𝐸) − 𝜎cor is called
the radiative correction and includes both the cross-
section of the soft photon emission and the higher-
order corrections to the elastic cross-section 𝜎el. It
can reach 20–30% (see, e.g., [21]).

It is clear that the radiative corrections are to be
calculated theoretically. The standard procedure for
this calculation was published in Ref. [32] and is based
on the results of Ref. [33]. Most of the experimental
works, especially older ones, used this procedure. Let
us consider it in more details.

For the vacuum polarization and electron-photon
vertex correction (3, a and 3, b), one uses the exact
expressions obtained in QED [31]:

ℳ2a = 𝑓a(𝑞
2)ℳ1, ℳ2b = 𝑓b(𝑞

2)ℳ1, (23)
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a b c d

Fig. 5. Photon emission (bremsstrahlung) diagrams

where
𝑓a(𝑞

2) =
𝛼

3𝜋
ln

−𝑞2

𝑚2
(24)

for diagram 3a and

𝑓b(𝑞
2) = − 𝛼

2𝜋

(︂
1

2
ln2

−𝑞2

𝑚2
+ 2 ln

𝑚

𝜆
ln

−𝑞2

𝑚2

)︂
(25)

for diagram 3, b (supposing that −𝑞2 ≫ 𝑚2). Due to
the presence of the large logarithm ln −𝑞2

𝑚2 in expres-
sions (24, 25), these corrections may be quite large;
in some high-energy experiments [21], the muon and
hadron vacuum polarizations and higher order cor-
rections to the electron-photon vertex were also taken
into account.

Diagrams 3, c and 3 d in Refs. [32, 33] were calcu-
lated in the so-called soft photon approximation (or
the Mo–Tsai approximation), that is, supposing that
the momentum of one of the virtual photons is close
to zero. In this way, one can exactly determine IR-
divergent contribution, which must cancel the same
term in the inelastic cross-section.

However, even if we forget the above, diagrams
3, a–c cannot cause the discrepancy between the
Rosenbluth and polarization transfer methods in the
measurements of the FFs. The point is that they all
has the structure analogous to the Born amplitude,
namely
ℳ = −4𝜋𝛼

𝑞2
𝑢̄′𝛾𝜇𝑢 𝑈̄

′𝛿Γ𝜇(𝑞)𝑈, (26)

where
𝛿Γ𝜇(𝑞) = 𝛿𝐹1(𝑞

2)𝛾𝜇 − 1

4𝑀
𝛿𝐹2(𝑞

2)[𝛾𝜇, 𝑞]. (27)

Thus, the inclusion of these diagrams does not break
the formulae obtained in the Born approximation, but

leads only to the effective change 𝐹𝑖 → 𝐹𝑖+𝛿𝐹𝑖. Thus,
though the results obtained by both methods may
change, the change will be the same, and the discrep-
ancy cannot arise.

So, we end up with the conclusion that the only
non-trivial diagram, which can be responsible for the
discrepancy, is the TPE diagram (Fig. 3, d). The ef-
fect of TPE reveals itself in three ways:

∙ first, the amplitude has a non-zero imaginary
part, which gives rise to such effects as single-spin
asymmetries (absent in OPE);

∙ second, there is a correction to the real part of the
amplitude, which now has a different tensor structure
than in OPE, consequently breaking the Rosenbluth
formula;

∙ third, the TPE correction has opposite signs for
the 𝑒−𝑝 and 𝑒+𝑝 scattering, which leads to the charge
asymmetry: the cross-sections for the electron and
positron scattering are now different.

Note that, in the Mo–Tsai soft-photon approxima-
tion, the diagram in Fig. 3, d has the same factoriza-
tion property as other three: it is proportional to the
OPE amplitude:

ℳ(Mo-Tsai)
2d = 𝑓d(𝜈, 𝑞

2)ℳ1. (28)

Thus, the non-trivial TPE effects come not just from
the TPE diagram, but from its IR-finite hard-photon
part ℳ2d −ℳ(Mo–Tsai)

2d .
Another component that could contribute to the

discrepancy between the Rosenbluth and polarization
transfer methods is higher order (in Δ𝐸) corrections
to the bremsstrahlung cross-section 𝜎𝛾(Δ𝐸), which,
in the leading order in 𝛼, is described by the diagrams
in Fig. 5. This was addressed in Refs. [34, 35], where
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the radiation by the electron (Fig. 5, a, b) was thor-
oughly studied in a model-independent way; and in
Ref. [36], where the radiation by the proton was stud-
ied in the next-to-leading order in Δ𝐸, and it was
shown that, at least at high 𝑄2, these corrections are
smaller than TPE and do not influence the experi-
mental results noticeably. Thus, we will concentrate
further on TPE corrections only.

4. Structure of the TPE Amplitude

In the general case, the elastic scattering of two non-
identical particles with spin 1/2 such as an elec-
tron and a proton is described by six scalar func-
tions – invariant amplitudes, which may be taken as,
for example, helicity amplitudes [31]. However, the
typical energies involved in the electron-proton scat-
tering experiments are several orders of magnitude
greater than the electron mass, thus the latter can
be safely neglected. Then the electron helicity is con-
served, and the number of amplitudes decreases to
three, which can be chosen as in [15]:

ℳ = −4𝜋𝛼

𝑞2
𝑢̄′𝛾𝜇𝑢×

× 𝑈̄ ′
(︂
𝛾𝜇𝐹1 −

1

4𝑀
[𝛾𝜇, 𝑞]𝐹2 +

𝑃𝜇

𝑀2
𝐾̂𝐹3

)︂
𝑈. (29)

The invariant amplitudes or generalized FFs, 𝐹𝑖 are
functions of two kinematic variables, 𝜈 = 4𝑃𝐾 and
𝑡 = 𝑞2. In the Born (OPE) approximation, the depen-
dence on 𝜈 disappears, and the amplitudes reduce to
the usual FFs:

𝐹
(Born)
1 (𝜈, 𝑡) = 𝐹1(𝑡),

𝐹
(Born)
2 (𝜈, 𝑡) = 𝐹2(𝑡),

𝐹
(Born)
3 (𝜈, 𝑡) = 0

(compare (29) with (7) and (9)). The TPE diagram
gives a contribution of order 𝑂(𝛼) to each of these
amplitudes. It is clear that one can choose any three
independent linear combinations of 𝐹𝑖 as invariant
amplitudes. Some authors introduce, in analogy with
the electric and magnetic FFs, the quantities
𝐺̃𝑀 = 𝐹1 + 𝐹2 and 𝐺̃𝐸 = 𝐹1 − 𝜏𝐹2.

However, the most convenient choice of the ampli-
tudes is, in our opinion, the following:

𝒢𝐸 = 𝐹1 − 𝜏𝐹2 + 𝜈𝐹3/4𝑀
2, 𝒢(Born)

𝐸 = 𝐺𝐸 ,

𝒢𝑀 = 𝐹1 + 𝐹2 + 𝜀𝜈𝐹3/4𝑀
2, 𝒢(Born)

𝑀 = 𝐺𝑀 ,

𝒢3 = 𝜈𝐹3/4𝑀
2, 𝒢(Born)

3 = 0.

(30)

Then, if the scattering amplitude has the general form
(29), the unpolarized cross-section becomes

𝑑𝜎 =
2𝜋𝛼2𝑑𝑡

𝐸2𝑡

1

1−𝜀

(︂
𝜀|𝒢𝐸 |2+𝜏 |𝒢𝑀 |2+𝜏𝜀2

1− 𝜀

1 + 𝜀
|𝒢3|2

)︂
.

(31)

This formula is exact and does not rely on the expan-
sion in 𝛼. We see that, in analogy with the Rosen-
bluth formula, there is no interference terms. Equa-
tion (14) for the final proton polarization in the po-
larization transfer method turns to be

𝑆 =
−𝜆

√
1− 𝜀2

𝜀|𝒢𝐸 |2 + 𝜏 |𝒢𝑀 |2
Re 𝐺̃*

𝑀 ×

×

[︃(︂
𝒢𝑀 +

𝜀(1− 𝜀)

1 + 𝜀
𝒢3

)︂
𝜏𝜉‖ +

√︂
2𝜀𝜏

1 + 𝜀
𝒢𝐸𝜉⊥

]︃
. (32)

Contrary to the Born approximation, the amplitudes
𝒢 in the general case are complex-valued. Their imag-
inary part is proportional to 𝛼 and comes exclusively
from the TPE diagram. On the other hand, Eqs. (31,
32), neglecting the terms of order 𝑂(𝛼2), contain only
their real parts. This follows from the fact that the
Born amplitudes are real; e.g.,

|𝒢𝐸 |2 = (𝐺𝐸 +Re 𝛿𝒢𝐸)
2 + (Im 𝛿𝒢𝐸)

2 =

= 𝐺2
𝐸 + 2𝐺𝐸 Re 𝛿𝒢𝐸 +𝑂(𝛼2),

where 𝛿𝒢𝐸 is the TPE amplitude. The imaginary
part of the amplitudes gives rise to the new type of
observables – single-spin asymmetries.

In the first order of perturbation theory, the final
particles for the unpolarized scattering are unpolar-
ized as well. If only one of the initial particles is po-
larized, the scattering cross-section is independent of
its spin and still follows Eq. (10). With taking into
account TPE, such dependence arises. The situation,
where the spin of a polarized particle is perpendicu-
lar to the reaction plane, is of special interest. Since it
has only two possible directions (say, up and down),
we denote the corresponding cross-sections as 𝜎↑ and
𝜎↓ and define the asymmetry as

𝐴𝑛, 𝐵𝑛 =
𝜎↑ − 𝜎↓

𝜎↑ + 𝜎↓
. (33)

When the polarized particle is a proton (the target)
this quantity is called a “target normal spin asym-
metry” (TNSA) and denoted by 𝐴𝑛. For an electron,
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Fig. 6. To the derivation of the formula for TNSA

it is denoted by 𝐵𝑛 and called a “beam normal spin
asymmetry” (BNSA).

The interesting properties of these quantities are:
∙ as was stated above, both asymmetries are strict-

ly zero in the OPE approximation; thus, the leading
contribution to the asymmetry is given by TPE;

∙ they are expressed via the imaginary part of the
scattering amplitude, which significantly simplifies
theoretical calculations;

∙ the asymmetry does not contain IR divergencies.
This can be inferred immediately from definition (33):
both cross-sections, 𝜎↑ and 𝜎↓, contain the same IR-
divergent factor (the exponent from Eq. (21)), which
thus cancels. Therefore, there is no need for radiative
corrections in the measurements of the asymmetry.

TNSA can be expressed via the amplitudes 𝒢 in-
troduced above as

𝐴𝑛 =

√︀
2𝜏𝜀(1 + 𝜀)

𝜏𝐺2
𝑀 + 𝜀𝐺2

𝐸

×

×
[︂
𝐺𝐸 Im

(︂
𝒢𝑀 +

𝜀(1− 𝜀)

1 + 𝜀
𝒢3

)︂
−𝐺𝑀 Im𝒢𝐸

]︂
+𝑂(𝛼2).

(34)

BNSA cannot be expressed via these amplitudes,
since it vanishes for the zero electron mass. Thus, it
also depends on the other three amplitudes, which
were neglected in Eq. (29).

Single-spin asymmetries are considered in detail in
Sec. 5.

Calculation of the whole TPE amplitude (and not
just its imaginary part) is a difficult task. Early works
considering TPE for the electron-proton scattering
[37, 38] have the following common drawbacks:

∙ usually, the proton is considered as the source
of a constant external field (static approximation,
𝑀 → ∞);

∙ only the cross-section correction is calculated, but
not the scattering amplitude, which has three inde-
pendent components (29).

The main difficulties with the rigorous calculation
of the TPE amplitudes are the need to consider a
large number of intermediate states and the FFs in
the 𝛾*𝑝 vertices.

5. Imaginary Part Effects

Let us demonstrate that the single-spin asymmetry
(say, TNSA) defined according to Eq. (33) is pro-
portional to the imaginary part of the TPE ampli-
tude [39].

Denote the initial state by |𝑖⟩ and the final state
by |𝑓⟩; the same states with the spins reversed are
marked by a hat: |̂𝑖⟩ and |𝑓⟩. Then the cross-sections
of our interest are, up to a constant factor,

𝜎↑ =
∑︁

|𝑇𝑓𝑖|2, 𝜎↓ =
∑︁

|𝑇𝑓𝑖̂|
2 =

∑︁
|𝑇𝑓𝑖̂|

2, (35)

where
∑︀

means the summation over the spins of the
initial and final electrons and the final proton. Ac-
ting on the states |𝑖⟩ and |𝑓⟩ by the time reversal
operator (Θ𝑇 ) and rotating around the normal to the
scattering plane by 180∘ (Θ𝑅), see Fig. 6, we have

Θ𝑅Θ𝑇 |𝑖⟩ = 𝜂𝑖 |̂𝑖⟩, Θ𝑅Θ𝑇 |𝑓⟩ = 𝜂𝑓 |𝑓⟩, (36)

where 𝜂𝑖,𝑓 are some phases, |𝜂𝑖,𝑓 |2 = 1. From the 𝑇 -
invariance of the electromagnetic interaction, it fol-
lows that

𝑇𝑓𝑖̂ = 𝜂𝑖𝜂
*
𝑓𝑇𝑖𝑓 . (37)

With the help of Eq. (37), the cross-section difference
can be written as

𝜎↑ − 𝜎↓ =
∑︁[︀

|𝑇𝑓𝑖|2 − |𝑇𝑖𝑓 |2
]︀
=

=
1

2

∑︁[︁
(𝑇 *

𝑓𝑖 + 𝑇𝑖𝑓 )(𝑇𝑓𝑖 − 𝑇 *
𝑖𝑓 )−
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− (𝑇 *
𝑖𝑓 + 𝑇𝑓𝑖)(𝑇𝑖𝑓 − 𝑇 *

𝑓𝑖)
]︁
=

=
1

2

∑︁[︁
(𝑇 *

𝑓𝑖 + 𝑇𝑖𝑓 )(𝑇𝑓𝑖 − 𝑇 *
𝑖𝑓 )−

− (𝑇 *
𝑓𝑖̂

+ 𝑇𝑖̂𝑓 )(𝑇𝑓𝑖̂ − 𝑇 *
𝑖̂𝑓
)
]︁
.

The unitarity condition says

𝑇𝑓𝑖 − 𝑇 *
𝑖𝑓 = 𝑖

∑︁
𝑛

𝑇𝑓𝑛𝑇
*
𝑖𝑛, (38)

where the summation goes over the complete set of in-
termediate states 𝑛. In the case of electromagnetic in-
teraction, the 𝑇 -matrix elements are proportional to
the small quantity 𝛼. This means that the 𝑇 -matrix
is Hermitian in the first order in 𝛼:

𝑇
(1)
𝑓𝑖 = 𝑇

(1)*
𝑖𝑓 , (39)

and the anti-Hermitian part (which is usually some-
what inaccurately called “imaginary”) arises only in
the second order:

𝑇𝑓𝑖 − 𝑇 *
𝑖𝑓 = 𝑖

∑︁
𝑛

𝑇
(1)
𝑓𝑛 𝑇

(1)
𝑖𝑛 +𝑂(𝛼3). (40)

Inserting (40) in (38), we see that, in the first non-
vanishing order in 𝛼, the asymmetry has the form

𝐴𝑛 ≈ 𝑖
∑︁
𝑛

∑︀
𝑇

(1)
𝑓𝑛

(︁
𝑇

(1)
𝑛𝑖 𝑇

(1)
𝑖𝑓 − 𝑇

(1)

𝑛𝑖̂
𝑇

(1)

𝑖̂𝑓

)︁
∑︀(︁

|𝑇 (1)
𝑓𝑖 |2 + |𝑇 (1)

𝑓𝑖̂
|2
)︁ . (41)

Of course, a similar equation holds for BNSA (when
the polarized particle is an electron).

The outer summation in Eq. (41) goes over all
states 𝑛 that can be produced in the interaction of the
electron with the proton. In the first order in 𝛼, they
must consist of the electron and some hadronic state
with baryon number 1, charge +1, and invariant mass
𝑊 ≤

√
𝑠. This hadronic state can be bare proton,

proton plus some number of mesons (𝜋𝑝, 𝜋𝜋𝑝, 𝜂𝑝...)
or proton-antiproton pairs (𝑝𝑝𝑝), etc. The contribu-
tion of the bare proton as the intermediate hadronic
state is called the elastic contribution (as the produc-
tion of this state would be the elastic process); other
contributions are called inelastic.

The main problem in calculations of the asymmetry
comes from the inelastic contribution, since, at not-
so-small energies, the number of allowed intermediate
states can be large. Therefore, one has to use some
model for these states.

5.1. TNSA

TNSA was first considered in Refs. [39, 40]. The elas-
tic part was calculated directly, and the inelastic part
was constrained using a sort of the Cauchy inequality:

⃒⃒
𝑇𝑓𝑖 − 𝑇 *

𝑖𝑓

⃒⃒
=

⃒⃒⃒⃒
⃒∑︁

𝑛

𝑇𝑓𝑛𝑇
*
in

⃒⃒⃒⃒
⃒ ≤

≤
√︃∑︁

𝑛

|𝑇𝑓𝑛|2
∑︁
𝑛

|𝑇in|2 ∼ √
𝜎𝑓𝜎𝑖, (42)

where 𝜎𝑖 (𝜎𝑓 ) is the total inelastic cross-section from
the state 𝑖 (𝑓).

The advantage of such approach is that the above
expression includes only experimentally measurable
quantities. Thus, the constraint is model-indepen-
dent. However, as was already noted by the authors,
while the bound given by Eq. (42) for the near-for-
ward scattering is likely a good approximation to
the imaginary part of the amplitude, for the large-
angle scattering, it probably far overestimates its true
value. Thus, we need to do a more accurate estimate
of the inelastic contribution to TNSA.

Such calculations were performed in Refs. [41,
42]. In Ref. [41], the intermediate states included in
the unitarity relation were 𝜋𝑁 states. These are the
lowest inelastic states possible (other inelastic states
include 𝜋𝜋𝑁 , 𝜋𝜋𝜋𝑁 , 𝜂𝑁, and so on, and their con-
tribution was neglected). The amplitudes of the pion
electroproduction 𝛾*𝑁 → 𝜋𝑁 , which enter the uni-
tarity condition in this case, are reasonably well-
known and were taken from the MAID model [43].

In Ref. [42], the lowest resonances were used
instead, namely, 𝑃33(1232), 𝐷13(1520), 𝑆11(1535),
𝐹15(1680), and 𝑃11(1440), with transition ampli-
tudes fitted from the experimental data. Compared
to Ref. [41], on the one hand, we include some states
other than 𝜋𝑁 , since the resonances are not 100%
composed of 𝜋𝑁 . But, on the other hand, we leave
out the nonresonant pion production.

It was found that the contributions of the reso-
nances tend to cancel one another, and, for the larger
energies, the asymmetry (and the imaginary part of
the TPE amplitude as well) is dominated by the elas-
tic part. Since the real and imaginary parts of the
amplitude are connected via dispersion relations, it
was suggested that the elastic contribution is a good
approximation for the real part of the TPE amplitude
as well.
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5.2. BNSA

The BNSA is proportional to the lepton mass and
vanishes in the 𝑚 → 0 limit. Indeed, a state with the
electron spin perpendicular to the scattering plane is
the superposition of the states with positive and neg-
ative helicities with the coefficients differing only in
phase. But the helicity of a massless particle is con-
served. Thus, there is no interference between differ-
ent helicities, and the cross-sections 𝜎↑ and 𝜎↓ are
equal.

However, numerically, the asymmetry is not as
small as one may expect, since it contains logarith-
mic (ln𝑄2/𝑚2) and double-logarithmic (ln2 𝑄2/𝑚2)
enhancements, as was shown in Refs. [44–46]. The in-
terplay between these terms is such that ln𝑄2/𝑚2

term dominates at forward angles and the ln2 𝑄2/𝑚2

term at backward ones, because of different powers of
𝑄2 in front of the logarithms.

The following representation of BNSA can be easily
derived from Eq. (41):

𝐵𝑛 =
𝑖𝛼𝑞2𝑚

2𝜋2𝐷

∫︁
𝑑3𝑘′′

2𝜖′′
1

𝑞21𝑞
2
2

𝑌 (𝑊, 𝑞21 , 𝑞
2
2) + 𝑜(𝑚), (43)

where the function 𝑌 (𝑊, 𝑞21 , 𝑞
2
2) is a contraction of

the leptonic and hadronic tensors describing the
virtual Compton scattering, but their exact forms are
not needed here, 𝑊 = (𝑝 + 𝑘 − 𝑘′′)2 is the invariant
mass of the hadronic intermediate state, and 𝐷 =

= 4(2𝑠+𝑞2−2𝑀2)2

4𝑀2−𝑞2 (4𝑀2𝐺2
𝐸 − 𝑞2𝐺2

𝑀 ) + 4𝑞2(4𝑀2𝐺2
𝐸 +

+ 𝑞2𝐺2
𝑀 ). The double-logarithmic terms found in

Ref. [46] arise from the approximate formula

∫︁
𝑑3𝑘′′

2𝜖′′
1

𝑞21𝑞
2
2

𝑌 (𝑊, 𝑞21 , 𝑞
2
2) ≈

𝜋

4𝑄2
𝑌 (

√
𝑠, 0, 0) ln2

𝑄2

𝑚2
,

(44)

which yields

𝐵𝑛 ≈ 𝐵(ln2)
𝑛 = − 𝑖𝛼𝑚

8𝜋𝐷
𝑌 (

√
𝑠, 0, 0) ln2

𝑄2

𝑚2
. (45)

The following properties of these double-logarithmic
contributions are notable: it is produced by the inter-
mediate states with the maximal kinematicly possible
invariant mass, 𝑊 =

√
𝑠. Therefore, the elastic con-

tribution does not take part here, and the energy de-
pendence of the asymmetry has resonance form with
maxima at the positions of prominent resonances.

The double-logarithmic contribution has the fol-
lowing asymptotics at small 𝑄2:

𝐵(ln2)
𝑛 ∼ 𝑄3 ln2

𝑄2

𝑚2
. (46)

in agreement with the results of Ref. [45].
Another approach was used in Ref. [44]. While, in

Ref. [46], we searched for the terms with the high-
est power of the large logarithm, the authors of
Ref. [44] searched for the slowest-decreasing terms at
𝑄 → 0. The result was the following:

𝐵𝑛 ≈ 𝐵(ln)
𝑛 = −2𝑚(𝑠−𝑀2)2

𝜋2𝐷
×

×
(︂
𝐺𝐸 +

𝑄2

4𝑀2
𝐺𝑀

)︂
𝑄 ln

𝑄2

𝑚2
𝜎tot, (47)

where 𝜎tot is the total photoabsorption cross-section
on the proton, i.e., the cross-section of the reaction
𝛾p → X.

Note that Eqs. (47) and (45) are distinct contribu-
tions and should, in general, be added together. The
approximation of Eq. (47) is valid for very small scat-
tering angles,

sin2
𝜃

2
ln

𝑄2

𝑚2
≪ 1, (48)

while the double-logarithmic approximation of
Eq. (45) is valid upon the reverse condition

sin2
𝜃

2
ln

𝑄2

𝑚2
≫ 1. (49)

6. Calculation of the TPE Amplitude

The calculation of the real part of the TPE amplitude
is a more complicated task, since the intermediate
hadronic state is here virtual and, regardless of the to-
tal energy, states of all masses can contribute. There
are two main ways of such calculation: “hadronic” ap-
proach (Sec. 6.1) and “parton-quark” one suitable for
high 𝑄2 (Sec. 6.2).

6.1. Hadronic approach

The “hadronic” approach implies that the intermedi-
ate states in the lower part of the diagram in Fig. 3, d
are sets of hadrons. Certainly, the unlimited number
of variants is possible here, and just the lowest-mass
states are usually taken into account.
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Fig. 7. The elastic contribution

As with the calculation of the imaginary part, we
distinguish the “elastic contribution”, which arises,
when the intermediate state is the proton itself, and
the inelastic one coming from all other intermediate
states. The elastic contribution is easier to calculate,
and, in many situations, it is the dominant one. In ad-
dition, the IR-divergent terms in the amplitude come
exclusively from the elastic contribution; the inelastic
one is always IR-finite. Only the elastic contribution
is to be considered for the 𝑒𝜇 (instead of 𝑒𝑝) scatter-
ing, which was done in Ref. [47].

The difference of the 𝑒𝑝 scattering from the 𝑒𝜇 case
is that the proton has an internal structure. Thus, the
question arises: what are its propagator and the 𝑝𝑝𝛾
vertex function? It was argued that since one of the
protons entering the vertex, is virtual, it should dif-
fer from the usual 𝑝𝑝𝛾 e.m. vertex and contain the
so-called off-shell FFs, which are not known experi-
mentally.

Nevertheless, as an approximation, the TPE dia-
gram was calculated in Ref. [14, 48] under assump-
tion that the proton propagator is the same as that
of a point Dirac particle, and the 𝑝𝑝𝛾 vertex coincides
with the usual on-shell one:

Γ𝜇(𝑞) = 𝐹1(𝑞
2)𝛾𝜇 − 1

4𝑀
𝐹2(𝑞

2)[𝛾𝜇, 𝑞]. (50)

This expression was chosen, because it preserves
the gauge invariance, while another common one,
equivalent in the case of on-shell proton,

Γ𝜇(𝑞) = (𝐹1 + 𝐹2)𝛾𝜇 − 𝐹2
(𝑝+ 𝑝′)𝜇

2𝑀
(51)

does not. This approximation is schematically de-
picted in Fig. 7: the full TPE contribution is approx-
imated by the sum of two diagrams called the “box”
and “crossed-box” diagrams. They are related by the
crossing symmetry. Thus, the scattering amplitude is

ℳ=ℳ(box)+ℳ(xbox)=ℳ(box)(𝜈, 𝑡)−ℳ(box)(−𝜈, 𝑡).

(52)

Some technical details of the calculation are given
below.

6.1.1. Elastic contribution

The expression corresponding to the box diagram in
Fig. 7 is

𝑖ℳ(box) =
(︁𝛼
𝜋

)︁2 ∫︁
𝑑4𝑘′′ ×

× 𝑢̄′𝛾𝜇(𝑘
′′ +𝑚)𝛾𝜈𝑢 𝑈̄

′Γ𝜇(𝑞2)(𝑝
′′ +𝑀)Γ𝜈(𝑞1)𝑈

𝑞21𝑞
2
2(𝑘

′′2 −𝑚2)(𝑝′′2 −𝑀2)
. (53)

First, the 𝛾-matrix structure of the formula must be
reduced to that of Eq. (29). This can be done in two
stages. It is well known that any product of 𝛾 ma-
trices can be represented as a linear combination of
the 16 structures: 1, 𝛾𝜇, [𝛾𝜇, 𝛾𝜈 ], 𝛾5𝛾𝜇, and 𝛾5. Then
we use the fact that, in Eq. (53), those matrices are
sandwiched between on-shell particle spinors. It can
be shown that
1

2
𝑞2 𝑢̄′𝛾5𝛾𝜇𝑢 = −𝑚𝑞𝜇 𝑢̄

′𝛾5𝑢− 𝑖𝜖𝜇𝜈𝜎𝜏𝐾
𝜎𝑞𝜏 𝑢̄′𝛾𝜈𝑢,

1

4
𝑞2 𝑢̄′[𝛾𝜇, 𝛾𝜈 ]𝑢 = −𝑖𝜖𝜇𝜈𝜎𝜏𝐾

𝜎𝑞𝜏 𝑢̄′𝛾5𝑢+ (54)

+𝑚 (𝑞𝜇𝑢̄
′𝛾𝜈𝑢− 𝑞𝜈 𝑢̄

′𝛾𝜇𝑢) + 𝑢̄′𝑢 (𝐾𝜇𝑞𝜈 −𝐾𝜈𝑞𝜇).

(and similarly for the proton spinors, with the re-
placement 𝐾𝜇 → 𝑃𝜇, 𝑞𝜇 → −𝑞𝜇, 𝑚 → 𝑀). Using
these identities, ℳ can be represented as a linear
combination of the four structures of the form

𝑢̄′𝛾𝜇𝑢 𝑈̄ ′𝛾𝜈𝑈, 𝑢̄′𝛾5𝑢 𝑈̄ ′𝛾𝜇𝑈,

𝑢̄′𝛾𝜇𝑢 𝑈̄ ′𝛾5𝑈, and 𝑢̄′𝛾5𝑢 𝑈̄ ′𝛾5𝑈.

The 2nd and 3rd combinations would violate the 𝑇 -
invariance and thus do not actually appear; and the
last combination does not appear due to the negligi-
bly small electron mass.

Now, the task is to calculate the coefficients in
front of these structures and to compare the result-
ing amplitude with Eq. (29) to obtain generalized
FFs. The combinations that would violate the 𝑇 in-
variance automatically receive zero coefficients after
the integration.

At this stage, we obtain, for the generalized FFs,
expressions like

𝛿𝒢 =

2∑︁
𝑖,𝑗=1

∫︁
𝑑4𝑘′′

𝐹𝑖(𝑡1)𝐹𝑗(𝑡2)

𝑡1𝑡2
×

×
[︂

𝐴𝑖𝑗(𝑡1, 𝑡2, 𝜈, 𝑡)

(𝑘′′2 −𝑚2)(𝑝′′2 −𝑀2)
+

𝐴𝑘,𝑖𝑗(𝑡1, 𝑡2, 𝜈, 𝑡)

𝑘′′2 −𝑚2
+

+
𝐴𝑝,𝑖𝑗(𝑡1, 𝑡2, 𝜈, 𝑡)

𝑝′′2 −𝑀2
+𝐴1,𝑖𝑗(𝑡1, 𝑡2, 𝜈, 𝑡)

]︂
, (55)
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which contain elastic proton FFs 𝐹𝑖. The functions
𝐴𝑖𝑗 are polynomials in 𝑡1 and 𝑡2 and rational func-
tions of 𝜈. To proceed further, the FFs are paramet-
rized as a sum of fixed poles:
𝐹𝑖(𝑡)

𝑡
=
∑︁
𝑎

𝑐𝑖𝑎
𝑡−𝑚2

𝑎

. (56)

Integral (55) is then represented as a linear combina-
tion
𝛿𝒢 =

∑︁
𝑖𝑗𝑎𝑏

𝑐𝑖𝑎𝑐𝑗𝑏

∫︁
𝑑4𝑘′′

(𝑡1 −𝑚2
𝑎)(𝑡2 −𝑚2

𝑏)
×

×
[︂

𝐴𝑖𝑗(𝑚
2
𝑎,𝑚

2
𝑏 , 𝜈, 𝑡)

(𝑘′′2 −𝑚2)(𝑝′′2 −𝑀2)
+

𝐴𝑘,𝑖𝑗(𝑚
2
𝑎,𝑚

2
𝑏 , 𝜈, 𝑡)

𝑘′′2 −𝑚2
+

+
𝐴𝑝,𝑖𝑗(𝑚

2
𝑎,𝑚

2
𝑏 , 𝜈, 𝑡)

𝑝′′2 −𝑀2
+𝐴1,𝑖𝑗(𝑚

2
𝑎,𝑚

2
𝑏 , 𝜈, 𝑡)

]︂
. (57)

The integrals∫︁
𝑑4𝑘′′

(𝑡1 −𝑚2
𝑎)(𝑡2 −𝑚2

𝑏)(𝑘
′′2 −𝑚2)(𝑝′′2 −𝑀2)

,∫︁
𝑑4𝑘′′

(𝑡1 −𝑚2
𝑎)(𝑡2 −𝑚2

𝑏)(𝑘
′′2 −𝑚2)

,∫︁
𝑑4𝑘′′

(𝑡1 −𝑚2
𝑎)(𝑡2 −𝑚2

𝑏)
,

entering Eq. (57) are known as 4-point, 3-point, and
2-point functions, respectively [49], and can be calcu-
lated either analytically or numerically.

Finally, the IR-divergent contribution should be
subtracted (see also discussion in Sec. 3). It is equal to

𝛿𝒢(IR)
𝐸 = 𝑓 (IR)𝐺𝐸 , 𝛿𝒢(IR)

𝑀 = 𝑓 (IR)𝐺𝑀 , 𝛿𝒢(IR)
3 = 0,

(58)

where the factor 𝑓 (IR) depends on the particular
method of calculation of radiative corrections. In the
prescription of Mo–Tsai [32], which was widely used
in experiments, it is equal to

𝑓 (Mo-Tsai) =
𝛼

𝜋

[︂
ln

4𝑀2𝜆2

𝜈2 − 𝑡2
ln

𝜈 − 𝑡

𝜈 + 𝑡
−

− Li2

(︂
1− 𝜈 − 𝑡

2𝑀2

)︂
+ Li2

(︂
1− 𝜈 + 𝑡

2𝑀2

)︂]︂
. (59)

In some recent experiments, the so-called Maximon–
Tjon prescription [50] is used instead of the Mo–Tsai
one, which (naturally) has the same divergent part,
but differs from the latter in finite terms:

𝑓 (MT) =
𝛼

𝜋
ln

𝜆2

−𝑡
ln

𝜈 − 𝑡

𝜈 + 𝑡
. (60)

6.1.2. Time-like region problem

However, there is a problem within this approach,
which was pointed out in Ref. [51]. The procedure,
described above involves the FF fitting. But the FFs
are measured experimentally only in the space-like
region (𝑄2 > 0). Naturally, the fit is done over that
region only. In the time-like region (𝑄2 < 0), the dif-
ference between the actual FFs and the fit can be
significant. But the integration in Eqs. (53, 55) goes
over both space-like and time-like regions. Therefore,
the results of calculations using such fit are doubtful.

To overcome this problem, another method of in-
tegration was used in Ref. [51]. Using the analytic
properties of FFs, Eq. (55) was transformed via the
Wick rotation, resulting in the other integral contain-
ing FFs for space-like 𝑄2 only:

𝛿𝒢 =

2∑︁
𝑖,𝑗=1

∫︁
𝑡1,𝑡2≤0

𝒦𝑖𝑗(𝑡1, 𝑡2)𝐹𝑖(𝑡1)𝐹𝑗(𝑡2)𝑑𝑡1𝑑𝑡2, (61)

where 𝒦𝑖𝑗(𝑡1, 𝑡2) are certain known functions.
This result implies that the fitting of FFs in the

space-like region only is fine, as long as the analytic
structure of FFs is preserved by the fit, i.e., all singu-
larities lie on the negative real axis. In this case, the
integral effectively depends on FFs at 𝑄2 > 0 only.

Trying the calculation with different FF parame-
trizations, it was found that the results are almost
insensitive to it.

6.1.3. Dispersion approach

However, the problem of the off-shell FFs remained
unsolved. To resolve this problem, the dispersion me-
thod was proposed [52].

The idea is that, at first, the imaginary part of
the TPE amplitude is calculated. This is done with
the help of the unitarity condition (40), where the
intermediate states are on-shell. Therefore, one can
employ usual FFs measured experimentally.

Then the real part of the amplitude is reconstruc-
ted via the dispersion relations, and it appears that
(in the case of single-particle intermediate state,
either elastic or inelastic one) such reconstruction can
be done analytically and independently of particu-
lar FFs.

Calculations with this method were first done
for the elastic intermediate state [52]. It was found
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that the elastic contribution calculated in Ref. [52]
within the dispersion approach differs from the re-
sults of Refs. [48, 51], but the difference is very small
numerically.

6.1.4. Inelastic contribution

Later on, the calculations like [48] were performed for
the inelastic contribution: namely, Δ(1232) [53] and
higher resonances [54] as intermediate states. The
width of resonances was neglected: they were consid-
ered as zero-width particles with proper spin-parity
and on-shell transition FFs. For their propagators,
the usual propagators of spin-1/2 and spin-3/2 parti-
cles were used.

The results indicated that the contributions of res-
onances are smaller than the elastic one, the largest
of them is the Δ(1232) contribution, and the contri-
butions of different resonances have different signs,
partly cancelling each other.

The approach of Ref. [51] can also be applied in
this case, showing that it is still sufficient to fit the
transition amplitudes at 𝑄2 > 0 only [55].

However, it is clear that neglecting the resonance
width completely is not a good idea, as the width
may be even comparable to mass (as in Röper res-
onance 𝑁*(1440)); also the problem of the proper
choice of a propagator and transition FFs remains
unsolved. Thus, the dispersion approach of Ref. [52]
was applied to the calculation of the inelastic con-
tribution. In Ref. [56], the contribution of the zero-
width Δ resonance was calculated within this ap-
proach. Moreover, in Ref. [57], the full 𝑃33 channel
of the 𝜋𝑁 system was included, effectively consider-
ing the Δ resonance with a realistic width and shape
(as Δ almost 100% consists of 𝜋𝑁). In Ref. [58], the
same approach was used to include all 𝜋𝑁 states with
spin 1/2 and 3/2 (namely, 𝑆11, 𝑆31, 𝑃11, 𝑃31, 𝑃13,
𝑃33, 𝐷13 and 𝐷33 channels). Here, the 𝜋𝑁 system
with c.m. energy 𝑊 was treated as a single particle
with proper spin-parity, mass 𝑊, and transition FFs
derived from the pion photoproduction amplitudes,
which, in turn, were taken from the MAID model [43].

The results were the following. At small 𝑄2, the
inelastic contribution to TPE amplitudes is very
small (negligible compared to the elastic one); at
intermediate energies it has the resonance shape
with maxima near the positions of prominent reso-
nances, which are sharp, if we neglect resonance width

(Ref. [56]) and become smooth, if we properly account
it (Refs. [57, 58]); and, at high 𝑄2, it is gradually
growing with 𝑄2.

The main contribution among all inelastic channels
comes from the 𝑃33 channel, where Δ(1232) lives, and
overall larger contributions come from the channels
with quantum number of lightest resonances.

Though the TPE corrections to the cross-section
and to the magnetic FF are dominated by the elastic
contribution, it was found that the agreement with
experimental data is improved, by taking the inelastic
contribution into account.

It was also found that the correction to the 𝐺𝐸

FF due to inelastic states is relatively large, growing
almost linearly with 𝑄2 at 𝑄2 & 2 GeV2, and soon
exceeds the elastic one.

6.2. High 𝑄2

At high 𝑄2, the hadronic approach becomes doubt-
ful, because a large number of intermediate states is
involved. On the other hand, at high 𝑄2, the proton-
virtual photon interaction can be treated with the
help of special technics developed for that case: gen-
eralized parton distributions (GPDs) and perturba-
tive quantum chromodynamics (pQCD).

The GPD is a generalization of parton distribu-
tion functions, which are used in describing the
deep inelastic scattering [59]. In the GPD model of
Refs. [60, 61], both virtual photons interact with the
same quark (on the contrary, such diagrams in pQCD
are suppressed by a factor 𝛼𝑠, since they need an ex-
tra gluon to be exchanged between quarks, see be-
low). The TPE amplitude is obtained as a convolu-
tion of the TPE amplitude of the elastic electron-
quark process with the distribution of quarks in pro-
ton – GPD. The authors of Refs. [60, 61] claim that
the diagrams, in which two photons interact with dif-
ferent quarks, are “subleading in 𝑄2 because of the
momentum mismatches in the wavefunctions”.

The pQCD can be used, in particular, to des-
cribe high-𝑄2, high-energy exclusive reactions with
hadrons such as the elastic lepton scattering [29].
Though the straightforward application of pQCD
yields results, which are not very consistent with the
experiments (in particular, the magnetic FF of a pro-
ton becomes zero, and that of a neutron turns posi-
tive), it was shown that introducing the phenomeno-
logical quark distribution amplitude allows one to
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Fig. 8. pQCD diagrams for 𝑒𝑁 → 𝑒𝑁 : OPE (a), TPE, leading order (b), subleading order (c, d)

obtain a reasonable agreement at currently accessi-
ble experimental energies. In the pQCD approach,
the scattering amplitude is split into a hard “core”,
which describes the scattering off a set of (asymp-
totically free) quarks, and calculated according to
the QCD perturbation theory, and quark distribution
amplitudes, which connect physical hadron with mul-
tiquark states and are determined empirically with
the help of various sum rules.

The pQCD representation of TPE has an impor-
tant feature: comparing pQCD diagrams for OPE
(Fig. 8, a) and TPE (Fig. 8, b), one can see that
the former includes 1 photon and 2 gluon exchanges,
producing a factor of 𝛼𝛼2

𝑠, whereas, for the TPE, we
have 2 photons and 1 gluon, which gives a factor of
𝛼2𝛼𝑠. In this way in pQCD, the ratio TPE/OPE is of
order 𝛼/𝛼𝑠, which is much larger than naive 𝛼, and
raises with 𝑄2, as 𝛼𝑠 decreases.

In Ref. [62], the TPE corrections to the elastic
𝑒𝑁 scattering were calculated in the leading-order
pQCD. In this approximation, only the non-spin-
flipping amplitudes exist – 𝛿𝒢𝑀 and 𝛿𝒢3, whereas
𝛿𝒢𝐸 (as 𝐺𝐸 itself) cannot be assessed: they are
subleading-order effects. It is convenient to use nor-
malized TPE amplitudes: 𝛿𝒢𝑀/𝐺𝑀 and 𝛿𝒢3/𝐺𝑀 ,
where both numerator and denominator are calcu-
lated according to pQCD. This way, we also avoid the
uncertainty coming with the absolute normalization
of the quark distribution amplitudes.

The results are:(︂
𝛿𝐺𝑀

𝐺𝑀
,
𝛿𝒢3

𝐺𝑀

)︂
= −3𝛼

𝛼𝑠

⟨𝜑(𝑦𝑖)|(𝑇𝛿𝐺𝑀
, 𝑇𝛿𝒢3

)|𝜑(𝑥𝑖)⟩
⟨𝜑(𝑦𝑖)|𝑇𝐺𝑀

|𝜑(𝑥𝑖)⟩
,(62)

with

𝑇𝐺𝑀
= (1 + ℎ1ℎ3)

[︂
2𝑒1

𝑥3𝑦3(1− 𝑥1)2(1− 𝑦1)2
+

+
2𝑒1

𝑥2𝑦2(1− 𝑥1)2(1− 𝑦1)2
+

+
𝑒2

𝑥1𝑦1𝑥3𝑦3(1− 𝑥1)(1− 𝑦3)
−

− 𝑒1
𝑥2𝑦2𝑥3𝑦3(1− 𝑥1)(1− 𝑦3)

−

− 𝑒1
𝑥2𝑦2𝑥3𝑦3(1− 𝑥3)(1− 𝑦1)

]︂
, (63)

𝑇𝛿𝐺𝑀
=

𝑒1𝑒2(1− ℎ1ℎ3)

𝑥2𝑦2𝑥3𝑦3(1− 𝑥2)(1− 𝑦2)
×

× (𝜈 − 𝑞2)/(1− 𝑥2) + (𝜈 + 𝑞2)/(1− 𝑦2)− 2𝜈

𝜈(𝑥2 − 𝑦2)− 𝑞2(𝑥2 + 𝑦2 − 2𝑥2𝑦2) + 𝑖0
, (64)

𝑇𝛿𝒢3 =
𝑒1𝑒2(1− ℎ1ℎ3)

𝑥2𝑦2𝑥3𝑦3(1− 𝑥2)(1− 𝑦2)
×

× 2𝜈

𝜈(𝑥2 − 𝑦2)− 𝑞2(𝑥2 + 𝑦2 − 2𝑥2𝑦2) + 𝑖0
, (65)

where 𝜑(𝑥𝑖) ≡ 𝜑(𝑥1, 𝑥2, 𝑥3) are quark distribution
amplitudes, 𝑒𝑖 are quark charges, and ℎ𝑖 are doubled
helicities. Soon afterwards, the same results were ob-
tained in Ref. [63].

Main features of this result are:
∙ the TPE amplitude is proportional to 𝛼/𝛼𝑠,

which means approximately the logarithmic growing
with 𝑄2;

∙ it has the identical 𝜀-dependence at any fixed 𝑄2;
∙ absence of the IR divergence – it is easy to see

that IR-divergent terms are subleading in 𝛼𝑠;
∙ the main contribution in pQCD regime comes

from the area, where both virtual photons are hard,
𝑄2

1 ∼ ∼ 𝑄2
2 ∼ 𝑄2.

It was also shown that the results of the “hadronic”
and pQCD approaches are compatible with each
other at lower 𝑄2, and a rather smooth transition
from the “hadronic” to pQCD regime seems to occur
at 𝑄2 & 3 GeV2, Fig. 9.

In Ref. [64], the authors argued that, though the
pQCD approach gives a good approximation of the
“hard contribution”, i.e., the contribution, where both
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Fig. 9. TPE amplitude 𝛿𝒢𝑀 vs. 𝑄2 at 𝜀 = 0.5 (top) and
𝜀 = 0.1 (bottom). Dashed curves show “hadronic approach”
calculations with two different FF parametrizations

virtual photons are hard, the “soft” contribution like
one considered in Refs. [60, 61] is not negligible at
the actual experimental kinematics and should be
added. This idea was tried in Ref. [64], where the
soft contribution was calculated in the so-called soft
collinear exchange (SCET) approach.

6.3. Low 𝑄2 and proton radius

The behavior of TPE amplitudes at low 𝑄2 and en-
ergies is of special interest not only by itself, but also
because this may affect the proton radius extraction.

The proton electric radius 𝑟𝐸 is defined by

𝑟2𝐸 = −1

6

𝑑𝐺𝐸

𝑑𝑄2

⃒⃒⃒⃒
𝑄2=0

(66)

and equals, in the nonrelativistic approximation, to
the r.m.s. radius of the electric charge distribution
inside a proton. This important quantity not only

shows the proton “size”, but influences other observ-
ables such as sizes of light nuclei, Lamb shift, and hy-
perfine splitting in hydrogen, etc. The similarly de-
fined magnetic radius 𝑟𝑀 gives r.m.s. radius of the
magnetic moment distribution

𝑟2𝑀 = −1

6

𝑑𝐺𝑀

𝑑𝑄2

⃒⃒⃒⃒
𝑄2=0

. (67)

The value of 𝑟𝐸 is usually determined from the
low-energy 𝑒𝑝 scattering, by measuring the 𝐺𝐸 form
factor at reasonably small 𝑄2 and extrapolating to
𝑄2 = 0 to find the derivative. This approach was,
however, criticized in [65], since, on the one hand,
at larger 𝑄2, the result is influenced by higher-order
(in 𝑄2) terms, but, on the other hand, too low-𝑄2

measurements are more prone to systematic errors.
If 𝑄2 → 0 and 𝐸 → 0, the proton can be con-

sidered as a point particle, and the TPE reduces to
the second Born approximation for the scattering in
the Coulomb potential, which was studied long ago
in Refs. [66, 67]. The corresponding contribution to
the cross-section is sometimes called the “Coulomb
correction”:

𝛿𝜎

𝜎
= 𝛼𝜋

sin 𝜃
2

1 + sin 𝜃
2

. (68)

It was shown to affect the proton radius extraction
[68]: after including the Coulomb corrections, 𝑟𝐸 in-
creased by (0.008 − 0.013) fm depending on the fit
strategy.

In a somewhat more precise approach, the proton
is considered as a fixed source of the external elec-
tric field with the profile corresponding to its electric
FF. Thus, the problem reduces to the relativistic elec-
tron scattering in the external potential. The second
Born approximation for this process was studied in
Ref. [69], where the cross-section in the general case
and for some common potentials was obtained in the
analytic form.

From numerical results discussed in Sec. 6 6.1, the
TPE amplitude changes its sign at 𝑄2 ∼ 0.3 GeV2

and rather sharply grows at 𝑄2 → 0. To prevent the
misunderstanding, we note that, speaking of 𝑄2 → 0,
we mean 𝑄2 ≪ 𝑀2, but still 𝑄2 ≫ 𝑚2. Otherwise,
our main approximation (ultrarelativistic electron)
would not work. For 𝑄2 ≪ 𝑚2, the results would be
quite different, and this is not discussed here.
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In Ref. [70], the low-𝑄2 limit for the real part of the
TPE amplitudes was obtained from the general rela-
tivistic formulae via a limiting procedure. The results
for 𝒢𝐸 at 𝑄2 → 0 are consistent with [66] (as, at small
energies, the electric FF dominates the cross-section),
whereas, for 𝒢𝑀 and 𝒢3, they were new.

In Ref. [71], the TPE amplitudes were calculated
via the nonrelativistic approach (of course, nonrela-
tivistic refers to a proton and not to an electron),
which, for the amplitude 𝒢𝐸 , is equivalent to the re-
sults of [69]; it was found that, at moderate 𝑄2, the
real part of the amplitudes is described reasonably
well. But, interestingly, the imaginary part strongly
differs from the relativistic result, coinciding with it
at 𝑄2 → 0 only.

The full TPE correction (not just the Coulomb one)
was applied during the extraction of a proton radius
in [72] and [73]. Ref. [72] concludes that, numerically,
the difference between full TPE and just Coulomb
correction is small (+0.0015 fm to 𝑟𝐸). In Ref. [73],
it was found that both electric and magnetic radii
increase after taking TPE into account, 𝑟𝐸 by ∼ 0.01
fm and 𝑟𝑀 by ∼ 0.03 fm.

In the meantime, the proton electric radius was de-
termined with the entirely different method: mea-
suring the Lamb shift in muonic hydrogen [6]. Surp-
risingly, the obtained value of 0.841 fm was in
the striking disagreement with the previous results
from the 𝑒𝑝 scattering, 0.8768(69) fm [74]. This so-
called “proton radius puzzle” gave rise to specu-
lations, whether there is some peculiarity in the
muon electromagnetic interaction, or the discrep-
ancy is just a result of the poor consistency of the
scattering approach. To explore the former possibil-
ity, a muon-proton scattering experiments were pro-
posed [75], which, in turn, called for the estimate of
TPE effects in the muon-proton scattering, discussed
in Sec. 9.1.

On the other hand, the large experiment on the
low-energy 𝑒𝑝 scattering was performed at Mainz
Microtron [76]. Its results were, in general, consis-
tent with previous electron scattering experiments
and still in disagreement with new muon hydrogen
data. In particular, the electric radius was found to
be 0.879(8) fm. In addition, the authors found that,
to achieve a consistency with the polarization ex-
periments, some extra non-standard correction is re-
quired, which they cautiously interpret as “TPE or
other physics” [77].

7. Experiments

A number of experiments were performed to see di-
rectly the TPE effects caused by the real part of the
amplitude.

The GEp-2𝛾 experiment [26] was aimed at ob-
serving the 𝜀 dependence of the proton FF ratio 2

𝑅 = 𝐺𝐸/𝐺𝑀 , measured via the polarization transfer
method. Such dependence should constitute a clear
sign of TPE. In terms of invariant amplitudes 𝒢, the
TPE correction to this ratio is

𝛿𝑅exp

𝑅exp
= Re

[︂
𝛿𝒢𝐸

𝐺𝐸
− 𝛿𝒢𝑀

𝐺𝑀
− 𝜀(1− 𝜀)

1 + 𝜀

𝛿𝒢3

𝐺𝑀

]︂
. (69)

The data were taken at fixed 𝑄2 = 2.5 GeV2 and
three different values of 𝜀. In addition, the longitudi-
nal polarization component, 𝑆‖, of the final proton 3

was measured, where TPE correction is equal to [cf.
Eq. (32)]:

𝛿𝑆‖

𝑆‖
= −2𝜀Re

[︂
𝑅2

𝜀𝑅2+𝜏

(︂
𝛿𝒢𝐸

𝐺𝐸
− 𝛿𝒢𝑀

𝐺𝑀

)︂
+

𝜀

1+𝜀

𝛿𝒢3

𝐺𝑀

]︂
.

(70)

Somewhat surprisingly, no 𝜀 dependence of 𝑅 was
seen in the experiment: the three measured values are
almost the same (within 1.5% bounds). One possible
cause for such outcome is that, near this kinematic
point, the variation of the total (elastic + inelastic)
TPE correction to 𝐺𝐸/𝐺𝑀 is minimal (Fig. 10). An
experiment at higher 𝑄2 (e.g., 𝑄2= 3.5 GeV2) with
the same accuracy would clearly reveal the 𝜀 depen-
dence caused by TPE.

For 𝑆‖, some rise (about 2.3%) at higher 𝜀 was
observed, but it should be noted that the point with
the smallest 𝜀 was used for the normalization here,
and, essentially, we remain with only two points, so
it is hard to make any conclusions about the trend.

Several experiments were devoted to measuring the
charge asymmetry, i.e., the 𝑒+𝑝/𝑒−𝑝 scattering cross-
section ratio. Since the TPE correction has opposite
signs for 𝑒+𝑝 and 𝑒−𝑝, the deviation of the ratio from
unity is a direct TPE effect and equals twice the cross-

2 Throughout the paper, we denote 𝑅 = 𝐺𝐸/𝐺𝑀 , but, in
the literature. another definition is frequently used: 𝑅 =

= 𝜇𝐺𝐸/𝐺𝑀 such that 𝑅|𝑄2→0 = 1.
3 Denoted by 𝑃𝑙 in original papers.
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Fig. 10. Difference between the TPE correction to the mea-
sured 𝜇𝑅 = 𝜇𝐺𝐸/𝐺𝑀 at 𝜀 = 0.15 and 𝜀 = 0.85 versus 𝑄2

calculated according to [58]. Gray band at the bottom shows
a typical error of the GEp-2𝛾 experiment

Fig. 11. Coefficient 𝑎, as determined in Refs. [82] (lines, ±1𝜎)
and [83] (point)

section correction:

1−𝑅± = 2
𝛿𝜎

𝜎
=

4

𝜀𝑅2 + 𝜏
Re

[︂
𝜀𝑅2 𝛿𝒢𝐸

𝐺𝐸
+ 𝜏

𝛿𝒢𝑀

𝐺𝑀

]︂
.

(71)

In the VEPP-3 experiment [78], the ratio 𝑅± was
measured at the beam energies 𝐸 = 1.0 and 1.6 GeV,
and several different angles, which correspond to 𝑄2

from 0.8 to 1.5 GeV2 and 𝜀 from 0.27 to 0.45. The
measured ratio 𝑅± was clearly larger than unity and
agrees well with theoretical calculations [58].

In the CLAS experiment [79], two series of mea-
surements were performed: at the fixed 𝑄2 =
= 1.45 GeV2 and 𝜀 from 0.4 to 0.9 and at the fixed
𝜀 = 0.88 and 𝑄2 from 0.2 to 1.4 GeV2. Though the
results are rather close to 1 within errors, they show

the 2.5𝜎 preference to TPE over “no TPE” [79]; in
Ref. [58], it was shown that the full TPE contribu-
tion (elastic+ inelastic) is best consistent with data
(has the least 𝜒2), the elastic only is slightly worse,
and the worst is absence of TPE.

In the OLYMPUS experiment [80], the ratio was
measured with 𝐸 = 2 GeV electrons and positrons
at 𝑄2 from 0.6 to 2.2 GeV2 (𝜀 from 0.4 to 0.9). It is
of interest that the preliminary results in the region
𝜀 ≈ 0.8 − 0.9 are below unity and, thus, contradict
theoretical predictions from Refs. [48, 52, 58].

8. Extraction of TPE Amplitudes

When checking for TPE effects, another approach is
possible: assuming that the scattering amplitude is a
sum of OPE and TPE, and the discrepancy between
the Rosenbluth and polarization methods is entirely
due to TPE, one may try to extract the TPE ampli-
tude directly from the experimental data. The thus
extracted value will be model-independent and can
be easily compared to the theoretical calculations.

The first attempts to do this were carried out in
Refs. [15, 81]. However, the authors of that works ar-
bitrarily assumed that only one of three TPE ampli-
tudes, 𝑌2𝛾 (𝛿𝒢3/𝐺𝑀 in our notation) is responsible
for the discrepancy.

The rigorous application of such approach was
done in [82]. Using the generalized FFs introduced in
Eq. (30), one can see that at high and even at moder-
ate 𝑄2, the TPE correction to the cross-section comes
almost entirely from the magnetic FF:

𝜎𝑅 = 𝜀|𝒢𝐸 |2 + 𝜏 |𝒢𝑀 |2 =

= 𝜀𝐺2
𝐸+2𝜀𝐺𝐸 Re 𝛿𝒢𝐸+𝜏

[︀
𝐺2

𝑀 + 2𝐺𝑀 Re 𝛿𝒢𝑀

]︀
. (72)

The term with 𝛿𝒢𝐸 is the smallest one, since not
only 𝜏 ≡ 𝑄2

4𝑀2 ≫ 𝜀, but also 𝐺𝐸/𝐺𝑀 ≈ 1/𝜇𝑝 ≈
≈ 1/2.79. Thus,

𝜎𝑅 ≈ 𝜀𝐺2
𝐸(𝑄

2)+

+
𝑄2

4𝑀2

[︀
𝐺2

𝑀 (𝑄2) + 2𝐺𝑀 (𝑄2)Re 𝛿𝒢𝑀 (𝑄2, 𝜀)
]︀
. (73)

Given the experimental fact that the Rosenbluth
plots are linear (i.e., the reduced cross-section is a lin-
ear function of 𝜀), one may conclude that 𝛿𝒢𝑀 should
be an approximately linear function of 𝜀. Additionally

20 ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 1



Two-Photon Exchange

recalling that the the dispersion relations require
𝛿𝒢𝑀 |𝜀=1 = 0, we arrive at

𝛿𝒢𝑀 (𝑄2, 𝜀) = 𝑎(𝑄2)(1− 𝜀). (74)

As a result, 𝑅𝐿𝑇 , the FF ratio measured within the
Rosenbluth method becomes equal to

𝑅2
𝐿𝑇 =

𝑅2 − 2𝑎𝜏

𝜏(1 + 2𝑎)
, (75)

where 𝑅 = 𝐺𝐸/𝐺𝑀 is the true FF ratio, and we can
determine the coefficient 𝑎 and the whole 𝛿𝒢𝑀 ampli-
tude directly from the combination of Rosenbluth and
polarization transfer data (the last point was missed
in Refs. [82], but corrected in Ref. [83]).

After the GEp-2𝛾 experiment [26], new precise data
at 𝑄2 = 2.5 GeV2 became available, and a new anal-
ysis was carried out in Refs. [83] and [84].

In Ref. [83], the slope of 𝛿𝒢𝑀 was determined from
new data and again turned out to be in agreement
with theoretical calculations. Another quantity mea-
sured in the experiment (longitudinal component of
the final proton polarization, 𝑆‖) gave an opportu-
nity to determine 𝛿𝒢3, though the precision was much
worse here. In fact, the experimental value is compat-
ible with zero. The third amplitude 𝛿𝒢𝐸 could not be
determined accurately. But, basing on the fact that
experimental 𝑅 varies very little with 𝜀, one can con-
clude that 𝛿𝒢𝐸/𝐺𝐸 ≈ 𝛿𝒢𝑀/𝐺𝑀 .

A similar program was tried by the authors of
Ref. [84]. To extract TPE amplitudes, they assumed
a custom 𝜀 dependence of the final proton polar-
ization 𝑆‖. Nevertheless, their conclusion was that
only one of three TPE amplitudes could be extracted
reliably.

9. TPE in Other Processes

The previous sections were devoted mainly to the
elastic electron-proton scattering (or, possibly, to the
electron-nucleon scattering, since a neutron differs
from a proton only in FFs). In this section, we will
consider TPE in other processes. First, an electron
can be replaced with a muon to see effects related
to the lepton mass. Then we consider the electron
scattering off various targets, in particular, on pi-
ons and light nuclei (deuteron, 3He, 3H). Other pro-
cesses, for which TPE effects were studied, but will
not be discussed here, include the electroproduction
of pions [85] and Δ resonance [86], parity-violating 𝑒𝑝
scattering [87], and deep inelastic scattering [88].

9.1. Muon-proton scattering

After the discovery of the proton radius puzzle, one
of the possible explanations was that the elecromag-
netic (e.m.) interaction of a muon is in some way
different from that of an electron. To test this possi-
bility, it was proposed to measure the proton e.m. ra-
dius in the scattering approach, but with the muon
beam [75].

In order to handle the results of such experiment,
one should be able to calculate TPE corrections to
the 𝜇𝑝 scattering. They were studied in Refs. [89, 90]
and [91, 92]. The main difference between the 𝑒𝑝 and
𝜇𝑝 scattering is that the muon mass is not negligible.
Therefore, there are six, not three, invariant ampli-
tudes now:

ℳ = −4𝜋𝛼

𝑞2

{︂
𝑢̄′𝛾𝜇𝑢 𝑈̄

′𝛾𝜈𝑈

[︂
(𝐹1 + 𝐹2)𝑔𝜇𝜈 −

−𝐹2
𝑃𝜇𝑃𝜈

𝑀2
+ 𝐹3

𝑃𝜇𝐾𝜈

𝑀2
+ 𝐹4

𝐾𝜇𝑃𝜈

𝑚2
− 𝐹5

𝐾𝜇𝐾𝜈

𝑚2

]︂
−

−𝐹6 𝑢̄
′𝛾5𝑢 𝑈̄

′𝛾5𝑈

}︂
. (76)

The properties of the parameter 𝜀 in the Rosenbluth
formula are also changed: instead of (11), it now has
the form

𝜀 =
𝜈2 −𝑄2(4𝑀2 +𝑄2)

𝜈2 + (𝑄2 − 4𝑚2)(4𝑀2 +𝑄2)
(77)

and, for fixed 𝑄2, varies not from 0 to 1, but between
2𝑚2/𝑄2 and 1; the near-forward scattering, as before,
corresponds to 𝜀 → 1.

The elastic contribution to TPE in the 𝜇𝑝 scat-
tering for low momentum transfers was calculated in
Ref. [90]. The same method as described in Sec.6 6.1
was used. It was found that the TPE correction to the
cross-section is about 0.5% and several times smaller
than for the 𝑒𝑝 scattering with similar kinematics,
because the contribution of the lepton-spin-flipping
amplitudes (𝐹4 and 𝐹5; the amplitude 𝐹6 does not
contribute to the unpolarized cross-section) has dif-
ferent sign and partially cancels the spin-nonflipping
amplitudes.

Later, the same authors developed a dispersion for-
malism to calculate TPE amplitudes for the 𝜇𝑝 scat-
tering [93,94]. It is worth to note that the calculation
of the amplitude 𝐹4 requires a subtracted dispersion
relation.
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9.1.1. Triangle diagram

In Refs. [91, 92], a completely new type of the TPE
contribution (first mentioned in Ref. [95]) was con-
sidered: the triangle diagram, Fig. 12. It arises from
the exchange of a single 𝐶-even meson, which then
decays into two virtual photons. Certainly, it exists
for the 𝑒𝑝 scattering as well, but is negligible there,
because its contribution is proportional to the lep-
ton mass. On the other hand, for the 𝜇𝑝 scattering,
it cannot be left out, since the muon mass is larger
by three orders of magnitude.

It it natural to expect that larger contributions
would come from the lightest mesons, as the expres-
sion for the diagram contains the factor 1/(𝑄2 +𝜇2),
originating from the meson propagator (where 𝜇 is
the meson mass). The lightest candidate is 𝜋 me-
son, but it was shown in Ref. [91] that the contri-
bution of a pseudoscalar meson does not interfere
with the OPE amplitude and thus has no effect in
the unpolarized scattering. The next lightest meson
is scalar 𝜎(500). Its contribution was estimated to be
about 0.1% in the kinematics of the MUSE experi-
ment [75]. It was also found that the contribution of
the triangle diagram strongly grows as 𝑄2 → 0.

In Ref. [92], the low-𝑄2 behavior of the triangle dia-
gram and its possible effect for the proton radius puz-
zle were studied. It was shown that the corresponding
amplitude follows approximately the 𝑎 + 𝑏

√︀
𝑄2 for-

mula, and the shift of the muon hydrogen energy lev-
els induced by the diagram is about 30 times smaller
than needed to resolve the discrepancy between dif-
ferent measurements of the proton radius.

9.2. TPE on nuclei

TPE in the elastic electron scattering off the light
nuclei (𝑑, 3He, 3H) was studied in Refs. [96–101].

Fig. 12. Triangle diagram

The important point here is that the nuclear elastic
FFs decline with 𝑄2 rather rapidly (exponentially).
Therefore, the significance of TPE may be enhanced.

If we consider the elastic contribution only, then
the nucleus is viewed as a single particle. However,
the nuclear excited states are usually much closer to
the ground state than for a proton, thus the inelastic
contributions are probably important.

If we want go further and consider the inelastic
contributions as well, we must account for the in-
ternal structure of a nucleus. At moderate energies,
it is quite natural to view the nucleus as composed
of nucleons and to neglect the quark degrees of free-
dom. Thus, similarly to the pQCD picture for a pro-
ton, there are two types of Feynman diagrams here:
where both virtual photons interact with the same
nucleon (type I) and where the photons interact with
different nucleons (type II). In such calculations, the
motion of the nucleons inside a nucleus is usually de-
scribed in the nonrelativistic or semirelativistic ap-
proximation.

9.1.2. Spin-1/2 (3He and 3H)

The 3He and 3H nuclei consist of three nucleons and
have spin 1/2, similarly to a proton. Thus, the general
formula for the TPE amplitude (29) holds here as
well: there are three independent TPE amplitudes.

The elastic contribution (i.e., ignoring the excita-
tion of a nucleus) to the TPE for electron scattering
off 3He target was calculated in Refs. [48] and [71]
using the same methods which were developed for
the electron-proton scattering. In addition, the single
spin asymmetries in the elastic 𝑒−3He scattering were
studied within same model in Ref. [100] and found to
be rather large and momentum-transfer-dependent.

More thoroughly, the TPE amplitudes for the
elastic electron-trinucleon scattering were studied in
Ref. [101] using a semirelativistic nuclear wavefunc-
tion corresponding to the popular Paris and CD-Bonn
nucleon-nucleon interaction potentials. It was found
that the TPE corrections are several times larger than
in the electron-proton scattering, and the diagrams of
type II are dominant, except for the correction to the
magnetic FF at large 𝑄2.

9.1.3. Deuteron

A deuteron has spin 1, and, thus, the structure of
the scattering amplitude is different from the previous
(spin-1/2) case. For the electron-deuteron scattering
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in the OPE approximation, there are three FFs: elec-
tric 𝐺𝐶 , quadrupole 𝐺𝑄, and magnetic 𝐺𝑀 ; and in
the general case, there are six FFs.

It was shown [98] that TPE can give large con-
tributions (up to 10-20% at 𝑄2 > 2.5 GeV2 [99]) to
the elastic 𝑒𝑑 scattering cross-section, but it largely
depends on the deuteron wave function at short dis-
tances, which is poorly known. It was also shown that
the analyzed tensor component 𝑇22 is mainly deter-
mined by TPE at 𝑄2 > 0.5 GeV2 [99].

TPE in the elastic 𝑒𝑑 scattering was also studied in
the framework of the effective Lagrangian approach
[96, 97]. The results were somewhat different. In par-
ticular, it was found that the largest effect of TPE is
seen in the polarization observable 𝑇10 at small scat-
tering angles.

9.3. TPE on a pion

TPE in the elastic electron-pion scattering is signif-
icantly simpler to study than in the electron-proton
case. Since the pion is a spin-0 particle, for both OPE
and TPE, there is only one invariant amplitude or FF,
𝐹 (𝑞2):

ℳ = −4𝜋𝛼

𝑞2
𝑢̄′𝛾𝜇𝑢 (𝑝+ 𝑝′)𝜇 𝐹 (𝑞2). (78)

Thus, the only effect of TPE is a correction to this
FF (and its dependence on 𝜀). The first calculations
of this correction was done in Refs. [102, 103]. In
both papers only the elastic contribution was consid-
ered; the authors of Ref. [103] additionally assumed
that each of the virtual photons carries about a half
of the transferred momentum, while the authors of
Ref. [102] performed the full calculation of box and
crossed-box diagrams via 𝑛-point functions (the ap-
proach similar to Ref. [48]). Numerically, the correc-
tion was found to be about 1%, smaller at small 𝑄2

and to increase at 𝑄2 & 1 GeV2, especially sharply
at extreme backward angles.

It was argued in Ref. [104] that the virtual Comp-
ton scattering tensor implicitly used in these works
breaks the gauge invariance, and the so-called contact
term should be added to it. Numerically, however, the
change turned out to be small.

In Ref. [105], the TPE correction to the pion FF
was calculated using the appropriately modified dis-
persion approach of Ref. [52] with elastic and inelastic
(𝜌 and 𝑏1 mesons) intermediate states. The results for

the elastic contribution were in agreement with previ-
ous works. The inelastic contribution was found to be
negligible with respect to the elastic one for small 𝑄2

similarly to the 𝑒𝑝 case and becoming comparable to
it at 𝑄2 & 2 GeV2, though being still smaller. It was
also shown that the sharp growth of the high-𝑄2 TPE
amplitude at backward angles is due to the 𝑢-channel
threshold singularity, which is close at 𝑄2 ≫ 𝑀2 to
the boundary of the physical region.

10. Conclusions and Outlook

Since the discrepancy in proton FF measurements
was revealed in the mid-2000s, our understanding of
TPE and its role in the elastic 𝑒𝑝 scattering has ad-
vanced significantly. The methods were proposed to
calculate TPE amplitudes at low and intermediate
𝑄2, including elastic and simplest inelastic intermedi-
ate hadronic states. The discrepancy is most likely ex-
plained by TPE; TPE amplitudes extracted from the
combination of Rosenbluth and polarization transfer
data agree with theoretical calculations.

At low 𝑄2, the TPE corrections influence the pro-
ton radius measurements both for the 𝑒𝑝 scattering
and the Lamb shift in muonic hydrogen and should
be taken into account in such experiments. For the
high-𝑄2 kinematics, QCD-based methods of TPE cal-
culations are available.

Several targeted experiments on the 𝑒+/𝑒− charge
asymmetry in the elastic scattering show a clear pref-
erence to the “TPE” hypothesis over the “no TPE”
one, but the further, more precise, measurements
would be in order.

The failure to observe the expected TPE effect in
GEp-2𝛾 experiment is likely explained by the unfor-
tunate choice of a kinematics. We suggest conduct-
ing a similar experiment at higher 𝑄2 (for instance,
3.5 GeV2), which should be sufficient to see clearly
the 𝜀 dependence of the polarization ratio.

In recent years, the theoretical understanding of
TPE in the elastic muon-proton and electron-nucleus
scattering was actively developed, and some work
should still be done in these fields.

APPENDIX:
TPE corrections to observables

In this section, the formulae for the TPE contributions to var-
ious observables of the elastic electron-proton scattering are
gathered. The electron mass is neglected. The amplitudes 𝛿𝒢𝐸 ,
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𝛿𝒢𝑀 , and 𝛿𝒢3 are defined according to Eqs. (30, 29). In the fol-
lowing equations, 𝑅 = 𝐺𝐸/𝐺𝑀 and 𝜏 = 𝑄2/4𝑀2.

The unpolarized cross-section and electron-positron cross-
section ratio:
𝛿𝜎

𝜎
=

1−𝑅±

2
=

2

𝜀𝑅2 + 𝜏
Re

[︂
𝜀𝑅2 𝛿𝒢𝐸

𝐺𝐸
+ 𝜏

𝛿𝒢𝑀

𝐺𝑀

]︂
. (79)

The FF ratio 𝑅exp, as measured in the polarization transfer
method:
𝛿𝑅exp

𝑅exp
= Re

[︂
𝛿𝒢𝐸

𝐺𝐸
−

𝛿𝒢𝑀

𝐺𝑀
−

𝜀(1− 𝜀)

1 + 𝜀

𝛿𝒢3

𝐺𝑀

]︂
. (80)

The longitudinal component of the final proton polarization:

𝛿𝑆‖

𝑆‖
= −2𝜀Re

[︂
𝑅2

𝜀𝑅2 + 𝜏

(︂
𝛿𝒢𝐸

𝐺𝐸
−

𝛿𝒢𝑀

𝐺𝑀

)︂
+

𝜀

1 + 𝜀

𝛿𝒢3

𝐺𝑀

]︂
. (81)

Target normal spin asymmetry:

𝐴𝑛 = −
√︀

2𝜀(1 + 𝜀)
𝑅
√
𝜏

𝜀𝑅2 + 𝜏
×

× Im

[︂
𝛿𝒢𝐸

𝐺𝐸
−

𝛿𝒢𝑀

𝐺𝑀
−

𝜀(1− 𝜀)

1 + 𝜀

𝛿𝒢3

𝐺𝑀

]︂
. (82)
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ДВОФОТОННИЙ ОБМIН
У ПРУЖНОМУ РОЗСIЯННI
ЕЛЕКТРОНIВ НА АДРОННИХ СИСТЕМАХ

Дається огляд рiзних аспектiв двофотонного обмiну (ДФО)
у пружному розсiяннi електронiв на протонах, як при низь-
ких, так i при високих 𝑄2. Уявна частина амплiтуди ДФО
приводить до появи одночастинкових спiнових асиметрiй.
Розглянуто рiзнi пiдходи до розрахунку цих спостережу-
ваних. Дiйсна частина амплiтуди ДФО впливає на перерiз
розсiяння неполяризованих частинок i подвiйнi спiновi спо-

стережуванi, та, найбiльш iмовiрно, призводить до розбi-
жностi двох методiв вимiрювання формфакторiв протона.
Обговорюються методи розрахунку амплiтуд ДФО, зокре-
ма “адронний” та “кварк-глюонний” пiдходи, дисперсiйний
метод, що може використовуватися при низьких та середнiх
𝑄2, а також зв’язок з проблемою радiуса протона. Розгля-
нуто сучасний стан експериментiв iз прямого спостережен-
ня ефектiв ДФО за допомогою вимiрювання зарядової аси-
метрiї пружного розсiяння, та спроби визначення амплiтуд
ДФО, виходячи з експериментальних даних. Також наводи-
ться огляд двофотонних ефектiв у iнших процесах, таких
як розсiяння мюонiв на протонах, електронiв на ядрах, на
пiонах та iншi.

Ключовi слова: двофотонний обмiн, пружне розсiяння,
формфактор протона.
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