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STATISTICAL ANALYSIS

OF NORMALLY DISTRIBUTED DATA

WITH A LIMITED SCATTERING INTERVAL
OF VALUES CONVERTED BY DIRECT

g(x) = x?; cos x; a® AND INVERSE FUNCTIONS

The work is devoted to the theoretical analysis of the correct application of the model of a
continuous normally distributed random variable in the substantiation of the so-called error
transfer formulas in the problem of a statistical processing of experimental data. Attention is
paid to the role of limiting the scattering interval of values of a random variable subjected to
nonlinear direct g(X) transformation by elementary functions X2; a™ and cos X, as well as the
inverse gfl(X) = VX, arccos X, log, X to them. The regularities of the statistical averaging
of the data obtained by the disorder of the Taylor transform functions are studied. To confirm
the validity of the obtained results, the method of quadratic functional optimization is used.

Keywords: normal distribution, mathematical expectation, variance, random variables, cal-
culation and transfer of errors, transformation of a random variable with elementary functions.

1. Introduction

It is known that the algorithm of processing of experi-
mental data necessarily includes the estimation of sta-
tistical error Az reconstructed curve or error transfer
[1] as a direct problem of error theory. Its essence is
that the given errors of the argument, get an estimate
of the variance Dx and the standard deviation (root
mean square) of the transformation function ¢(X)
random variable (RV). Establishing the variance of
the errors of the arguments for a given variance of the
error of the function refers to the inverse problem. It
is also known that if the RV X becomes a function
©(X), then the approximate relations are true [2, 3]

N ~ (Y
Mmy(x) 2 o(mx), Dyx) = (da:) D%. (1)

r=mx
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As follows from (1), the mathematical expectation
mx that is more resistant to transformation, so a
more informative assessment Az conversion function
©(X), is the standard deviation (root mean square)
ox = +vDx.

Propagation errors of transformations are espe-
cially relevant for a normally Nx(mx,ox) dis-
tributed RV X with density function [1]:

z—m 2
= #e*(ﬁof) . (2)
V2mox
This is due to the fact that distribution (2) is the
limit to which all other distributions go, if the number
of experimental measurements under the same condi-
tions increases. Function (2) is nonlinear and has a
maximum at a point myx more resistant to transfor-
mation, so a more informative assessment my, there-
fore for calculation mx,ox often apply an approxi-
mate schedule in the Taylor power series in the range,

fx ()
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the boundaries of which are determined with suffi-
cient accuracy by the rule of “three sigma” mx+30x.
Algorithms for calculating errors by approximate
methods are mostly difficult to implement in prac-
tice, so the analytical relationships, the so-called “er-
ror propagation formulas (EPF)” are of interest. Such
formulas were proposed by the author [5-7] for ele-
mentary functions of direct g(X) = X?; cos X; aX
and inverse g~'(X) = v/X; arccos X; log, X trans-
formations of a normally distributed RV.X. Despite
the fact that critical remarks were made about the
algorithm of substantiation of EPF [8, 9], the appear-
ance of works [5, 4] indicates the need to return to the
study of the relevant statistical problem, which is the
subject of this work. The conclusions obtained in the
work are tested by the method of one-dimensional op-
timization of the quadratic variance functional Dx.

2. The Main Results

Figure 1 shows histograms of the distributions of the
experimental values of the constant lattice a, the
square of its value a? [5], the angle of the elementary
lattice a, cos X [6], argument X in the functions e®
and natural logarithm [7]. We see from Figure 1 that,
contrary to the assertions [5-7], the samples of exper-
imental data used for the testing of EPF are not sub-
ject to the normal distribution. Figure 2 presents the
results of one-dimensional optimization of the func-
tional Dy as a function mx for direct g(X) = X?
and the inverse ¢~ (X) = VX transformations

+oo

D(z,0) = / (z — )2 f(x)da. (3)

— 0o

The results presented in Figure 1 and Figure 2 are
systematized in the form of Table 1 and Table 2. From
them it can be concluded that if calculated by the
optimization method and calculated by EPF [5-7],
the values my are mutually more or less consistent
with each other, which does not contradict (1), then
for standard deviation, there are differences.

3. Discussion

In [5-7], experimental data with a normal probability
distribution were not used to test the EPF, which
did not allow to reveal the controversial nature of the
formal substitution of indices in the solutions of the
biquadratic equation. Therefore, we substantiate the
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first two moments of transformation of the normally
distributed RV X functions X2, cos X, exp X and
inverse to them.

EPF [5-7], direct and inverse transformations
were applied to the same RV X with parameters
mx,ox. Thus, in [5] to calculate the standard devia-
tion of RV X with normal distribution, transformed
by the function Y quadratic radical, the quadratic
equation for variance was used 0 = Y2 — V7. In this
case, from the average [10]

X1 =30% + 6m%o% +mk, (4)

in the range of values X € (—oo (X ( +00) argument
X we have two equal solutions:

1
aﬁzmxzi\/mﬁp—iog@. (5)

By definition 0% = mx2 — m%, then in (5) the so-
lution with a minus sign taken and the scheme of
substitution of indexes is applied to it

X255 X, X VX (6)

resulting in EPF in the form of relations (5) in [5].

But under the condition of the problem, the set of
values of a normally distributed of RV X is an un-
limited interval X € (—o0,400) and for it the sta-
tistical averages and variance are calculated, while
the set of values of the argument of the function
g '(X) = VX is limited by a semi-limited interval
[0 < X ( +00). Therefore, the transformation algo-
rithm (6) is incorrect. Indeed, integration of the func-
tion v/ Xin the field of values

0 <X, mx, ox {+0) (7)

is accompanied by the appearance of a special

non-analytical (tabulated) error function erf(§) =

= % Iy e=¢"d¢ [11, 12]. Then, due to the limitation

of the range of values of RV X € (0,z), the factor
2

¢ ligati . 1 G T
of normalization Cx is equal to Cx (1+erf<\/"§fx)) ,

and the statistical averages will be equal to:

X =mx +oxA, ﬁ:m§(+U§(+UmeA7

V2T

e—Tng(/20'§( ) (8)
mx
1+ erf (\/iax>

A:
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Fig. 1. Histograms of distributions of experimental data of a constant lattice a, a2 [5],
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the angle of an elementary lattice o, cos X [6], and values of arguments for functions
e” and natural logarithm 7]

Table 1. Calculated by optimization
of variance and FPP [5] values my, oy,
by functions Y of RV X transformations

Y X X2 X2 5] VX VX [5]
my | 21 445 446 4.65 4.58
oy 2.24 89.5 94.2 0.285 0.06

348

The variance of the RV X € (0, x) with this transfor-

mation will be equal to:

Dx = 0%( + (mX —Y)Z + Ux(2 (TTLX —Y) — mx)A
9)

Thus, in the limited interval (7), the statistical av-
erage X4 # 30% + 6m% 0% + m% and the problem
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Illustration of determining the mean and variance of the functions of transformations

g9(X) = X (a) and g~ '(X) = v/X (b) by the method of functional optimization (3)

Table 2. Values ;—’; determined from Figure 2 and calculated from FPP [5-7]
Y X X2 VX cos (X 1”@) o cos (Xﬁ) eX/5 In(X/5)
my 22 474 4.65 0.93 1.18 83 1.466
4.68 (7) [5] 1.183 1.535 (13) [7]
oy 1.9 86.5 0.2 0.013 0.042 33.3 0.0868
0.245 (7) [5] 0.001 (11) [6] 0.0037 (13) [7]
V= Zl’; 0.086 0.18 0.043 0.014 0.036 0.4 0.06
0.05 0.001 0.0024

(4)—(5) with the subsequent replacement of the in-
dices (6) do not have an exact analytical solution.
In principle, the parameters m_ s, 0 5 can be
calculated using tabular integrals (2.3.15 (6)) [13—
14]. But their use requires other special cylindrical
functions. Therefore, we give another statistical jus-
tification for the formula for calculating the standard
deviation of the v/X transformation, for which we

2
take into account the equality (\/)? ) = X:

D g = (VX2 = (VX)? = mx +Aox — (VX)2 (10)

According to the schedule (3), for the normal distribu-
tion the approximation is true v X = \/mx—1 oX?

4 mX3/2 ’
SO
2
2
1ox
4372
mx

For RV X with parameters mx = 21 and ox = 1.85,
standard deviation o % = 0.77, while determined
from the histogram in Figure 1, o 5 = 0.2. Value

J\/Y:TTLX-I-AO'X_(\/WLX— (11)
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o x = 0.2 is the limit to which the standard devi-
ation goes o % (6) at mx — oo, since by the law
of large numbers, the arithmetic mean converges in
probability to its mathematical expectation.

Restrictions on the set of argument values also
apply to the natural logarithm function In X and
acos X transformation. In addition, in the case of
power transformation e, when calculating the av-
erages exp X and (exp X)?, in [7] was incorrect in
formula (13) on p. 737:

2 4
0% 1 my
]. + Wm]nx = = ln (22)

3 , (12)

Its essence is that the average exp X for normally
distributed RV X is not equal to the integral

1 oo _(w—mx)?
epr;«éi/eme % dx. (13)

In formulation (13), the subintegral expression is the
product of two power functions, in one of which the
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power is not expressed in relative units, as is the

case for the Gaussian exponent. Therefore, to ensure

the correctness of the calculations, the normally dis-

tributed RV X must be expressed in relative units:
X

X = —,

(14)
ox

where it is taken into account that ox # 0. Then the
statistical average exp X and (exp X)? in the interval
[0 < X (400) will be equal to:

Heo (@—mx)?
exp <X> = _Sx / eixe X dr=
ox V2mox

0

Cx mx + ox mx 1
> (et (7)) oo (G +3)

+o0o

X 2 2w _(zfnLX)‘z
[exp ()} = Cfx / e"zx e *x dx=
ox V2mox

0

G o () o o (2 )]
(16)

In addition, note that the simultaneous use of func-
tions cos X and acos X RV transformations also re-
quire an argument X in relative units, such as X —
— ﬁ(x) given that the scope of the function ar-
gument changes [—1,+1] . In accordance with the
standard for normally distributed RV, in this case
it is possible to limit the approximation max (X) &
“mx + 30x.

A similar approach is valid in the case of the trans-
formation of trigonometric functions of a normally
distributed random variable. However, it should be
borne in mind that the function ¥ = cosX at
0 € X < 7 mutually inverse function Y = acos X
in the sense in which power and logarithmic when
mutually inverted X > 0 and the functions of squar-
ing and taking the square root of X > 0. Then in
the interval [0;7], transformation acos are numer-
ically equal to the angle whose cosine is equal to
X, then from the definition of functions cos X and
acos X it follows that cos(acos X) = X at X < 1
and acos(cos X) =X at 0 < X < .

4. Conclusions

This work is a continuation of the previous [8, 9] re-
search conducted by the author, which further focuses
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on the problems that accompany the incorrect appli-
cation of models of probability theory and mathemat-
ical statistics with a limited scattering interval for the
statistical analysis of experimental data in physical
systems with fluctuations. Other problems that arise
in this case are described in detail in [15].
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11.C. Kocobyyvruil

CTATUCTUYHUN AHAJII3 HOPMAJIBHO
POBIIOAIVIEHNX JAHUX I3 OBME?KEHUM
IHTEPBAJIOM PO3CISAHH{ 3HAYEHD,
MEPETBOPEHUX ITPSIMUMU g(z) = x2; cos z; a®
TA OBEPHEHUMUI JO HUX OYHKIIAMN

Pobora npucesiveHa TEOPETUYHOMY aHAJI3y KOPEKTHOIO 3a-
CTOCYBaHHsI MOJIEJII HEIIEPEPBHOI HOPMAJILHO PO3IOIIJIEHOT BH-
[1aJIKOBOI BEJIMYUHU [IPU OOI'PYHTYBaHHI Tak 3BaHUX (DOPMYJI
[epeHeceHHsl NOXUOOK B 33/1a4i CTATHCTHYHOIO ONPAIIOBAHHS
EKCIIEpUMEHTAJbHUX JaHUX. 3BEPHYTO yBary Ha poJib OOMe-
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JKEHHSI IHTepBaJIy PO3CIAHHA 3HAYEHb BUIAJKOBOI BEJIWYHHH,
nigganol HesiHifiHUM npsMuM g(X) NEpPETBOPEHHSM eJIeMeH-

X 1a cos X, i OBepHEHUMH 10 HIX

tapanmu dbynkiiamua X2; a
g’l(X) = VX, arccosX, log, X. ocminkeHno 3aKOHOMipHOCTi
CTATUCTUYIHOTO YCEPEIHEHHsI JaHUX, OJEePKAHUX IIIJISTXOM PO3-
Kiany byHKIIH neperBopenHs B psiy Teitnopa. ust migrsep-
JIPKEHHsI TIPABOMIPHOCTI OJE€PXKAHUX PE3YJIbTATIB BUKOPUCTAHO
MeTOoJ, OITUMi3alil KBaJpaTUIHOro (DyHKIIOHAJIA.

Katwvwo068i €cA06a: HOPMaJbHUN PO3IOMIITI, MaTeMaTHIHE
CIIOZiBaHHS, JIUCIIEPCisi, IepeHEeCeHHs] TOXUOOK, IePETBOPEHHS

BHIIaIKOBOI 3MIiHHOI eJIeMEHTapHUMH (DYHKITISIMI.
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