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INFLUENCE OF TANGENTIAL
DISPLACEMENT ON THE ADHESION FORCE
BETWEEN GRADIENT MATERIALS

The influence of a tangential displacement on the strength of the adhesive contacts between
gradient materials with different gradings of their properties has been studied. Variants with
a controlled force (fixed load) and a controlled displacement (fixed grips) are considered. A
relationship between the normal and tangential critical force components at which the contact is
destroyed is obtained. It is valid within the whole interval of the gradient parameters, where the
detachment criterium is obeyed. The optimal parameters at which the adhesive contact strength
is maximum are determined. A case of detachment under the action of only the tangential
force, i.e. when the normal force equals zero, is analyzed separately.
K e yw o r d s: adhesion, tribology, numerical simulation, method of dimensionality reduction.

1. Introduction
Functionally graded (gradient) materials are charac-
terized by properties that gradually change in the ma-
terial volume [1, 2]. This effect can be achieved artifi-
cially by producing alloys in which the concentration
of components is distributed non-uniformly. Gradient
materials also exist in nature; these are bones, prick-
les of plants and animals, feathers of birds, plant
stems, sea sponges, articular cartilages, and many
other objects.

The overwhelming majority of natural graded ma-
terials have a biological origin. It is so because, first of
all, the functioning of organs consisting of such mate-
rials is much better. This advantage was enhanced for
various life forms in the course of their evolution. For
example, many plants and animals use their prick-
les for the self-protection. Therefore, those prickles
must be both stiff (to ensure the protection func-
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tion) and elastic (otherwise, they can be broken by
an external action). However, stiffness and elasticity
are known to combine badly with each other. A solu-
tion to this problem consists in growing prickles with
graded properties. Namely, the prickles have to be
softer and more deformable at their sharp end, but
they become stiffer and stiffer, as going along the
prickle. If an alien object-guest moves along such a
prickle, it will not feel pain at first, because the prickle
is easily deformable and can withstand large deforma-
tions without being damaged at this stage. But if the
motion along the prickle continues further, the lat-
ter becomes stiffer, and this circumstance does not
allow the alien object to damage the organism which
defends itself by means of such prickles without neg-
ative consequences for itself.

When applied in industry, gradient materials open
a number of new possibilities, e.g., when developing
devices ensuring a smooth dissipation of mechanical
energy. In particular, they can be used as protective
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coatings at the sites, where somebody can fall from a
high altitude. If a human body gets in contact with
such a coating, the latter firstly offers minimal resis-
tance because its elastic modulus is very low. But as
the body “sinks” more and more into such a “floor”,
the counteracting force also increases. Knowing the
kinetic energy of the body at the first contact, it is
possible to calculate the thickness and the gradient
index of the material that are required to avoid the
appearance of supercritical stresses inside the body
under which the internal organs or bones can be
damaged.

Protective coatings of this kind can also be used in
the production of safety helmets and the outer lining
of bulletproof vests, in the manufacture of soles for
sports sneakers, and so forth. One common thing is
important for all those cases; this is the slowing down
of the process of the mechanical energy transfer to the
body that is protected by such materials.

Owing to a high demand for gradient materials in
industry, there are many theoretical [3–5] and exper-
imental [6, 7] works devoted to the research of such
media, including the application of computer simula-
tions as well [8–10].

The properties of gradient materials described
above depend on the spatial coordinates, i.e. those
materials are characterized by a spatial gradient-
ness. Just materials of this type are studied in the
presented work. However, if the specific features of
gradient media are considered by an example of or-
gans of living organisms, attention should be paid to
that the gradient properties of those organs can also
change in time. From this point of view, the gradi-
ent properties can be considered as functions of the
time as well. So that, in some sense, we may talk not
only about their spatial but also temporal gradients;
in other words, about space-time characteristics.

The variation of the properties of gradient mate-
rials in time plays a very important role for living
things. For example, a newborn hedgehog has prick-
les that are very soft along their entire length. Only
with such prickles can it be formed in the womb of its
mother without harming the maternal organism. Af-
ter the birth, when the hedgehog continues to grow
under natural conditions, the prickles become coarser
and finally acquire protective functions. In order to
describe such systems, where the gradient properties
change in time, one should select, at every time mo-
ment, an appropriate coordinate function describing

the gradientness and carry out a separate study, if
necessary.

However, we may imagine another situation where
the gradient properties of a material change very
quickly in time. If those changes are rather rapid,
they will affect the energy dissipation in the course
of contact phenomena. The gradient properties of the
material can be modified in time, e.g., with the help of
an ac magnetic field, if the material contains magnetic
particles. But the creation of such artificial materials
possessing gradient properties with the space-time de-
pendence is a long-term prospect. In this work, we
study the case where the material properties (elastici-
ty modulus) depend only on the spatial coordinates.

2. Formulation of the Method
of Dimensionality Reduction for Adhesive
Contacts between Gradient Materials

2.1. Normal contact

Let us describe the specific features of the method
of dimensionality reduction (MDR), when it is used
to analyze a contact between gradient materials in-
dented only in the normal direction, i.e. without tan-
gential displacements. We consider the case where the
elasticity modulus of a material is given by the power
function

𝐸(𝑧) = 𝐸0

(︂
𝑧

𝑐0

)︂𝑘
, −1 < 𝑘 < 1. (1)

In order to describe a space-time-dependent gradi-
entness, a time-dependent function has to be used in-
stead of the constant 𝐸0; e.g., it can describe the sim-
plest case of Debye relaxation, 𝐸0

(︀
1− e−𝑡/𝜏

)︀
. Ac-

cording to expression (1), this selection gives rise to
the zero value of the elasticity modulus, 𝐸 (𝑧) = 0,
at the initial time moment (very soft prickles in the
course of the intrauterine development of organism)
and to a constant value [the value of the coefficient
𝐸0 in formula (1)] at sufficiently long time intervals
(adult organism).

It should be noted that a value of zero for the elas-
ticity modulus has no physical meaning. However, it
is possible to choose a time-dependent function for
which the elasticity modulus has a non-zero value at
the initial time moment. As concerning dependence
(1), which gives the zero elasticity modulus at the
material surface, the situation is somewhat more com-
plicated because the formulas presented below are ob-
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tained just for formula (1), so that a change of this
dependence will require the development of a new
theory. In other words, we will consider a situation
where the elasticity modulus at the material surface
has a very small value. On the contrary, if the elas-
ticity modulus at the material surface acquires values
that are substantially different from zero, other tech-
niques – like numerical simulation [11] – have to be
used to study such systems.

In the case of elastic contact between two axially
symmetric bodies, the MDR consists of two steps [12–
14]. Firstly, if the function 𝑓(𝑟) describing the origi-
nal three-dimensional profile of the indenter is known
(Fig. 1), it should be replaced by an equivalent one
determined in the one-dimensional space, 𝑔(𝑥). For
this purpose, the known transformation procedure is
applied [15]:

𝑔 (𝑥) = |𝑥|1−𝑘

|𝑥|∫︁
0

𝑓 ′ (𝑟)√︁
(𝑥2 − 𝑟2)

1−𝑘
d𝑟. (2)

Below, we will describe, for simplicity, only a con-
tact between an rigid parabolic indenter, 𝑓 (𝑟) =
= 𝑟2/(2𝑅), and the elastic half-space with gradi-
ent properties given by relation (1). Then the chosen
function 𝑓 (𝑟) gives rise to a one-dimensional repre-
sentation in the form

𝑓 (𝑟) =
𝑟2

2𝑅
⇒ 𝑔 (𝑥) =

𝑥2

(1 + 𝑘)𝑅
. (3)

At the next step [12–14], the elastic half-space
should be replaced by an elastic foundation [16], as
is shown in Fig. 1. This foundation consists of non-
interacting springs with the normal, 𝑘𝑧, and tangen-
tial, 𝑘𝑥, stiffnesses dependent on the spatial coordi-
nate 𝑥 in the one-dimensional space:

𝑘𝑧 (𝑥) = 𝑐𝑁 (𝑥)Δ𝑥 = ℎ𝑁 (𝑘, 𝜈)𝐸*
(︂
|𝑥|
𝑐0

)︂𝑘
Δ𝑥, (4)

𝑘𝑥 (𝑥) = 𝑐𝑇 (𝑥)Δ𝑥 = ℎ𝑇 (𝑘, 𝜈)𝐺*
(︂
|𝑥|
𝑐0

)︂𝑘
Δ𝑥. (5)

Here, the constants (the effective elasticity, 𝐸*, and
shear, 𝐺*, moduli at 𝑘 = 0) are determined by the
relations

𝐸* =
𝐸0

1− 𝜈2
=

2𝐺0

1− 𝜈
, 𝐺* =

4𝐺0

2− 𝜈
, (6)

so that
𝐺* = 𝐸* 2− 2𝜈

2− 𝜈
. (7)

The functions ℎ𝑁 (𝑘, 𝜈) and ℎ𝑇 (𝑘, 𝜈) in Eqs. (4)
and (5), respectively, are determined by the formu-
las [13, 14] 1

ℎ𝑁 (𝑘, 𝜈) =
2 (1 + 𝑘) cos

(︀
𝑘𝜋
2

)︀
Γ
(︀
1 + 𝑘

2

)︀
𝛽 (𝑘, 𝜈) 𝛾 (𝑘, 𝜈)

,

ℎ𝑇 (𝑘, 𝜈) =
2𝛽 (𝑘, 𝜈) (2− 𝜈) cos

(︀
𝑘𝜋
2

)︀
Γ
(︀
1 + 𝑘

2

)︀
(1+𝑘) (1−𝜈) 𝛾 (𝑘, 𝜈)+2𝛽 (𝑘, 𝜈) Γ

(︀
1+𝑘

2

)︀ ,(8)

where
𝛾 (𝑘, 𝜈) =

√
𝜋𝐶 (𝑘, 𝜈) sin

(︂
𝛽(𝑘, 𝜈)𝜋

2

)︂
Γ

(︂
1+𝑘

2

)︂
,

𝐶 (𝑘, 𝜈) =
21+𝑘

𝜋Γ (2+𝑘)
Γ

(︂
3 + 𝑘 + 𝛽 (𝑘, 𝜈)

2

)︂
×

×Γ

(︂
3 + 𝑘 − 𝛽 (𝑘, 𝜈)

2

)︂
,

𝛽 (𝑘, 𝜈) =

√︃
(1 + 𝑘)

(︂
1− 𝑘𝜈

1− 𝜈

)︂
.

At first glance, functions (8) may seem to be com-
plicated. However, they actually contain only one
non-elementary standard gamma-function

Γ (𝑧) =

∞∫︁
0

𝑡𝑧−1e−𝑡d𝑡 (9)

and can be easily calculated by a computer.
In order to describe the tangential displacement of

an indenter, we should firstly present a procedure de-
scribing its normal motion. For our further consid-
eration to be universal, we have to select the mea-
surement units for all quantities and to formulate the
detachment criterion. This task can be fulfilled while
describing the normal contact.

When the transformed profile 𝑔(𝑥) is indented into
the elastic base to the depth 𝑑, the tensions of sepa-
rate springs inside the contact can be found using the
formula
𝑢𝑧 (𝑥) = 𝑑− 𝑔 (𝑥) = 𝑑− 𝑥2

(𝑘 + 1)𝑅
, (10)

1 Note that the definition of the function ℎ𝑇 (𝑘, 𝜈) used in work
[13] differs from that proposed in this work. We changed
the form of this function to modify the form of Eq. (5) and
write it in a form similar to Eq. (4). Of course, from the
mathematical and physical viewpoints, this representation
is absolutely equivalent to what was done in work [13].
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Fig. 1. MDR of transforming the original three-dimensional profile 𝑓(𝑟) into a one-dimensional profile 𝑔(𝑥) and the substitution
of the elastic half-space by an elastic foundation composed of non-interacting springs. In the case of simultaneous normal and
tangential forces and adhesion, the springs simultaneously shift in the normal and tangential directions. The figure illustrates
only the normal motion of the indenter and the string compression in this direction

which follows from system’s geometry (Fig. 1). Pro-
vided that the indentation depth 𝑑 is known, the size
of the adhesive contact can be easily determined with
the help of the virtual work principle.

The tension of the springs at the contact boundary
equals Δ𝑙 = −𝑢𝑧 (𝑎). If those two boundary springs
are detached, the performed work is equal to their
potential energy 𝑘𝑧 (𝑎) (Δ𝑙)

2. On the other hand, af-
ter the springs have been detached, there arises a free
space around the contact in the form of a ring with an
area of 2𝜋𝑎Δ𝑥, which is associated with an energy of
2𝜋𝑎Δ𝑥Δ𝛾. The latter can only be determined in the
original three-dimensional system. According to the
virtual work principle, the system is in equilibrium,
if the indicated two energies are identical [17]. From
whence, we obtain

𝑐𝑁 (𝑎) (Δ𝑙)
2
Δ𝑥 = 2𝜋𝑎Δ𝑥Δ𝛾. (11)

This means that the equilibrium condition for the
outer springs looks like [13]

Δ𝑙 = Δ𝑙max (𝑎) =

√︃
2𝜋𝑎Δ𝛾

𝑐𝑁 (𝑎)
. (12)

By combining expressions (10) and (12), we get [13]

𝑑 =
𝑎2

(1 + 𝑘)𝑅
−

√︃
2𝜋𝑎Δ𝛾

𝑐𝑁 (𝑎)
=

𝑎2

(1 + 𝑘)𝑅
−

−

√︃
2𝜋Δ𝛾𝑐𝑘0𝑎

1−𝑘

𝐸*ℎ𝑁 (𝑘, 𝜈)
. (13)

Finally, the normal force in the contact can be found
by summing up the forces over all stretched and com-

pressed springs [13],

𝐹𝑧 (𝑎) =

𝑎∫︁
−𝑎

𝑐𝑁 (𝑥) [𝑑− 𝑔 (𝑥)] d𝑥 =

=
4ℎ𝑁 (𝑘, 𝜈)𝐸*𝑎𝑘+3

𝑐𝑘0 (1+𝑘)
2
(3+𝑘)𝑅

−

√︃
8𝜋Δ𝛾ℎ𝑁 (𝑘, 𝜈)𝐸*

𝑎−(3+𝑘) (1 + 𝑘)
2
𝑐𝑘0

. (14)

Now, let us consider a more general situation where
the indenter simultaneously moves in the normal and
tangential directions. Let us denote its tangential dis-
placement as 𝑢

(0)
𝑥 . For the analytical and numerical

results to be presented in the universal form, let us
introduce the following dimensionless variables:

𝑎̃ = 𝑎/𝑎0, 𝐹𝑧 = 𝐹𝑧/𝐹0, 𝐹𝑥 = 𝐹𝑥/𝐹0,

𝑑 = 𝑑/𝑑0, 𝑢̃
(0)
𝑥 = 𝑢

(0)
𝑥 /𝑑0, 𝑢̃𝑧 = 𝑢𝑧/𝑑0,

(15)

where 𝐹0, 𝑎0, and 𝑑0 are the critical values of the
normal force, contact radius, and absolute value of
the indentation depth at the time moment, when the
parabolic profile is detached from the elastic half-
space in the “fixed grips” case, respectively. In par-
ticular [13],

𝐹0 =
(1− 𝑘) (5 + 3𝑘)𝜋𝑅Δ𝛾

2 (3 + 𝑘)
, 𝑑0 =

(3 + 𝑘) 𝑎20
(1− 𝑘2)𝑅

,

𝑎0 =

(︃
𝜋
(︀
1− 𝑘2

)︀2
𝑅2Δ𝛾𝑐𝑘0

8𝐸*ℎ𝑁 (𝑘, 𝜈)

)︃ 1
3+𝑘

.

(16)

In the dimensionless form, expressions (13) and (14)
are more compact:

𝑑 =
(1− 𝑘) 𝑎̃2

3 + 𝑘
− 4

3 + 𝑘

√
𝑎̃1−𝑘, (17)
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Fig. 2. Dimensionless (𝑎) and dimensional (𝑏) dependences of the elastic force 𝐹𝑧 on the indentation depth 𝑑 [see analytical
formulas (17) and (18)] for the normal adhesive contact and various fixed values of the parameter 𝑘. The model parameters are
Δ𝛾 = 0.7 J/m2, 𝑐0 = 1 m, 𝑅 = 5 m, 𝐸 = 106 Pa, and 𝜈 = 0.3

𝐹𝑧 =
(1− 𝑘) 𝑎̃3+𝑘

5 + 3𝑘
− 2 (3 + 𝑘)

5 + 3𝑘

√
𝑎̃3+𝑘. (18)

Of course, at 𝑘 = 0 [according to Eq. (1), if 𝑘 = 0, we
have 𝐸 (𝑧) = 𝐸0 = const], this result coincides with
the classical one [18]. But in our work, we use other
dimensionless variables (16), because we believe that
they better suit for the further analysis.

The dependences of the dimensionless force 𝐹𝑧 on
the dimensionless indentation depth 𝑑, which are de-
termined by expressions (17) and (18), are shown
in Fig. 2, 𝑎. The same dependences, but in the di-
mensional form, are depicted in Fig. 2, 𝑏. The se-
lected measurement units [Eqs. (15) and (16)] allow
results (13) and (14) to be written in a much simpler
form [see Eqs. (17) and (18)]. The application of di-
mensionless equations makes the analytical analysis
much easier. But sometimes, the dimensionless de-
pendences cannot be compared at all. For example,
the dimensional dependences 𝐹 (𝑑) in Fig. 2, 𝑏 were
plotted for the parameter value 𝑐0 = 1 m. At the
same time, this parameter enters only the measure-
ment units but is absent from the dimensionless de-
pendences (17) and (18). On the other hand, if we di-
rectly analyze results (13) and (14) written in terms of
dimensional quantities, it is easy to see that a change
of the gradientness parameter 𝑘 affects the adhesive
contact properties differently in the cases 𝑐0 > 1 m
and 𝑐0 < 1 m. This means that, when analyzing the
influence of this parameter, we must compare the re-
sults expressed in terms of dimensional quantities or

choose the dimensionless parameters that do not con-
tain the index 𝑘.

In this work, we analyze the contact stability,
i.e. we determine conditions under which the con-
tact is destroyed. In particular, loading conditions are
known to be important for the adhesive contact. We
consider two typical cases: the controlled force (“fixed
load”) and controlled displacement (“fixed grips”) con-
ditions. The controlled displacement condition means
that the indenter motion corresponds to the gradual
change in the macroscopic position of the indenter as
a whole with the help of a very rigid connection be-
tween the indenter and the driving mechanism. The
controlled force condition is realized when the inden-
ter is moved by means of a very soft spring, when
the force value does not change at every contact
relaxation to the equilibrium state (the soft spring
can be stretched to a rather large size; therefore,
small indenter displacements do not substantially af-
fect the spring elongation and, hence, the effective
force). Earlier, we have used the MDR to simulate the
influence of the adhesive interaction on collisions be-
tween elastic spherical particles under the controlled
displacement condition [19].

2.2. Simultaneous normal
and tangential displacements

Let the contact simultaneously undergo normal and
tangential displacements, with the tangential dis-
placement of the indenter being equal to 𝑢

(0)
𝑥 . Taking
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this quantity into account, the potential energy of
two outer springs in the contact can be written in
the form 𝑘𝑧 (𝑎)𝑢𝑧 (𝑎)

2
+𝑘𝑥 (𝑎)𝑢

(0)2
𝑥 . By equating this

energy to the adhesion work 2𝜋𝑎Δ𝑥Δ𝛾, we arrive at
the following energy balance relation:

ℎ𝑁 (𝑘, 𝜈)𝐸*𝑢𝑧 (𝑎)
2
+ ℎ𝑇 (𝑘, 𝜈)𝐺*𝑢(0)2

𝑥 =

= 2𝜋𝑐𝑘0𝑎
1−𝑘Δ𝛾. (19)

In the case 𝑘 = 0, it exactly coincides with the John-
son rule for homogeneous media [17, 20]. From this
expression, the magnitude of the equilibrium tension
of outer springs can be calculated:

|𝑢𝑧 (𝑎)| =

√︃
2𝜋𝑎1−𝑘Δ𝛾𝑐𝑘0
ℎ𝑁 (𝑘, 𝜈)𝐸* − ℎ𝑇 (𝑘, 𝜈)𝐺*

ℎ𝑁 (𝑘, 𝜈)𝐸*𝑢
(0)2
𝑥 . (20)

The combination of Eqs. (20) and (10) gives rise to
the following relation between the indentation depth
𝑑 and the contact radius 𝑎:

𝑑 =
𝑎2

(1 + 𝑘)𝑅
−

√︃
2𝜋𝑎1−𝑘Δ𝛾𝑐𝑘0
ℎ𝑁 (𝑘, 𝜈)𝐸* − ℎ𝑇 (𝑘, 𝜈)𝐺*

ℎ𝑁 (𝑘, 𝜈)𝐸*𝑢
(0)2
𝑥 .

(21)

The corresponding normal and tangential forces in
the contact are given by the expressions

𝐹𝑧 = 2

𝑎∫︁
0

𝑐𝑁 (𝑥) [𝑑− 𝑔 (𝑥)] d𝑥 =

=
2𝐸*ℎ𝑁 (𝑘, 𝜈)

𝑐𝑘0 (1 + 𝑘)

(︂
𝑎1+𝑘𝑑− 𝑎3+𝑘

(3 + 𝑘)𝑅

)︂
, (22)

𝐹𝑥=2

𝑎∫︁
0

𝑐𝑇 (𝑥)𝑢(0)
𝑥 d𝑥 =

2ℎ𝑇 (𝑘, 𝜈)𝐺*𝑢
(0)
𝑥 𝑎𝑘+1

𝑐𝑘0 (1 + 𝑘)
, (23)

respectively. In terms of the dimensionless variables
(15), this result can be written in the more compact
form,

𝑑 =
𝑎̃2 (1−𝑘)

3 + 𝑘
−

√︃
16𝑎̃1−𝑘

(3+𝑘)
2 − ℎ𝑇 (𝑘, 𝜈)𝐺*

ℎ𝑁 (𝑘, 𝜈)𝐸* 𝑢̃
(0)2
𝑥 , (24)

𝐹𝑧 =
𝑎̃1+𝑘

2 (5 + 3𝑘)

[︁
𝑑 (3 + 𝑘)

2 − 𝑎̃2
(︀
1− 𝑘2

)︀]︁
, (25)

𝐹𝑥 =
ℎ𝑇 (𝑘, 𝜈)𝐺* (3 + 𝑘)

2
𝑎̃𝑘+1

2ℎ𝑁 (𝑘, 𝜈)𝐸* (5 + 3𝑘)
𝑢̃(0)
𝑥 . (26)

Equations (24)–(26) describe the relation between
the normal force 𝐹𝑧 and the indentation depth
𝑑. Hence, this relation depends on the tangential dis-
placement 𝑢

(0)
𝑥 . Note that the substitution of expres-

sion (24) taken with the zero tangential displacement,
𝑢
(0)
𝑥 = 0, into Eq. (25) reproduces result (18) obtained

for the normal contact, with the tangential force be-
ing absent in this case, i.e. 𝐹𝑥 = 0.

Attention should be paid to that expression (19)
describes a situation where the work of the adhesive
forces does not depend on the indenter motion di-
rection. This assumption may be not valid for some
physical systems [21,22]. In this case, the dependence
of the surface energy Δ𝛾 on the angle at which the in-
denter moves with respect to the half-space has to be
additionally taken into account, as was done in work
[21] for a homogeneous medium. However, the con-
sideration of this situation in details will significantly
complicate the procedure described below. Therefore,
it should be carried out in a separate study.

In what follows, we remain in the framework of
the Johnson representation (19) and use equations
based on it. We describe two separate cases: the
controlled displacement (“fixed grips”) and controlled
force (“fixed load”) conditions. The contact can be
loaded horizontally in the framework of both of those
scenarios. However, for the sake of simplicity, we only
consider the case of the controlled horizontal displace-
ment, as was done in work [17].

2.2.1. Adhesion under the controlled force condition

If the contact force changes gradually, there arises
an instability at the time moment, when the abso-
lute value of the negative normal force 𝐹𝑧 becomes
maximum (see Fig. 2). This effect can be easily ex-
plained by the following example. Let us gradually
increase an external force in the direction giving rise
to the contact destruction. Then, for every value of
this force, the established displacement 𝑑 corresponds
to the contact force with the identical magnitude. In
so doing, we move along the dependence 𝐹𝑧(𝑑) in
Fig. 2, 𝑎 toward smaller 𝑑-values and larger |𝐹𝑧|-
magnitudes. When the parameter 𝑑 reaches a value
at which the magnitude |𝐹𝑧| of the normal contact
force is maximum, any growth of the external force
will result in that the contact force becomes less than
the external force, which will lead to a rapid destruc-
tion of the contact.
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A scenario where we try to tear something away
is a very common case of the controlled force condi-
tion. When so doing, we have to permanently increase
the applied force until it exceeds a critical value. Wi-
thout making use of special instruments, we cannot
control the displacements in glued contacts in the
course of their destruction. We can only control the
force.

In accordance with the aforesaid, the condition of
contact instability in the case of controlled force looks
like d𝐹𝑧/d𝑎̃ = 0. Differentiating Eq. (25) and making
allowance for relation (24), we obtain

𝑎̃2𝑐,𝑓𝑙

√︃
16𝑎̃1−𝑘

(3 + 𝑘)
2 − ℎ𝑇 (𝑘, 𝜈)𝐺*

ℎ𝑁 (𝑘, 𝜈)𝐸* 𝑢̃
(0)2
𝑥 −

4𝑎̃1−𝑘
𝑐,𝑓𝑙

1− 𝑘
+

+
(3 + 𝑘) (1 + 𝑘)ℎ𝑇 (𝑘, 𝜈)𝐺*𝑢̃

(0)2
𝑥

2 (1− 𝑘)ℎ𝑁 (𝑘, 𝜈)𝐸* = 0. (27)

This equation describes the dependence of the critical
contact radius 𝑎̃𝑐,𝑓𝑙 on the tangential displacement
𝑢̃
(0)
𝑥 under the controlled force condition. The relation

between the normal and tangential forces at which the
contact is destroyed can be obtained by substituting
the critical radius 𝑎̃𝑐,𝑓𝑙 into Eqs. (24)–(26).

2.2.2. Adhesion under the controlled
displacement condition

If the distance between the indenter and the half-
space gradually increases, the contact between them
continues to exist as long as there exists the cor-
responding point in the mathematical dependence
𝐹𝑧(𝑑) (Fig. 2, 𝑎). To put it differently, the con-
tact becomes destroyed when this distance becomes
smaller than the plot minimum at which the condition
d(𝑑)/d𝑎̃ = 0 is realized. This case is a little simpler
than the previous one, because we have to differenti-
ate the function 𝑑(𝑎̃) [Eq. (24)], which explicitly de-
pends on the contact radius 𝑎̃, with respect to this
radius. After the differentiation, we get

𝑎̃3+𝑘
𝑐,𝑓𝑔 −

ℎ𝑇 (𝑘, 𝜈)𝐺* (3+𝑘)
2
(︁
𝑢
(0)
𝑥 𝑎̃1+𝑘

𝑐,𝑓𝑔

)︁2
16ℎ𝑁 (𝑘, 𝜈)𝐸* − 1 = 0. (28)

This equation determines the critical radius 𝑎̃𝑐,𝑓𝑔 as a
function of the tangential displacement of the inden-
ter, 𝑢̃(0)

𝑥 . The system of equations (24)–(26) and (28)

makes it possible to obtain expressions for the critical
forces at which the contact is destroyed:

𝐹 2
𝑥 =

4ℎ𝑇 (𝑘, 𝜈)𝐺*

ℎ𝑁 (𝑘, 𝜈)𝐸*

(︂
3 + 𝑘

5 + 3𝑘

)︂2(︁
𝑎3+𝑘
𝑐,𝑓𝑔 − 1

)︁
, (29)

𝐹𝑧 =
(1− 𝑘) 𝑎̃3+𝑘

𝑐,𝑓𝑔 − 2 (3 + 𝑘)

5 + 3𝑘
. (30)

Their combination, after excluding the contact radius
𝑎̃𝑐,𝑓𝑔, brings about the following explicit dependence
between the force components:

𝐹𝑧 =
ℎ𝑁 (𝑘, 𝜈)𝐸* (5 + 3𝑘) (1− 𝑘)

4ℎ𝑇 (𝑘, 𝜈)𝐺* (3 + 𝑘)
2 𝐹 2

𝑥 − 1. (31)

Thus, in the case of controlled displacement, we de-
rived the analytic relation, Eq. (31), between the force
components at which the contact is destroyed. In the
case of controlled force, Eq. (27) does not allow an
analytical solution, so that a numerical analysis is
required to calculate the dependence between those
forces. Contact problems for gradient materials have
no analytical solutions in most cases. But, sometimes,
this can be done (see, e.g., work [23]), although spe-
cial functions used at that have to be calculated nu-
merically anyway.

The controlled displacement condition is realized,
if the indentation depth 𝑑 is changed at a constant ve-
locity. Such conditions are very often reproduced in
experiments studying the adhesion, when the inden-
ter is moved by means of an external drive charac-
terized by a much higher stiffness than the adhesive
contact itself. This configuration makes it possible to
study contact phenomena in the quasistatic regime,
when the drive velocity is very low and a stationary
contact is realized at every time moment [24,25]. This
is the case where the JKR theory [18] is valid. Ano-
ther situation arises, if the contact characteristics are
studied at various indenter velocities, when the vis-
coelastic properties of contacting materials substan-
tially affect the contact phenomena [26, 27].

3. Numerical Simulation
and Discussion of Results

Before proceeding to the numerical analysis of
Eqs. (27) and (28) – note that, instead of numeri-
cally solving Eq. (28), we can immediately use the
obtained analytical result (31) – we have to find re-
lations for the model parameters at which the initial
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Fig. 3. Numerical solution 𝑘 (𝜈) of Eq. (33). In the case 𝜈 = 0,
the medium is homogeneous (𝑘 = 0)

equation (19) has a physical meaning. In the case of
homogeneous medium and at 𝑘 = 0, relation (19)
reads [17]

𝐸* [𝑢𝑧 (𝑎)]
2
+𝐺*

[︁
𝑢(0)
𝑥

]︁2
= 2𝜋𝑎Δ𝛾. (32)

In work [17], it was shown that expression (32) is valid
only in the case 𝜈 = 0, i.e. if 𝐸* = 𝐺*, which follows
from Eq. (7). Then Eq. (32) is identical to the expres-
sion proposed in work [20]. Currently, a detachment
criterion that would be correct for gradient media at
𝑘 ̸= 0 has not been formulated yet. However, Eq. (19)
testifies that the tangential and normal motions give
equivalent contributions to the elastic energy (as it
takes place in Eq. (32) obtained in the case 𝜈 = 0),
only if ℎ𝑁 (𝑘, 𝜈)𝐸* = ℎ𝑇 (𝑘, 𝜈)𝐺*. Therefore, let us
focus our attention on this variant.

Taking Eq. (7) into account, the equality
ℎ𝑁 (𝑘, 𝜈)𝐸* = ℎ𝑇 (𝑘, 𝜈)𝐺* can be rewritten in the
form

2𝛽 (𝑘, 𝜈) Γ

(︂
1 +

𝑘

2

)︂
𝛾 (𝑘, 𝜈) (1− 𝜈)

− 2𝛽2 (𝑘, 𝜈)

1 + 𝑘
+ 𝑘 + 1 = 0. (33)

The dependence 𝑘 (𝜈) obtained by numerically solv-
ing Eq. (33) is shown in Fig. 3. It was plotted within
the interval −1 < 𝜈 ≤ 0.5 for the argument values
that are characteristic of thermodynamically stable
materials [28]. The figure demonstrates the relation-
ship between the parameters 𝑘 and 𝜈 at which the
equality ℎ𝑁 (𝑘, 𝜈)𝐸* = ℎ𝑇 (𝑘, 𝜈)𝐺* holds true. Be-
low, we carry out simulation calculations in which

the specific values of Poisson’s ratio 𝜈 are not indi-
cated. But the corresponding value of 𝜈 can be deter-
mined from Fig. 3 for every value of 𝑘.

Note that, according to the obtained dependence
𝑘 (𝜈), the problem has a solution only in the interval
−0.23688 < 𝑘 < 0.649005. Of course, the relation be-
tween the normal and tangential components of the
forces at which the contact is destroyed must exist
at any relation between 𝑘 and 𝜈. However, the de-
tachment criterion has to be found for arbitrary 𝑘
and 𝜈 values because criterion (19) is valid only for
the definite relation between those parameters (see
Fig. 3). Nevertheless, we may assume that the results
obtained below will describe the detachment process
with a sufficient accuracy, if the values of the param-
eters 𝑘 and 𝜈 (taken in the pair) deviate only insignif-
icantly from the curve depicted in Fig. 3.

In the framework of the MDR, we consider the
normal and tangential contacts to be independent
of each other. However, this assumption is correct
only for certain relations between the elastic param-
eters. In our case – for the absolutely stiff inden-
ter and the elastic base – the tangential and nor-
mal motions are independent, if Poisson’s ratio equals
𝜈 = 1/ (2 + 𝑘) [13,29]. But in this case, criterion (19)
is not obeyed. For the further analysis, we selected
such parameter values at which the detachment crite-
rion (19) is valid, but the tangential and normal con-
tacts were considered independently. Therefore, the
results obtained below contain a certain error; how-
ever, it is insignificant [30]. For example, in the case
of homogeneous medium (𝑘 = 0), the normal and tan-
gential contacts are independent of each other, only
if 𝜈 = 0.5, but, within the interval 0.3 < 𝜈 < 0.5, the
error does not exceed 3% [30].

The main purpose of this work was to analyze the
influence of the gradientness parameter 𝑘 on the ra-
tio between the critical force components at which
the contact is destroyed. Therefore, it is reasonable
to plot the dependences of those forces. However, the
measurement units of the force 𝐹0 contain the pa-
rameter 𝑘 [see Eq. (16)]. Therefore, when comparing
the dependences 𝐹𝑧(𝐹𝑥), one cannot speak about the
influence of the gradientness parameter on system’s
behavior. The measurement units (16) are very con-
venient, because they made it possible to derive uni-
versal formulas in which the forces are normalized by
the critical values. But, following this way, it is dif-
ficult to trace the role of the gradientness parameter
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a b
Fig. 4. Dependences of the normalized critical normal force component 𝑠𝐹𝑧 on the normalized tangential force component 𝑠𝐹𝑥,
which satisfy the condition ℎ𝑁 (𝑘, 𝜈)𝐸* = ℎ𝑇 (𝑘, 𝜈)𝐺*, for various 𝑘 = −0.2, 0.0, 0.2, 0.4, 0.55, and 0.649005 (the growth of
this parameter is indicated by arrows). Panel 𝑎 corresponds to the conditions of controlled force in the vertical direction and
controlled displacement in the horizontal one, and panel 𝑏 to the condition of controlled displacement in both directions. Dashed
sections correspond to the indenter detachment, when the indenter is located above the half-space and the indentation depth 𝑑

is negative; solid sections correspond to the indenter detachment at positive values of the indentation 𝑑 into the half-space

𝑘. Therefore below, we will not analyze the depen-
dence 𝐹𝑧(𝐹𝑥). Instead, we will consider the depen-
dence 𝑠𝐹𝑧(𝑠𝐹𝑥) with the parameter

𝑠 =
(1− 𝑘) (5 + 3𝑘)

(3 + 𝑘)
. (34)

According to expressions (15) and (16), the coeffi-
cient 𝑘 does not enter the formula for the connection
between forces 𝑠𝐹𝑧(𝑠𝐹𝑥). This fact means that, by
analyzing such dependences for various values of the
parameter 𝑘, one can trace the influence of the lat-
ter on the ratio between the critical values of force
components.

Figure 4 illustrates the dependences 𝑠𝐹𝑧(𝑠𝐹𝑥) for
the critical force components which were calculated
under the controlled force (panel 𝑎) and controlled
displacement (panel 𝑏) conditions. The dependences
were obtained for various values of the parame-
ter 𝑘 describing the gradientness degree of the ma-
terial. Let us consider the dashed sections of the
curves. They correspond to the case where the con-
tact is destroyed, if there is a gap between the in-
denter and the half-space, i.e. the indentation depth
𝑑 has a negative value. For these dashed sections of
the curves corresponding to the controlled force con-
dition (Fig. 4, 𝑎), the adhesive strength of the con-
tact increases with the parameter 𝑘. It is so because
the larger tangential and/or normal forces have to be

applied in order to destroy the contact at larger 𝑘
values. However, the controlled displacement condi-
tion (Fig. 4, b) brings about a different situation. Na-
mely, the strength of the adhesive contact decreases,
as the parameter 𝑘 increases. The critical values of
the forces at which the contact becomes destroyed in
the absence of a tangential displacement (𝐹𝑥 = 0) can
be written in the form [13]

𝑠𝐹 𝑐,𝑓𝑙
𝑧 = − (𝑘 + 3) , 𝑠𝐹 𝑐,𝑓𝑔

𝑧 = −𝑠 (35)

for both loading types. Here, 𝑠 is determined by ex-
pression (34), and the superscripts 𝑓𝑙 and 𝑓𝑔 denote
the controlled force (fixed load) and controlled dis-
placement (fixed grips) conditions, respectively.

Formulas (35) correspond to the starting point (ab-
sence of a tangential displacement, 𝐹𝑥 = 0) of the
dependences shown in Fig. 4. The values of critical
forces given by Eqs. (35) coincide only at 𝑘 = −1. In
all other cases, the absolute value of 𝑠𝐹 𝑐,𝑓𝑙

𝑧 at 𝐹𝑥 = 0
always exceeds 𝑠𝐹 𝑐,𝑓𝑔

𝑧 for the relevant values of the
parameter 𝑘 (𝑘 > −1). Moreover, we consider an
even narrower interval of 𝑘-values: −0.23688 < 𝑘 <
< 0.649005 (see the figure caption to Fig. 3).

It is of interest that the solid sections of the curves
exhibited in Fig. 4 change their relative positions with
respect to each other at large values of the tangen-
tial force. As a result, if the indentation depth and
the tangential displacement are large, it is impossi-
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Fig. 5. Dependences of the difference between the normal and
tangential force components shown in Fig. 4 on the normalized
tangential force 𝑠𝐹𝑥. All curves correspond to the dependences
shown in Fig. 4. The growth of the parameter 𝑘 is indicated
by an arrow

Fig. 6. Dependences of the critical value of the tangential force
𝑠𝐹𝑥 on the parameter 𝑘 at the zero normal force component,
𝐹𝑧 = 0, under the controlled force (solid curve, the parameters
of Fig. 4, 𝑎) and controlled displacement (dashed curve, the
parameters of Fig. 4, 𝑏) conditions

ble to say surely which material (which 𝑘-value) will
favor the maximum strength of the adhesive contact,
so that additional calculations are required in this
case. However, as a rule, more interesting for the ap-
plication problems is the variant shown by dashed
curves in Fig. 4. In this case, the influence of the pa-
rameter 𝑘 can be clearly determined from the plotted
dependences.

In Fig. 4, 𝑎, a non-monotonic dependence be-
tween the force components is observed at large 𝑘-

values. Let us consider this peculiarity in more de-
tails. Any curve in either of two panels in the figure
divides the space of force values into two regions. For
a fixed 𝑘-value, the areas to the left and right from
any curve correspond to the existence and absence
of the contact, respectively. The curve itself corre-
sponds to the condition, when the contact becomes
unstable. In the case of monotonic 𝐹𝑧(𝐹𝑥) depen-
dence (Fig. 4, 𝑏), the situation is quite clear: if we
start to move in the area of stable contact and reach,
in that or another way, the area of instability, the
contact is destroyed.

However, if the dependence between the force com-
ponents is non-monotonic, a different scenario is pos-
sible. Namely, let us move from the stability area. In
a certain interval of the tangential force 𝐹𝑥 values,
we enter firstly the region of unstable contact, and
the latter becomes destroyed. Afterward, we enter
back into the stability region. But in this scenario,
the contact is not reproduced, because we consider
a situation where the adhesive bonds do not recover
after having been broken [17]. However, if the adhe-
sive contact can be restored after the destruction of
some of its part and the relaxation of elastic stresses
that arose at this site, another regime also becomes
possible. More specifically, it is a regime with a fixed
tangential force, when the contact firstly becomes
completely destroyed at the detachment stage and,
afterward, recovers again. This is a rather interest-
ing result. However, in order to describe this situ-
ation, it is necessary to consider the restoration of
adhesive bonds, as was done in work [31]. On the
other hand, the described non-monotonic dependence
opens an opportunity to perform such manipulations
with the contact at which the latter, provided the
monotonic dependence 𝐹𝑧(𝐹𝑥), would be completely
destroyed. But, in the non-monotonic case, it would
be possible to vary the tangential force, thus avoiding
this non-monotonic feature and, as a result, preserv-
ing the contact.

Figure 5 demonstrates the dependences Δ(𝑠𝐹 ) for
the difference Δ between the normal forces under the
controlled displacement and controlled force condi-
tions, which were shown in Fig. 4. Each difference
was determined at a fixed value of the tangential
force 𝑠𝐹𝑥. From Fig. 5, it follows that the indicated
difference decreases with the growth of the tangen-
tial force. A similar behavior was also observed in our
previous work [17]. Figure 5 testifies that the differ-
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ence between the forces calculated for different load-
ing conditions also diminishes with a decrease of the
parameter 𝑘. Note that we consider the values of the
parameter 𝑘 that fall within the interval shown in
Fig. 3. An analogous calculation of the Δ𝐹 value at
𝑘 = −1 gives the result Δ𝐹 = 0 because, as was al-
ready indicated above, the dependences 𝐹𝑧(𝐹𝑥) cor-
responding to different loading conditions completely
coincide at this 𝑘-value.

In this work, we study the influence of a tangential
displacement on the adhesive contact strength. Here,
there appears an interesting scenario, when the inden-
ter is detached under the action of a tangential dis-
placement only, i.e. when the normal force 𝐹𝑧 equals
zero. The dependences of the critical tangential force
on the parameter 𝑘 at the zero normal force under
different loading conditions are shown in Fig. 6. One
can see that, under the controlled displacement con-
dition, the strength of a tangential contact decreases
with increasing the gradientness index 𝑘. But if the
force is controlled, when the indenter moves, the ad-
hesive strength of the contact increases together with
the growth of the negative values of this parame-
ter. Then, when 𝑘 becomes positive, the adhesive
strength begins to decrease as the parameter 𝑘 grows
further. The same result follows from Fig. 4.

4. Conclusions

In this paper, the strength of adhesive contacts in
the presence of a tangential displacement is studied
for gradient materials in which the elasticity modulus
varies with the depth according to the power law. It
is found that a change in the gradientness index of
the material substantially affects the shear resistance
of the contact. Accordingly, materials that will pro-
vide the strongest contact are indicated. Two types
of loading are considered: the controlled force and
the controlled displacement. An interesting result is
obtained, which consists in that the dependence be-
tween the critical forces has a hysteretic character in
the controlled force case, which allows several scenar-
ios for the contact destruction to take place depending
on the contact prehistory. Note that we consider the
situation where the adhesive bonds are not restored
after the destruction, and the destroyed part of the
adhesive contact does not contribute to the tangential
force component. This assumption is true, if the sur-
face energy significantly decreases at the sites, where
the adhesion bonds have been broken. Such a scenario

can be observed, e.g., in glued contacts or in the con-
tacts whose adhesive strength increases considerably
in time.
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Translated from Ukrainian by O.I. Voitenko

Я.О.Ляшенко, З.М.Ляшенко

ВПЛИВ ТАНГЕНЦIАЛЬНОГО ЗСУВУ НА СИЛУ
АДГЕЗIЇ МIЖ ГРАДIЄНТНИМИ МАТЕРIАЛАМИ

Р е з ю м е

Дослiджується вплив тангенцiального змiщення на мiцнiсть
адгезiйного контакту для градiєнтних матерiалiв iз рiзним
ступенем градiєнтностi. Розглядаються умови контрольо-
ваної сили i контрольованого змiщення. Для всього дiа-
пазону параметра градiєнтностi, для якого справедливий
критерiй вiдриву, розраховане спiввiдношення мiж крити-
чними нормальною i тангенцiальною компонентами сили,
за яких вiдбувається руйнування контакту. Знайдено опти-
мальнi параметри, при яких мiцнiсть адгезiйного контакту
набуває максимальних значень. Окремо розглянуто випа-
док, у якому контакт руйнується лише за рахунок тангенцi-
ального змiщення, коли нормальна сила набуває нульового
значення.
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