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INDUCED COLOR CHARGES,
EFFECTIVE v+G VERTEX IN QGP.
APPLICATIONS TO HEAVY-ION COLLISIONS

We calculate the induced color charges Q3 4, QS 4 and the effective vertex v —~-gluon generated
in a quark-gluon plasma with the Ay condensate because of the color C-parity violation at this
background. To imitate the case of heavy-ion collisions, we consider the model of the plasma
confined in the narrow infinite plate and derive the classical gluon potentials ¢* and ¢® produced
by these charges. Two applications — the scattering of photons on a plasma and the conversion
of gluon fields in two photons radiated from the plasma — are discussed.
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1. Introduction

Investigations of the deconfinement phase transition
(DPT) and the quark-gluon plasma (QGP) are in the
center of modern high energy physics. These phenom-
ena happen at high temperature due to the asymp-
totic freedom of strong interactions. The researches
are carried out either in experiments on hadron colli-
sions or in quantum field theory. The order parame-
ter for DPT is Polyakov’s loop (PL), which is zero at
low temperatures and nonzero at high temperatures
T > T4, where Ty ~ 160-180 MeV [1] is the phase
transition temperature. The standard information on
DPT is adduced, in particular, in [2].
The PL is defined as [3]:

PL = dSC4 A0($47X). (1)
/

Here, Ao(x4,x) is the zero component of the gauge
field potential, the integration contour is going along
the fourth direction and back to an initial point in
the lattice Euclidean space-time. The PL was intro-
duced in pure gluodynamics. It violates the center of
the color group symmetry Z(3) that results in the
nonconservation of the color charges @3 and Q2.
The QGP state consists of quarks and gluons lib-
erated from hadrons. Polyakov’s loop is not a solu-
tion to the local Yang-Mills equations. The local or-
der parameter for DPT is the Ay condensate, which
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is a constant at T > Ty. It can be calculated, in par-
ticular, from a two-loop effective potential. More de-
tails on different calculations carried out in analytic
quantum field theory can be seen in [4]. Taking these
results into consideration, we have to consider QGP
as a state at the Ag background, which breaks the
color C-parity symmetry. So, new type phenomena
may happen.

In the SU(2) gluodynamics, the gluon spectra at
Ao were calculated and investigated in Ref. [5, 6]. In
particular, the induced color charge Q3 ; was also
computed. It was shown that the state with a con-
densate is free of infrared instabilities existing in a
gluon plasma in the empty space. Thus, the ground
state with Ag is a good approximation to the plasma
after DPT.

In Ref. |7], the induced charges Q3 ;, Q% ; gener-
ated by quark loops in QCD were calculated. In what
follows, we consider the QCD case, but the precise
values of the induced charges will not be specified.

The paper is organized as follows. In Sect. 2, the
color induced charges @3, and QP generated by
tadpole quark loops with one gluon lines, which are
nonzero due to Furry’s theorem violation, are calcu-
lated. In Sect. 3, we consider a simple model of the
plasma confined in a plate narrow in one dimension
and infinite in two other dimensions with the Ag con-
densate and induced charges. We compute the classi-
cal gluon potentials ¢* and ¢% generated by the in-
duced charges Q3 ; and Q% ;. In Sect. 4, the effective
vyG vertex generated in the plasma is calculated in
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the high-temperature approximation. In Sect. 5, the
processes of photon scattering on these potentials and
the conversion of gluons in two photons are consid-
ered as the application. These new phenomena have
to happen due to the three-linear effective vertices.

2. Induced Color
Charges and Quark Propagator

In what follows, we consider the case of A3 back-
ground field and present the color field potential in
the form Qj;, — Apd™38,4 + @}, where Q} is a quan-
tum field. The calculation of de is smular (see [7]),
and the final results will be adduced only.

The explicit expression is given by the form

QZQ?ndaﬂ‘léag' = QiQ?ﬂd’ where

dp

A3
l G Ag)|- (2)
1nd 9 P4, P, Ao

Here, A3 is the Gell-Mann matrix, and 3 = 1/T is the
inverse temperature. The expressions for the propa-
gators are

Y4 (pa — Ao) + Py +m
(pa — Ag)2 +p*>+m?’
Y4 (pa + Ao) + Py +m
(pa+ Ao)? +p2+m?~

Gll _

(3)
G22 _

For brevity, we denoted Ay = gAp/2 entering
the interaction Lagrangian. Accounting for the trace
Tr[(v*)?] = -4, the diagonal values of A\?, and

Tr[y*y] = 0, we get
5 (pa+ Ag)? +p?+m?

. 4g
=5 [
7r(2n+1)

The sum over py = 55
using the formula

%Zf(p‘*) — _ﬁ /tan [ﬁ;} fw), (5)
j 2 C

where the contour C' encloses clockwise the real axis
in the complex plane w.

The calculations (after transformation to the spher-
ical coordinates and angular integrations) give

sin( A B) 7 1
3= 0 / p’dp (6)
0

pa + Ao

(4)

can be calculated, by

cos(ApB3) + cosh(e, )’
where e =p? +m?
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Considering the high-temperature limit 5 — oo, we
obtain

4 2m?
tnd = 940 53_2 - 3?5 +0(8%)]. (7)
Hence, we see that the first term is independent of
the mass and dominant at high temperatures.

Now, for completeness, we calculate the tempera-
ture sum in Eq. (4).

The integrand in Eq. (4) has the form

s+ A
f(p4) (1) (2),’ (8)
(pa—py ) (Pa—Dps")
where p( ) = —Ap + i€y, pi ) = —Ag —i€p. The sum

in Eq. (5) after computing the simple residues equals
iEP ﬂ (1
51 = 5Zf pa) [Mtan (2p4 >+
Dy

—i€p B (2
+tan< Pa )] (9)
PR

Substituting the corresponding parameters and ful-
filling elementary transformations, we find
1 sin(A4pf)
~ 2cos(ApB) + cosh(e, )

(10)

By substituting S; in Eq. (4), we obtain Eq. (6).
Performing similar calculations for Q% ;, we get |7]

8m?

2
5 3\/:%25

8 8
ind — gA

\f

Here, A8 is the background field generated in the
plasma. For our problem, it is a given number.

Now, we calculate the quark propagator account-
ing for the induced charge by means of Schwinger—
Dyson’s equation. In the Euclidean space-time, it
reads

S Hp) = — (74 <p4 - /\239140) +’YP) +m — X(p),
(12)

+ 0(53)]. (11)

where ¥(p) is a quark mass operator. In our prob-
lem, to consider the presence of the induced charge,
we separate the part of radiation corrections X(tP-)
equaling to the sum of the tadpole diagrams with one
gluon line G%, which relates the quark bubble to a
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quark line. In Eq. (12), we also substitute the Ag ex-
pression explicitly. In the rest frame of the plasma,
where the actual calculations are carried out, the ve-
locity vector is u, = (us =1, u=0).

Next, we have to consider the gluon field propaga-
tor G3,(k). For that, we use the generalized Green’s
function of neutral gluons. It reads (in the Lorentz—
Feynman gauge) [5, 6]
(Gil)_l =k - H44(k4’ k)’ (13)
where I1,4(k?) is the 4—4 component of a polarization
tensor. For ky = 0, k — 0, it defines Debye’s temper-
ature mass having the order m%, ~ ¢g*T2. This mass
is responsible for the screening of the Coulomb color
fields.

The component of interest G3, taken at zero mo-
menta reads [5, 6]

1
Giulp=0) = —.
44 sz

(14)
Using the vertex of interactions in Eq. (12) and
Egs. (6), (14), we obtain

A 19@0
Z(tp.) — _7,}/4 ind . (15)
2 m?,
Substituting this result in Eq. (12), we conclude
that the resummation of tadpole insertions results in

3

the replacement gAg — gAg + g% in the initial
D

propagator.

3. Potentials of Classical Color Fields

The presence of the induced color charges in the
plasma leads to the generation of classical gluon po-
tentials. To describe this phenomenon, we introduce
a simple model motivated by heavy-ion collisions. In
this case, the plasma is created for a short period
of time in a finite space volume which has a much
smaller size in the direction of collisions compared to
the transversal ones.

We consider the QGP confined in the plate of the
size L in the z-axis direction and infinite in the z-,
y-directions. For this geometry, we calculate the clas-
sical potentials ¢*> = G2,¢% = G% by solving the
classical field equations for the gluon fields G3, G$§
generated by the induced charges Q3 ;,Q% ;. In do-
ing so, we account for the results of Refs. [5,6], where
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the gluon modes at the Ay background were calcu-
lated. For our problem, we are interested in the lon-
gitudinal modes of the fields G3,G§ that have tem-
perature masses ~ g2T2.

The classical potential ¢° is calculated from the
equation

EaCA (16)
8%‘% D - ind*

Making Fourier’s transformation to the momentum
k-space, we derive the spectrum of modes — k3 =
= k2 + kI + k2 + m},, where k2 = (22)%12 and | =
= 0,%1,+2,.... The discreteness of k., is due to the
periodic boundary condition for the plane: ¢*(z) =
= ¢?(2 + L). The general solution to Eq. (16) is

53(1,47)() =d+a e—i(k4x4—kx) +b ei(k4w4—kx). (17)

In the case of zero induced charge, d = 0, and we have
two well-known plasmon modes. In the case of Q3 ; #
= 0, the values a, b, d calculated from the confinement
boundary condition

result in the expression
—5, Q34 cos(k,z)
¢°(2) m?, 1= cos(k,L/2) | (19)

The generated potential depends on the z-variable
only. There are no dynamical plasmon states at all.
The same result follows for the potential ¢8(z). This
is the main observation. In the presence of the in-
duced charges, the static classical color potentials
have to be realized in the plasma.

For applications, it is also necessary to get the
Fourier transform ¢°(k) of potential (19). Fulfilling
that for the interval of z[—%, %], we obtain

Q4L sin(kL/2) k2

(k) m3 (kL/2) el (20)

where the values of k, are given by Eq. (16).
The energy for a mode with momentum k, is pos-
itive and equals

3 )2 2 3 29,2
By = @ina)® 7;3) ZL= (@ina)” nl;f) =P (21)
D D
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The total energy is given by the sum over [ of energies
(21). Similar results hold for the potential ¢°.

Thus, in the presence of the induced charges, the
static gluon potentials with positive energy should
be generated. This is a consequence of condition
Eq. (18). Obviously, such a situation is independent
of the specific form of the bag, where the plasma is
confined. In general, we have to expect that the color
static potentials ¢3, #® should be present in the QGP
that results in a new type of processes.

4. Effective vvG vertices in QGP

Other interesting objects, which have to be gener-
ated in QGP with the Ag condensate, are the effec-
tive three-line vertices yyG?3, vyG®. They also should
exist due to Furry’s theorem violation and relate the
colored and white states. These vertices, in particu-
lar, lead to observable processes such as the inelas-
tic scattering of photons, splitting (or conversion) of
gluon ¢3, ¢® potentials in two photons.

In this and next sections, we calculate the vertex
vyG? and investigate the mentioned processes.

Let us consider the vertex I'/, corresponding to
the diagram depicted in the plot. The second diagram
is obtained by changing the direction of the quark
line. We set that all the momenta are ingoing, the
first photon is v (kb), the second photon is y2(k3), a
color a = 3 gluon — Q3(k2), and k' + k? + k3 = 0.
k123 are the momenta of external fields.

We consider the contributions coming from the
traces of four «-matrices, which are proportional to
the quark mass and dominant for small photon mo-
menta k', k* < m. The analytic expression (common
factor is e2gm) is

kLK) = TV (R R + TP (R R, (22)
where
Iy (6 k) =

1 d3 N
:fz/ P\ T .(23)
p<=) (2m)° D(P)D(P — k')D(P + k?)

Here, the summation is over py = 2F”(l +1/2),1 =0,
+1,+£2, ..., the integration is over three-dimensional
momentum space p, N; denotes the numerator com-
ing from the first diagram, P = (}54 = p4 — Ao, P),
D(P) = (ps — Ap)? + p*> +m? = P} + €2, and e =

I
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= p? +m? is the squared energy of a free quark. The
functions D(P — k'), D(P+ k?3) assume a correspond-
ing shift in the momentum. The numerator N is

(Nl);wA = 5uv(]5 - kQ)A +

+6)\V(P_k2)p+5u)\(ﬁ_q)ua (24)

where ¢ = k3 — k! is the photon momentum trans-
ferred.

The expression for the second term in (22) comes
from the second diagram and can be obtained from
(23), (24) by the substitutions k* — —k!, k? — —k2,
q — —q. We denote the second numerator by Ns. In
what follows, we carry out actual calculations for the
first term in (22) and adduce the results for the second
one.

Now, we consider the fact that, in the high tem-
perature limit, the large values of the integration mo-
mentum p give the leading contribution. Therefore,
we can present the functions

D(P), D(P—k'), D(P+Fk®

in the form:

D(P) =P} + & = P2,

_ ~ 2P 1_ 1.2
D(P — k') = P2(1 - 2k~ Ky kl), (25)

. _ 2P k3 4 k3

3\ _ p2 3

D(P+k)7p(1+7]32 )

with k2 = (k})? + k3, k3 = (k3)? + k3. At high tem-
perature and P? — o, the k-dependent terms are
small. So, we can expand in these parameters. Now,
the integrand in Eq. (23) reads

N 4
Intd. = (]32)3 1+ ‘_E 1 A;l, (26)
where . ) )
A __2<PQ> A __k?3_k1
1 — pz 3 2 — PQ )
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D 1.1)2 D 1.3)2
A4:4(Pk ) :i—(Pk ) 7
P2 P2
(27)
and the vector g, = (¢4, q).
For the second diagram, we have to substitute ¢ —
— —q, other terms are even and do not change.
Further, we concentrate on the scattering of pho-
tons on the potential Q3 in the medium rest frame
and set the thermostat velocity w, = (1,0),rv = 4.
The corresponding terms in the numerators are

Ny — 6M)\(p+ q)4, Ny — 6M)\(p — q>4.

In this case, Py = py — Ag and P? = (ps — Ag)? + p
We have to calculate, in general, the series of two
types corresponding to these numerators:

(28)

n 1 —A n
s = 3 P4P2 nO’ s = q4 (29)
o (P?)

n = 3,4,5.
These functions can be calculated from the 59)

and Sél), by computing a number of derivatives with
respect to 612?. The latter series result in simple expres-
sions. First is the one calculated already for the tad-
pole diagram Eq. (10). But now, we have to change

the sign Ay — —Ap. The function Sél) is

g _ 1 U sinh(e,pf)
A 44 _

B - P2 2, cos(AgfB) + cosh(epB) (30)

Let us adduce the expressions for A; obtained after
some simplifying algebraic transformations:

2(p4 — Ao)qa

A =— . (31)
=t (1_@ i + PRURRS)| )
M—;G~iy%)%ﬁH

+<pkn2;;pk92} (33)

Finally, the resulting amplitude consists of the terms

py— A
My = 26, 3152 30(1+A1+A3+A4) (34)
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and )

_ (pa — Ao)qj
M2 — _46H>\W (35)
Thus, all the contributions of the Sé") series are

cancelled in the total. Now, we turn to the d3p
integration.

We present calculation of high temperature asymp-
totic considering the first term in Eq. (34) which is

calculated as the second derivative of S;l) over €2 and
equals to

Sy = —Aof sech(Be,/2)*

61p7 (—2B¢p +

+ Bepcosh(Be,) + sinh(Be,)). (36)

Performing integration in the spherical coordinates
and taking the leading order approximation, €,8 =

= pp, we get

I3 = / d®p S3 = —Agmf3 (0.3348). (37)

In such a way all the other integrations in Egs. (34),
(35) can be carried out.

5. Scattering of Photons on the Potentials

Relations (19), (20) give the calculated expressions
for the potential Q3 = ¢ in the plasma plate. Here,
we consider the scattering of photons on potential
(20). Let us denote the momenta of ingoing and out-
going photons as k,, and k3, respectively. The matrix
element of the process is

o1 o3
M = 2m)*5(k! + k2 — k?) % &1, eF (38)

Here, €9,,,e72 are polarization amplitudes of pho-
tons, and wi,ws are the corresponding energies,
T4, (k' k%) is the effective vertex calculated in the
previous section.

We assume that the beams are not polarized,

Za’g ezl eu = = 6}141/; Za-. eisei? = 5)\)\’- Then the

probability

P = MM* = (6 (R))? ThTh o 0k + K~ k)
3

(39)

where C' is some nonrelevant number. In this expres-
sion (accounting for the momentum conservation),

ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 8



Effective vyG-vertex in QGP

ws = [(Wh)? + (w))? + (w! + k2)?]"/2. The value of
k2 is a free parameter of the problem. It indicates the
point, at which the actual scattering happens in the
z-plane. Since this is not known, we have to sum up
the probability over k2, i.e., over [. In this expres-
sion, all the parameters and functions are known. So,
the scattering on the induced color potentials can be
calculated. Analogous process has to happen for the
classical field ¢®(k). This kind of scattering drasti-
cally differs from that for the plasma consisting of
free chaotically moving particles.

Another related process is the conversion of clas-
sical gluon fields ¢3(k), ¢%(k) in two photons com-
ing out from the QGP due to the effective vertex

Z)\(k‘l7 k3). In the rest frame of the plasma, two pho-
tons moving in opposite directions and having spe-
cific energies, which correspond to the energy levels
E; Eq. (21), have to be observed. The amplitude is
described by Eq. (38) with corresponding changes of
momenta.

6. Conclusions

We have demonstrated that, in QGP with the Ay con-
densates, the induced color charges Q3 ;,Q% ; and
the static classical gluon fields ¢3, $® have to be
present. This results in specific new phenomena. In
particular, the conversion of gluons in photons hap-
pened due to the effective I'/ | vertex could influence
the exit of direct photons from the plasma.
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B. Cxano3yb

IH/IYKOBAHI KOJILOPOBI 3APSI/IN,

E®EKTUBHA ~vyG-BEPIINHA Y KBAPK-TVIFOOHHIN
[IJTA3ML 3ACTOCYBAHHS 10O 3ITKHEHD
BAYKKIX IOHIB

Pezmowme

Mu obumciiioeMo iHIYKOBaHI KOJBOPOBI 3apsian Q?n @ Q?n 4 T2
e(EKTUBHY Y — Y-IVIFOOH BEPIIUHY, sIKi TEHEPYIOTHCS Y KBaPK-
[JIIOOHHIH 1U1a3Mi B IpUCYyTHOCTI Ay KOHJIEHCATY BHACJIIIOK I10-
pyuieHHs1 KoyibopoBoi C-mapHocTi B Takux ymoBax. st imi-
Talil 3ITKHEHHSI BaXXKHUX SI€P MU PO3IVISIAEMO MOJEJb ILjla-
3MH, 110 3HAXOJAUTHCS BCEPeJEH] BY3bKOI IIJIACTUHHI HeoOMerKe-
HUX MONEPEeYHUX POo3MipiB. J[jisi TAKMX yMOB MM OTPUMYEMO
HOTEHIaIN KIACHYHUX [UIIOOHHUX HOMIB ¢°, ¢S, mo BuHMKa-
IOTh y IIPUCYTHOCTI 1HyKOBaHHX 3apsiiB. Y SIKOCTi 3aCTOCyBa-
HHSI PO3IJISIAIOTHCA JBa IMPOLECU — pO3citoBaHHs (POTOHIB HaA
nJ1a3Mi Ta KOHBepTaIlis KJIACUYHUX [VIIOOHIB y /Ba (POTOHH, IO
BUIIPOMIHIOIOTBCH i3 IJIa3MU.
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