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SYMPLECTIC FIELD THEORY OF THE GALILEAN
COVARIANT SCALAR AND SPINOR REPRESENTATIONS

We explore the concept of the extended Galilei group, a representation for the symplectic quan-
tum mechanics in the manifold 𝒢, written in the light-cone of a five-dimensional de Sitter
space-time in the phase space. The Hilbert space is constructed endowed with a symplectic
structure. We study the unitary operators describing rotations and translations, whose gener-
ators satisfy the Lie algebra of 𝒢. This representation gives rise to the Schrödinger (Klein–
Gordon-like) equation for the wave function in the phase space such that the dependent vari-
ables have the position and linear momentum contents. The wave functions are associated
to the Wigner function through the Moyal product such that the wave functions represent a
quasiamplitude of probability. We construct the Pauli–Schrödinger (Dirac-like) equation in the
phase space in its explicitly covariant form. Finally, we show the equivalence between the five-
dimensional formalism of the phase space with the usual formalism, proposing a solution that
recovers the non-covariant form of the Pauli–Schrödinger equation in the phase space.
K e yw o r d s: Galilean covariance, star-product, phase space, symplectic structure.

1. Introduction

In 1988, Takahashi et. al. [1] began a study of the
Galilean covariance, where it was possible to de-
velop an explicitly covariant non-relativistic field the-
ory. With this formalism, the Schrödinger equation
takes a similar form as the Klein–Gordon equation in
the light-cone of a (4,1) de Sitter space [2, 3]. With
the advent of the Galilean covariance, it was possi-
ble to derive the non-relativistic version of the Dirac
theory, which is known in its usual form as the Pauli–
Schrödinger equation. The goal in the present work is
to derive a Wigner representation for such covariant
theory.

The Wigner quasiprobability distribution (also
called the Wigner function or the Wigner–Ville dis-
tribution in honor of Eugene Wigner and Jean–André
Ville) was introduced by Eugene Wigner in 1932 [4] in
order to study quantum corrections to classical sta-
tistical mechanics. The aim was to relate the wave
function that appears in the Schrödinger equation
to a probability distribution in the phase space. It
is a generating function for all the spatial autocorre-
lation functions of a given quantum mechanical func-
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tion 𝜓(𝑥). Thus, it maps the quantum density ma-
trix onto the real phase space functions and opera-
tors introduced by Hermann Weyl in 1927 [5] in a
context related to the theory of representations in
mathematics (Weyl quantization in physics). Indeed,
this is the Wigner–Weyl transformation of the den-
sity matrix; i.e., the realization of that operator in
the phase space. It was later re-derived by Jean Ville
in 1948 [6] as a quadratic representation (in sign)
of the local time frequency energy of a signal, effec-
tively a spectrogram. In 1949, José Enrique Moyal
[7], who independently derived the Wigner function,
as the functional generator of the quantum momen-
tum, as a basis for an elegant codification of all ex-
pected values and, therefore, of quantum mechanics
in the phase-space formulation (phase-space repre-
sentation). This representation has been applied to a
number of areas such as statistical mechanics, quan-
tum chemistry, quantum optics, classical optics, sig-
nal analysis, electrical engineering, seismology, time-
frequency analysis for music signals, spectrograms in
biology and speech processing, and motor design. In
order to derive a phase-space representation for the
Galilean-covariant spin 1/2 particles, we use a sym-
plectic representation for the Galilei group, which is
associated with the Wigner approach [8–11].
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This article is organized as follows. In Section 2,
the construction of the Galilean covariance is presen-
ted. The Schrödinger (Klein–Gordon-like) equation
and the Pauli–Schrödinger (Dirac-like) equation are
derived showing the equivalence between our formal-
ism and the usual non-relativistic formalism. In Sec-
tion 4, a symplectic structure is constructed in the
Galilean manifold. Using the commutation relations,
the Schrödinger equation in five dimensions in the
phase space is constructed. With a proposed solu-
tion, the Schrödinger equation in the phase space
is restored to its non-covariant form in (3 +1) di-
mensions. The explicitly covariant Pauli–Schrödinger
equation is derived in Section 5. We study a Galilean
spin 1/2 particle in a external potential, and the so-
lutions are proposed and discussed. In Section 6, the
final concluding remarks are presented.

2. Galilean Covariance

The Galilei transformations are given by

x′ = 𝑅x+ v𝑡+ a, (1)

𝑡′ = 𝑡+ 𝑏, (2)

where 𝑅 stands for the three-dimensional Euclid-
ian rotations, 𝑣 is the relative velocity defining the
Galilean boosts, a and b stand for spatial and
time translations, respectively. Consider a free par-
ticle with mass 𝑚; the mass shell relation is given
by ̂︀𝑃 2 − 2𝑚𝐸 = 0. Then we can define a 5-vector,
𝑝𝜇 = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧,𝑚,𝐸) = (𝑝𝑖,𝑚,𝐸), with 𝑖 = 1, 2, 3.

Thus, we can define a scalar product of the type

𝑝𝜇𝑝𝜈𝑔
𝜇𝜈 = 𝑝𝑖𝑝𝑖 − 𝑝5𝑝4 − 𝑝4𝑝5 = ̂︀𝑃 2 − 2𝑚𝐸 = 𝑘, (3)

where 𝑔𝜇𝜈 is the metric of the space-time to be con-
structed, e 𝑝𝜈𝑔𝜇𝜈 = 𝑝𝜇.

Let us define a set of canonical coordinates 𝑞𝜇

associated with 𝑝𝜇, by writing a five-vector in 𝑀 ,
𝑞𝜇 = (q, 𝑞4, 𝑞5), q is the canonical coordinate asso-
ciated with ̂︀𝑃 ; 𝑞4 is the canonical coordinate associ-
ated with 𝐸, and thus can be considered as the time
coordinate; 𝑞5 is the canonical coordinate associated
with 𝑚 explicitly given in terms of q and 𝑞4, 𝑞𝜇𝑞𝜇 =

𝑞𝜇𝑞𝜈𝜂𝜇𝜈 = q2 − 𝑞4𝑞5 = 𝑠2 = 0. From this 𝑞5 = q2

2𝑡 , or
infinitesimally, we obtain 𝛿𝑞5 = v 𝛿 q

2 . Therefore, the
fifth component is basically defined by the velocity.

That can be seen as a special case of scalar product
in 𝐺 denoted as

(𝑥|𝑦) = 𝑔𝜇𝜈𝑥𝜇𝑦𝜈 =

3∑︁
𝑖=1

𝑥𝑖𝑦𝑖 − 𝑥4𝑦5 − 𝑥5𝑦4, (4)

where 𝑥4 = 𝑦4 = 𝑡, 𝑥5 = 𝑥2

2𝑡 e 𝑦5 = 𝑦2

2𝑡 . Hence, the
following metric can be introduced:

(𝑔𝜇𝜈) =

⎛⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0

⎞⎟⎠. (5)

This is the metric of a Galilean manifold 𝒢. In the
sequence, this structure is explored in order to study
unitary representations.

3. Hilbert Space and Sympletic Structure

Consider an analytical manifold 𝒢, where each point
is specified by the coordinates 𝑞𝜇, with 𝜇 = 1, 2, 3, 4, 5
and the metric specified by (5). The coordinates of
every point in the cotangent-bundle 𝑇 *𝒢 will be de-
noted by (𝑞𝜇, 𝑝𝜇). The space 𝑇 *𝒢 is equipped with a
symplectic structure via the 2-form

𝜔 = 𝑑𝑞𝜇 ∧ 𝑑𝑝𝜇 (6)

called the symplectic form (sum over repeated indices
is assumed). We consider the following bidifferential
operator on 𝐶∞(𝑇 *𝒢) functions,

Λ =

←−
𝜕

𝜕𝑞𝜇

−→
𝜕

𝜕𝑝𝜇
−
←−
𝜕

𝜕𝑝𝜇

−→
𝜕

𝜕𝑞𝜇
, (7)

such that, for 𝐶∞ functions, 𝑓(𝑞, 𝑝) and 𝑔(𝑞, 𝑝), we
have

𝜔(𝑓Λ, 𝑔Λ) = 𝑓Λ𝑔 = {𝑓, 𝑔} (8)

where
{𝑓, 𝑔} = 𝜕𝑓

𝜕𝑞𝜇
𝜕𝑔

𝜕𝑝𝜇
− 𝜕𝑓

𝜕𝑝𝜇
𝜕𝑔

𝜕𝑞𝜇
. (9)

It is the Poisson bracket, and 𝑓Λ and 𝑔Λ are two
vector fields given by ℎΛ = 𝑋ℎ = −{ℎ, }.

The space 𝑇 *𝒢 endowed with this symplectic struc-
ture is called the phase space and will be denoted by
Γ. In order to associate the Hilbert space with the
phase space Γ, we will consider the set of square-
integrable complex functions, 𝜑(𝑞, 𝑝) in Γ such that∫︁
𝑑𝑝𝑑𝑞 𝜑†(𝑞, 𝑝)𝜑(𝑞, 𝑝) <∞ (10)
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is a real bilinear form. In this case, 𝜑(𝑞, 𝑝) = ⟨𝑞, 𝑝|𝜑⟩
is written with the aid of∫︁

𝑑𝑝𝑑𝑞|𝑞, 𝑝⟩⟨𝑞, 𝑝| = 1, (11)

where ⟨𝜑| is the dual vector of |𝜑⟩. This symplectic
Hilbert space is denoted by 𝐻(Γ).

4. Symplectic Quantum
Mechanics and the Galilei Group

In this section, we will study the Galilei group consid-
ering 𝐻(Γ) as the space of representation. To do so,
consider the unit transformations 𝑈 :ℋ(Γ) → ℋ(Γ)
such that ⟨𝜓1|𝜓2⟩ is invariant. Using the Λ operator,
we define a mapping 𝑒𝑖

Λ
2 = ⋆:Γ × Γ → Γ called a

Moyal (or star) product and defined by

𝑓 ⋆ 𝑔 = 𝑓(𝑞, 𝑝)exp

[︃
𝑖

2

(︃←−
𝜕

𝜕𝑞𝜇

−→
𝜕

𝜕𝑝𝜇
−
←−
𝜕

𝜕𝑝𝜇

−→
𝜕

𝜕𝑞𝜇

)︃]︃
𝑔(𝑞, 𝑝),

it should be noted that we used ~ = 1. The generators
of 𝑈 can be introduced by the following (Moyal–Weyl)
star-operators:̂︀𝐹 = 𝑓(𝑞, 𝑝)⋆ = 𝑓

(︂
𝑞𝜇 +

𝑖

2

𝜕

𝜕𝑝𝜇
, 𝑝𝜇 − 𝑖

2

𝜕

𝜕𝑞𝜇

)︂
.

To construct a representation of the Galilei algebra
in ℋ, we define the operators

̂︀𝑃𝜇 = 𝑝𝜇⋆ = 𝑝𝜇 − 𝑖

2

𝜕

𝜕𝑞𝜇
, (12a)

̂︀𝑄𝜇 = 𝑞⋆ = 𝑞𝜇 +
𝑖

2

𝜕

𝜕𝑝𝜇
. (12b)

and̂︁𝑀𝜈𝜎 = 𝑀𝜈𝜎⋆ = ̂︀𝑄𝜈
̂︀𝑃𝜎 − ̂︀𝑄𝜎

̂︀𝑃𝜈 , (12c)

where ̂︁𝑀𝜈𝜎 and ̂︀𝑃𝜇 are the generators of homoge-
neous and inhomogeneous transformations, respec-
tively. From this set of unitary operators, we obtain,
after some simple calculations, the following set of
commutations relations:[︁ ̂︀𝑃𝜇,̂︁𝑀𝜌𝜎

]︁
= −𝑖(𝑔𝜇𝜌 ̂︀𝑃𝜎 − 𝑔𝜇𝜎 ̂︀𝑃 𝜌),[︁ ̂︀𝑃𝜇, ̂︀𝑃𝜎

]︁
= 0,

and[︁̂︁𝑀𝜇𝜈 ,̂︁𝑀𝜌𝜎

]︁
=

= −𝑖(𝑔𝜈𝜌̂︁𝑀𝜇𝜎 − 𝑔𝜇𝜌̂︁𝑀𝜈𝜎 + 𝑔𝜇𝜎̂︁𝑀𝜈𝜌 − 𝑔𝜇𝜎̂︁𝑀𝜈𝜌).

Consider a vector 𝑞𝜇 ∈ 𝐺 that obeys the set of linear
transformations of the type

𝑞𝜇 = 𝐺𝜇
𝜈𝑞

𝜈 + 𝑎𝜇. (13)

A particular case of interest in these transformations
is given by

𝑞𝑖 = 𝑅𝑖
𝑗𝑞

𝑗 + 𝑣𝑖𝑞4 + 𝑎𝑖 (14)

𝑞4 = 𝑞4 + 𝑎4 (15)

𝑞5 = 𝑞5 − (𝑅𝑖
𝑗𝑞

𝑗)𝑣𝑖 +
1

2
v2𝑞4. (16)

In the matrix form, the homogeneous transformations
are written as

𝐺𝜇
𝜈 =

⎛⎜⎜⎜⎝
𝑅1

1 𝑅1
2 𝑅1

3 𝑣𝑖 0
𝑅2

1 𝑅2
2 𝑅2

3 𝑣2 0
𝑅3

1 𝑅3
2 𝑅3

3 𝑣3 0
0 0 0 1 0

𝑣𝑖𝑅
𝑖
𝑗 𝑣𝑖𝑅

𝑖
2 𝑣𝑖𝑅

𝑖
3

v2

2 1

⎞⎟⎟⎟⎠. (17)

We can write the generators as

̂︀𝐽𝑖 = 1

2
𝜖𝑖𝑗𝑘̂︁𝑀𝑗𝑘, ̂︀𝐶𝑖 = ̂︁𝑀4𝑖,̂︀𝐾𝑖 = ̂︁𝑀5𝑖, ̂︀𝐷 = ̂︁𝑀54.

(18)

Hence, the non-vanishing commutation relations can
be rewritten as[︁ ̂︀𝐽𝑖, ̂︀𝐽𝑗]︁ = 𝑖𝜖𝑖𝑗𝑘 ̂︀𝐽𝑘, [︁ ̂︀𝐽𝑖, ̂︀𝐾𝑗

]︁
= 𝑖𝜖𝑖𝑗𝑘 ̂︀𝐾𝑘,[︁ ̂︀𝐽𝑖, ̂︀𝐶𝑗

]︁
= 𝑖𝜖𝑖𝑗𝑘 ̂︀𝐶𝑘,

[︁ ̂︀𝐾𝑖, ̂︀𝐶𝑗

]︁
= 𝑖𝛿𝑖𝑗 ̂︀𝐷 + 𝑖𝜖𝑖𝑗𝑘𝐽𝑘,[︁ ̂︀𝐷, ̂︀𝐾𝑖

]︁
= 𝑖 ̂︀𝐾𝑖,

[︁ ̂︀𝐶𝑖, ̂︀𝐷]︁ = 𝑖 ̂︀𝐶𝑖,[︁ ̂︀𝑃4, ̂︀𝐷]︁ = 𝑖 ̂︀𝑃4,
[︁ ̂︀𝐽𝑖, ̂︀𝑃𝑗

]︁
= 𝑖𝜖𝑖𝑗𝑘 ̂︀𝑃𝑘,[︁ ̂︀𝑃𝑖, ̂︀𝐾𝑗

]︁
= 𝑖𝛿𝑖𝑗 ̂︀𝑃5,

[︁ ̂︀𝑃𝑖, ̂︀𝐶𝑗

]︁
= 𝑖𝛿𝑖𝑗 ̂︀𝑃4,[︁ ̂︀𝑃4, ̂︀𝐾𝑖

]︁
= 𝑖 ̂︀𝑃𝑖,

[︁ ̂︀𝑃5, ̂︀𝐶𝑖

]︁
= 𝑖 ̂︀𝑃𝑖.[︁ ̂︀𝐷, ̂︀𝑃5

]︁
= 𝑖 ̂︀𝑃5,

(19)

These relations have the Lie algebra of the Galilei
group as a subalgebra in the case of ℛ3 × ℛ, con-
sidering 𝐽𝑖 the generators of rotations 𝐾𝑖 of the pure
Galilei transformations, 𝑃𝜇 the spatial and temporal
translations. In fact, we can observe that Eqs. (14)
and (15) are the Galilei transformations given by
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Eq. (1) and (2) with 𝑥4 = 𝑡. Equation (16) is the com-
patibility condition which represents the embedding

ℐ : A→ 𝐴 =

(︂
A, 𝐴4,

A2

2𝐴4

)︂
; A ∈ ℰ3, 𝐴 ∈ 𝒢.

The commutation of 𝐾𝑖 and 𝑃𝑖 is naturally non-
zero in this context, so 𝑃5 will be related to the
mass, which is the extension parameter of the Galilei
group or an invariant of the extended Galilei–Lie al-
gebra. So, the invariants of this algebra in the light
cone of the de Sitter space-time are

𝐼1 = ̂︀𝑃𝜇
̂︀𝑃𝜇 (20)

𝐼2 = ̂︀𝑃5 = −𝑚𝐼 (21)

𝐼3 = ̂︁𝑊5𝜇
̂︁𝑊𝜇

5 , (22)

where 𝐼 is the identity operator, 𝑚 is the mass,
𝑊𝜇𝜈 = 1

2𝜖𝜇𝛼𝛽𝜌𝜈𝑃
𝛼𝑀𝛽𝜌 is the 5-dimensional Pauli–

Lubanski tensor, and 𝜖𝜇𝜈𝛼𝛽𝜌 is the totally antisym-
metric tensor in five dimensions. In the scalar repre-
santation, we can defined 𝐼3 = 0. Using the Casimir
invariants 𝐼1 and 𝐼2 and applying them to Ψ, we havê︀𝑃𝜇
̂︀𝑃𝜇Ψ = 𝑘2Ψ,̂︀𝑃5Ψ = −𝑚Ψ.

We obtain(︂
𝑝2 − 𝑖p∇− 1

4
∇2 − 𝑘2

)︂
Ψ =

= 2

(︂
𝑝4 −

𝑖

2
𝜕𝑡

)︂(︂
𝑝5 −

𝑖

2
𝜕5

)︂
Ψ,

and a solution of this equation is

Ψ = 𝑒−𝑖2𝑝5𝑞
5

𝜌(𝑞5)𝑒−2𝑖𝑝4𝑡𝜒(𝑡)Φ(q,p). (23)

Thus,(︂
𝑝2Φ− 𝑖p∇Φ− 1

4
∇2Φ− 𝑘2

)︂
1

Φ
=

=
1

2
(𝑖𝜕𝑡𝜒) (𝑖𝜕5𝜌)

1

𝜒𝜌
,

which yields

𝑖𝜕𝑡𝜒 = 𝛼𝜒, and 𝑖𝜕5𝜌 = 𝛽𝜌.

Thus, our solution for 𝜒 and 𝜌 is

𝜒 = 𝑒−𝑖𝛼𝑡, 𝜌 = 𝑒−𝑖𝛽𝑞5 . (24)

Using the fact that

̂︀𝑃4Ψ =

(︂
𝑝4 −

𝑖

2
𝜕𝑡

)︂
𝑒−𝑖(2𝑝4+𝛼)𝑡 = −𝐸 𝑒−𝑖(2𝑝4+𝛼)𝑡

and

̂︀𝑃5Ψ =

(︂
𝑝5 −

𝑖

2
𝜕5

)︂
𝑒−𝑖(2𝑝5+𝛽)𝑞5 = −𝑚𝑒−𝑖(2𝑝5+𝛽)𝑞5 ,

we can conclude that

𝛼 = 2𝐸, 𝛽 = 2𝑚. (25)

So, we have

1

2𝑚

(︂
𝑝2 − 𝑖𝑝∇− 1

4
∇2

)︂
Φ =

(︂
𝐸 +

𝑘2

2𝑚

)︂
Φ,

which is the usual form of the Schrödinger equation
in the phase space for a free particle with mass 𝑚 and
with an additional kinetic energy of 𝑘2

2𝑚 , that we can
always set as the zero of energy.

This equation and its complex conjugate can also
be obtained by using the Lagrangian density in the
phase space (we use 𝑑𝜇 = 𝑑/𝑑𝑞𝜇)

ℒ = 𝜕𝜇Ψ(𝑞, 𝑝)𝜕Ψ*(𝑞, 𝑝) +
𝑖

2
𝑝𝜇[Ψ(𝑞, 𝑝)𝜕𝜇Ψ*(𝑞, 𝑝)−

−Ψ*(𝑞, 𝑝)𝜕𝜇Ψ(𝑞, 𝑝)] +

[︂
𝑝𝜇𝑝𝜇
4
− 𝑘2

]︂
Ψ.

The association of this representation with the
Wigner formalism is given by

𝑓𝑤(𝑞, 𝑝) = Ψ(𝑞, 𝑝) ⋆Ψ†(𝑞, 𝑝),

where 𝑓𝑤(𝑞, 𝑝) is the Wigner function. To prove this,
we recall that Eq. (23) can be written as

̂︀𝑃𝜇
̂︀𝑃𝜇Ψ = 𝑝2 ⋆Ψ(𝑞, 𝑝).

Multiplying the right-hand side of the above equation
by Ψ†, we obtain

(𝑝2 ⋆Ψ) ⋆Ψ† = 𝑘2Ψ ⋆Ψ†. (26)

But Ψ† ⋆ 𝑝2 = 𝑘2Ψ†. Thus,

Ψ ⋆ (Ψ† ⋆ 𝑝2) = 𝑘2Ψ ⋆Ψ†. (27)

Subtracting (27) from (26), we have

𝑝2 ⋆ 𝑓𝑤(𝑞, 𝑝)− 𝑝2 ⋆ 𝑓𝑤(𝑞, 𝑝) = 0, (28)
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which is the Moyal brackets {𝑝2, 𝑓𝑤}𝑀 . In view of
Eq. (12a), Eq. (28) becomes

𝑝𝜇𝜕𝑞𝜇𝑓𝑤(𝑞, 𝑝) = 0, (29)

where the Wigner function in the Galilean manifold
is a solution of this equation.

5. Spin 1/2 Symplectic Representaion

In order to study the representations of spin-1/2 par-
ticles, we introduce 𝛾𝜇 ̂︀𝑃𝜇, where ̂︀𝑃𝜇 = 𝑝𝜇 − 𝑖

2𝜕𝜇 in
such a way that, acting on the 5-spinor in the phase
space Ψ(𝑞, 𝑝), we have

𝛾𝜇
(︂
𝑝𝜇 −

𝑖

2
𝜕𝜇

)︂
Ψ(𝑝, 𝑞) = 𝑘Ψ(𝑝, 𝑞), (30)

which is the Galilean-covariant Pauli–Schrödinger
equation. Consequently, the mass shell condition is
obtained by the usual steps:

(𝛾𝜇 ̂︀𝑃𝜇)(𝛾
𝜈 ̂︀𝑃𝜈)Ψ(𝑞, 𝑝) = 𝑘2Ψ(𝑞, 𝑝). (31)

Therefore,

𝛾𝜇𝛾𝜈( ̂︀𝑃𝜇
̂︀𝑃𝜈) = 𝑘2 = ̂︀𝑃𝜇 ̂︀𝑃𝜈 . (32)

Since ̂︀𝑃𝜇
̂︀𝑃𝜈 = ̂︀𝑃𝜈

̂︀𝑃𝜇, we have

1

2
(𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇) ̂︀𝑃𝜇

̂︀𝑃𝜈 = ̂︀𝑃𝜇 ̂︀𝑃𝜈 , (33)

so

{𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈 . (34)

Equation (30) can be derived from the Lagrangian
density for spin-1/2 particles in the phase space,
which is given by

ℒ = − 𝑖
4

(︁
(𝜕𝜇Ψ̄)𝛾𝜇Ψ− Ψ̄(𝛾𝜇𝜕𝜇Ψ)

)︁
− (𝑘 − 𝛾𝜇𝑝𝜇)ΨΨ̄,

where Ψ̄ = 𝜁Ψ†, with𝜁 = − 𝑖√
2
{𝛾4 + 𝛾5} =

(︁
0 −𝑖
𝑖 0

)︁
.

In the Galilean-covariant Pauli–Schrödinger equation
case, the association to the Wigner function is given
by 𝑓𝑤 = Ψ ⋆ Ψ̄, with each component satisfying
Eq. (29).

Let us now examine the gauge symmetries in the
phase space demanding the invariance of the La-
grangian under a local gauge transformation given by
𝑒Λ(𝑞,𝑝)Ψ. This leads to the minimum coupling,

̂︀𝑃𝜇Ψ→ ( ̂︀𝑃𝜇 − 𝑒𝐴𝜇)Ψ =

(︂
𝑝𝜇 −

𝑖

2
𝜕𝜇 − 𝑒𝐴𝜇

)︂
Ψ.

This describes an electron in an external field with
the Pauli–Schrödinger equation given by[︂
𝛾𝜇
(︂
𝑝𝜇 −

𝑖

2
𝜕𝜇 − 𝑒𝐴𝜇

)︂
− 𝑘
]︂
Ψ = 0. (35)

In order to illustrate such result, let us consider a elec-
tron in an external field given by 𝐴𝜇(A, 𝐴4, 𝐴5), with
𝐴4 = −𝜑 and 𝐴5 = 0. Considering the representation
of the 𝛾𝜇 matrices

𝛾𝑖 =

(︂
𝜎𝑖 0
0 −𝜎𝑖

)︂
, 𝛾4 =

(︂
0 0√
2 0

)︂
, 𝛾5 =

(︂
0 −
√
2

0 0

)︂
.

where 𝜎𝑖 are the Pauli matrices, and
√
2 is the iden-

tity 2×2 matrix multiplied by
√
2. We can rewrite the

object Ψ, as Ψ =
(︁
𝜙
𝜒

)︁
, where 𝜙 and 𝜒 are 2-spinors

dependent on 𝑥𝜇;𝜇 = 1, ..., 5. Thus, in the represen-
tation where 𝑘 = 0, the Eq. (35) becomes

𝜎

(︂
p− 𝑖

2
𝜕𝑞 − 𝑒A

)︂
𝜙−
√
2

(︂
𝑝5 −

𝑖

2
𝜕5

)︂
𝜒 = 0,

√
2

(︂
𝑝4 −

𝑖

2
𝜕𝑡 − 𝑒𝜑

)︂
𝜙− 𝜎

(︂
p− 𝑖

2
𝜕𝑞 − 𝑒A

)︂
𝜒 = 0.

(36)

Solving the coupled equations, we get an equation for
𝜙 and 𝜒. Replacing the eigenvalues of ̂︀𝑃4 and ̂︀𝑃5, we
have[︃

1

2𝑚

(︂
𝜎

(︂
p− 𝑖

2
𝜕𝑞 − 𝑒A

)︂)︂2
+ 𝑒𝜑

]︃
𝜙 = 𝐸𝜙,

[︃
1

2𝑚

(︂
𝜎

(︂
p− 𝑖

2
𝜕𝑞 − 𝑒A

)︂)︂2
+ 𝑒𝜑

]︃
𝜒 = 𝐸𝜒.

These are the non-covariant form of the Pauli–
Schrödinger equation in the phase space independent
of the time with

𝑓𝑤 = Ψ ⋆ Ψ̄ = 𝑖𝜙 ⋆ 𝜒† − 𝑖𝜒 ⋆ 𝜙†.

This leads to

𝐸𝑛 =
𝑒𝐵

𝑚

(︃
𝑛+

1

2
− 𝑠

2

)︃
− 𝑘2

2𝑚
,

where 𝑠 = ±1. It should be noted that the above
expression represents the Landau levels which show
the spin-splitting feature.

The above Figures 1 and 2 show the Wigner func-
tions for the ground and first excited states, respec-
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Fig. 1. Wigner Function (cut in 𝑞1,𝑝1),Ground State

Fig. 2. Wigner Function (cut in 𝑞1,𝑝1), First Excited State

tively, in the cut (𝑞1, 𝑝1). These are the same solu-
tions known in the literature using the usual Wigner
method.

6. Concluding Remarks

We study the spin-1/2 particle equation, the Pauli–
Schrödinger equation, in the context of the Galilean
covariance, considering a symplectic Hilbert space.
We begin with a presentation on the Galilean mani-
fold which is used to review the construction of the
Galilean covariance and the representations of quan-
tum mechanics in this formalism, namely, the spin-
1/2 and scalar representations and the Schrödinger
(Klein–Gordon-like) and Pauli–Schrödinger (Dirac-
like) equations, respectively.

The quantum mechanics formalism in the phase
space is derived in this context of the Galilean cova-
riance giving rise to the representations of spin-0
and spin-1/2 equations. For the spin-1/2 equation
(the Dirac-like equation), we study the electron in
an external field. Solving it, we were able to re-
cover the non-covariant Pauli–Schrödinger equation
in phase space and to analyze, in this context, the
Landau levels.

This work was supported by CAPES and CNPq of
Brazil.
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СИМПЛЕКТИЧНА ТЕОРIЯ ПОЛЯ
ГАЛIЛЕЄВО-КОВАРIАНТНИХ СКАЛЯРНОГО
I СПIНОРНОГО ПРЕДСТАВЛЕНЬ

Р е з ю м е

Ми дослiджуємо концепцiю розширеної групи Галiлея,
деякого представлення для симплектичної квантової ме-
ханiки на многовидi 𝒢, заданого на свiтловому конусi
п’ятивимiрного простору-часу де Сiттера у фазовому про-
сторi. Побудувано Гiльбертiв простiр, надiлений симпле-
ктичною структурою. Ми вивчаємо унiтарнi оператори, що
описують повороти i трансляцiї, генератори яких утворю-
ють алгебру Лi в 𝒢. Це представлення породжує рiвняння
Шредiнгера (типу Кляйна–Гордона) для хвильової функцiї
у фазовому просторi, так що змiннi мають змiст положення
i лiнiйного iмпульсу. Хвильовi функцiї пов’язанi з функцiєю
Вiгнера через добуток Мойала, так що хвильовi функцiї ре-
презентують квазiамплiтуду ймовiрностi. Ми будуємо рiв-
няння Паулi–Шредiнгера (типу рiвняння Дiрака) у фазо-
вому просторi в явно коварiантнiй формi. На завершення
ми показуємо еквiвалентнiсть мiж п’ятивимiрним формалi-
змом фазового простору i звичайним формалiзмом, пропо-
нуючи розв’язок, що вiдновлює нековарiантну форму рiв-
няння Паулi–Шредiнгера у фазовому просторi.
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