Symplectic Field Theory of the Galilean Covariant Scalar

https://doi.org/10.15407 /ujpe64.8.719

G.X.A. PETRONILO, S.C. ULHOA, A.E. SANTANA

Centro Internacional de Fisica, Universidade de Brasilia
(70910-900, Brasilia, DF, Brazl; e-mail: gustavopetronilo@gmail.com)

SYMPLECTIC FIELD THEORY OF THE GALILEAN
COVARIANT SCALAR AND SPINOR REPRESENTATIONS

We explore the concept of the extended Galilei group, a representation for the symplectic quan-
tum mechanics in the manifold G, written in the light-cone of a five-dimensional de Sitter
space-time in the phase space. The Hilbert space is constructed endowed with a symplectic
structure. We study the unitary operators describing rotations and translations, whose gener-
ators satisfy the Lie algebra of G. This representation gives rise to the Schrédinger (Klein—
Gordon-like) equation for the wave function in the phase space such that the dependent vari-
ables have the position and linear momentum contents. The wave functions are associated
to the Wigner function through the Moyal product such that the wave functions represent a
quasiamplitude of probability. We construct the Pauli-Schridinger (Dirac-like) equation in the
phase space in its explicitly covariant form. Finally, we show the equivalence between the five-
dimensional formalism of the phase space with the usual formalism, proposing a solution that

recovers the non-covariant form of the Pauli-Schridinger equation in the phase space.
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1. Introduction

In 1988, Takahashi et. al. [1] began a study of the
Galilean covariance, where it was possible to de-
velop an explicitly covariant non-relativistic field the-
ory. With this formalism, the Schrédinger equation
takes a similar form as the Klein—Gordon equation in
the light-cone of a (4,1) de Sitter space [2, 3]. With
the advent of the Galilean covariance, it was possi-
ble to derive the non-relativistic version of the Dirac
theory, which is known in its usual form as the Pauli—
Schrédinger equation. The goal in the present work is
to derive a Wigner representation for such covariant
theory.

The Wigner quasiprobability distribution (also
called the Wigner function or the Wigner—Ville dis-
tribution in honor of Eugene Wigner and Jean—André
Ville) was introduced by Eugene Wigner in 1932 [4] in
order to study quantum corrections to classical sta-
tistical mechanics. The aim was to relate the wave
function that appears in the Schrédinger equation
to a probability distribution in the phase space. It
is a generating function for all the spatial autocorre-
lation functions of a given quantum mechanical func-
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tion 9 (z). Thus, it maps the quantum density ma-
trix onto the real phase space functions and opera-
tors introduced by Hermann Weyl in 1927 [5] in a
context related to the theory of representations in
mathematics (Weyl quantization in physics). Indeed,
this is the Wigner—Weyl transformation of the den-
sity matrix; i.e., the realization of that operator in
the phase space. It was later re-derived by Jean Ville
in 1948 [6] as a quadratic representation (in sign)
of the local time frequency energy of a signal, effec-
tively a spectrogram. In 1949, José Enrique Moyal
[7], who independently derived the Wigner function,
as the functional generator of the quantum momen-
tum, as a basis for an elegant codification of all ex-
pected values and, therefore, of quantum mechanics
in the phase-space formulation (phase-space repre-
sentation). This representation has been applied to a
number of areas such as statistical mechanics, quan-
tum chemistry, quantum optics, classical optics, sig-
nal analysis, electrical engineering, seismology, time-
frequency analysis for music signals, spectrograms in
biology and speech processing, and motor design. In
order to derive a phase-space representation for the
Galilean-covariant spin 1/2 particles, we use a sym-
plectic representation for the Galilei group, which is
associated with the Wigner approach [8-11].

719



G.X.A. Petronilo, S.C. Ulhoa, A.E. Santana

This article is organized as follows. In Section 2,
the construction of the Galilean covariance is presen-
ted. The Schrodinger (Klein—Gordon-like) equation
and the Pauli-Schrodinger (Dirac-like) equation are
derived showing the equivalence between our formal-
ism and the usual non-relativistic formalism. In Sec-
tion 4, a symplectic structure is constructed in the
Galilean manifold. Using the commutation relations,
the Schrodinger equation in five dimensions in the
phase space is constructed. With a proposed solu-
tion, the Schrédinger equation in the phase space
is restored to its non-covariant form in (3+1) di-
mensions. The explicitly covariant Pauli-Schrédinger
equation is derived in Section 5. We study a Galilean
spin 1/2 particle in a external potential, and the so-
lutions are proposed and discussed. In Section 6, the
final concluding remarks are presented.

2. Galilean Covariance

The Galilei transformations are given by
x' = Rx+ vt +a, (1)
t'=t+b, (2)

where R stands for the three-dimensional Euclid-
ian rotations, v is the relative velocity defining the
Galilean boosts, a and b stand for spatial and
time translations, respectively. Consider a free par-
ticle with mass m; the mass shell relation is given
by P? — 2mFE = 0. Then we can define a 5-vector,
P = (pz, Py, Pz, m, E) = (p',m, E), with i = 1,2, 3.

Thus, we can define a scalar product of the type

Pupug"’ = pipi — pspa — paps = P> —2mE =k, (3)

where g*” is the metric of the space-time to be con-
structed, e p,g"" = p*.

Let us define a set of canonical coordinates ¢*
associated with p*, by writing a five-vector in M,
¢* = (q,q*,¢°), q is the canonical coordinate asso-
ciated with 13; ¢* is the canonical coordinate associ-
ated with F, and thus can be considered as the time
coordinate; ¢° is the canonical coordinate associated
with m explicitly given in terms of q and ¢*, q"q, =
"q"nu = 4 — ¢*¢® = s* = 0. From this ¢° = g—:, or
infinitesimally, we obtain d¢°> = v 6 3. Therefore, the

fifth component is basically defined by the velocity.
720

That can be seen as a special case of scalar product
in G denoted as

(@ly) = 9" wuyy = Z%yz — X4Ys — T5Y4, (4)
i=1
where 2% = y* = ¢, 2° = % ey’ = % Hence, the
following metric can be introduced:
100 0 O
010 0 O
,)=1001 0 0 | 5
() =0010 0o )
000 -1 0

This is the metric of a Galilean manifold G. In the
sequence, this structure is explored in order to study
unitary representations.

3. Hilbert Space and Sympletic Structure

Consider an analytical manifold G, where each point
is specified by the coordinates g, with u = 1,2,3,4,5
and the metric specified by (5). The coordinates of
every point in the cotangent-bundle T*G will be de-
noted by (qu,pu). The space TG is equipped with a
symplectic structure via the 2-form

w = dg" Ndp, (6)

called the symplectic form (sum over repeated indices
is assumed). We consider the following bidifferential
operator on C*°(T*G) functions,

9 3

=9y on, v g,

9 7

(7)

such that, for C°° functions, f(¢,p) and g(q,p), we
have

w(fA,gA) = fAg={f. g} (8)
where

_Of 99  Of g
{f’g}_aiq“@_aipl‘@' 9)

It is the Poisson bracket, and fA and gA are two
vector fields given by hA = X;, = —{h, }.

The space T*G endowed with this symplectic struc-
ture is called the phase space and will be denoted by
I'. In order to associate the Hilbert space with the
phase space I', we will consider the set of square-
integrable complex functions, ¢(g,p) in I" such that

/dpdq o' (q,p)é(q,p) < o0 (10)
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is a real bilinear form. In this case, ¢(q,p) = (q, p|®)
is written with the aid of
/ dpdqlq, p)(q,p| =1, (11)

where (¢| is the dual vector of |¢). This symplectic
Hilbert space is denoted by H(T").

4. Symplectic Quantum
Mechanics and the Galilei Group

In this section, we will study the Galilei group consid-
ering H(T") as the space of representation. To do so,
consider the unit transformations U:H(I') — H(T)
such that (11|12) is invariant. Using the A operator,
we define a mapping e'? = xI x I' — T called a
Moyal (or star) product and defined by

— = =
i(9 9 9 9
fxg= f(CLP)eXP [2 (311“31% - W%)] 9(q,p),

it should be noted that we used A = 1. The generators
of U can be introduced by the following (Moyal-Weyl)
star-operators:
~ i 0 i 0
F= * = P —— P — ——).

fa.p) f(q +2apu,p >
To construct a representation of the Galilei algebra
in H, we define the operators

Pt o— pHy — pht i 12
P = S (12a)

N — — gt 9 12b

Q q* + 2 (9pu. ( )

and

J/\me = vok = Q\uﬁa - Q\cfﬁw (12C)

where J\/J\,,U and ﬁ# are the generators of homoge-
neous and inhomogeneous transformations, respec-
tively. From this set of unitary operators, we obtain,
after some simple calculations, the following set of
commutations relations:

— ~

_P/M MPU} = —i(gupP? = guoP"),

M

-
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M.,

— — —

= _i(gl/pMuo - gupMua + g,uaMup - guaMyp)-

Consider a vector ¢ € G that obeys the set of linear
transformations of the type
" =G" q" + da". (13)

A particular case of interest in these transformations
is given by

7' =Rj¢ +v'q" +a’ (14)
7= +at (15)
} y 1

P =q¢ - (Rq” Jvi + §v2q4. (16)

In the matrix form, the homogeneous transformations
are written as

RY RY RYy ' 0
R? R22 R% 02 0
G, = | BL EL RS w0l (a7)
wRL wRYy vRy Y1
We can write the generators as
~ 1  —~ —
Ji = ifzjijka Ci = My, (18)
K;=Ms;, D= M.

Hence, the non-vanishing commutation relations can
be rewritten as

_:7 AJ} = iﬁijkjk, Az, Aj:| = ieijkf?ky

7, Aj} = ieijiCh, :Ai,@} = i6;;D + ieiju i,
bR =ik,  [0.D] =i,

ﬂ,f)} —iPy, |7, Aj] = ieijnPe, (19)
PR =i [Pa)] = P

[134,[@} =P, {135,@} =P

—13,135} =ibDs,

These relations have the Lie algebra of the Galilei
group as a subalgebra in the case of R? x R, con-
sidering J; the generators of rotations K; of the pure
Galilei transformations, P, the spatial and temporal
translations. In fact, we can observe that Egs. (14)
and (15) are the Galilei transformations given by
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Eq. (1) and (2) with z* = ¢. Equation (16) is the com-
patibility condition which represents the embedding

2
T:-A—> A= (A,A4,A>; Aec&,Aeg.
24,

The commutation of K; and P; is naturally non-
zero in this context, so Ps will be related to the
mass, which is the extension parameter of the Galilei
group or an invariant of the extended Galilei—Lie al-
gebra. So, the invariants of this algebra in the light
cone of the de Sitter space-time are

I, = P,P* (20)
I, = Py=-mI (21)
Is = Wy, W, (22)

where I is the identity operator, m is the mass,
W = %EWBPVPO‘MB” is the 5-dimensional Pauli—
Lubanski tensor, and €,,qp, is the totally antisym-
metric tensor in five dimensions. In the scalar repre-
santation, we can defined Is = 0. Using the Casimir
invariants I; and I and applying them to ¥, we have

P,P'¥ = kU,
PU = —mV.

We obtain

1
(pQ—ipV—4V2—kQ)\Il:

) 1
=2 <p4 - 2615) <P5 - 285) v,

and a solution of this equation is

W = 7200 (%) e 2Pty (£)®(q, p). (23)
Thus,
2 . oo 2) 1

P @—sz@—ZV <I>—k:) 3=
= % (10:x) (i05p) é,
which yields
10x = ax, and i0s5p = Pp.
Thus, our solution for x and p is
Y =e ot p=emihT (24)
722

Using the fact that

PU = <p4 - iat) e iCpatalt — _pe—i(Zpata)t
2

and

ﬁ5\:[! = <p5 _ ;35> e*i(2p5+ﬁ)q5 = _—m e*i(2p5+ﬂ)q5’

we can conclude that

a=2E, [=2m. (25)

So, we have

1 9 1, k2
— — — = d=(F+—|
2m (p PV 4V ) ( T om)®

which is the usual form of the Schrédinger equation

in the phase space for a free particle with mass m and
k2

2., that we can

with an additional kinetic energy of
always set as the zero of energy.

This equation and its complex conjugate can also
be obtained by using the Lagrangian density in the
phase space (we use d" = d/dg,,)

* Z. *
L= 0"V (q,p)0¥*(q,p) + 529“[‘1’(61,1?)5“\1’ (¢,p) —

AL TN R e 2

The association of this representation with the
Wigner formalism is given by

fula,p) = ¥(q,p)* ¥'(q,p),

where fy,(q,p) is the Wigner function. To prove this,
we recall that Eq. (23) can be written as

ﬁuﬁ”\ll =p®* U(q,p).

Multiplying the right-hand side of the above equation
by ¥, we obtain

(p? *x U) % U = k2T « U, (26)
But UT xp? = k20T, Thus,

Uk (U % p?) = k20 » 0T, (27)
Subtracting (27) from (26), we have

p** fu(g:p) = p* % fula,p) =0, (28)
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which is the Moyal brackets {p?, f,,}ar. In view of
Eq. (12a), Eq. (28) becomes

Pu0q, fu(q,p) =0, (29)

where the Wigner function in the Galilean manifold
is a solution of this equation.

5. Spin 1/2 Symplectic Representaion

In order to study the representations of spin-1,/2 par-
ticles, we introduce v*P,, where P, = p, — % ), in
such a way that, acting on the 5-spinor in the phase
space ¥(q, p), we have
)

7 (1 = 59) W) = K¥(p.0) (30)
which is the Galilean-covariant Pauli-Schrédinger
equation. Consequently, the mass shell condition is
obtained by the usual steps:

(+*P.) (7" B,)¥(q,p) = k*¥(q, p). (31)
Therefore,

¥y (P P,) = k* = P'P,. (32)
Since Jgﬂﬁu = ]3,,?#, we have

5 (M + 7“7“)]3“]3,, = prp,, (33)
SO

{* 7"} = 29" (34)

Equation (30) can be derived from the Lagrangian
density for spin-1/2 particles in the phase space,
which is given by

L= _% ((auxiz)w\p - \P(v“au\lf)) — (k=9"p,) 27,

where ¥ = (U1, with¢ = — {7 +7} = (§ )
In the Galilean-covariant Pauli-Schrodinger equation
case, the association to the Wigner function is given
by fo = ¥ x U, with each component satisfying
Eq. (29).

Let us now examine the gauge symmetries in the
phase space demanding the invariance of the La-
grangian under a local gauge transformation given by
eMaP) W, This leads to the minimum coupling,

~

P,U — (B, — eA,)V = (p# - %ap - eA#> .
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This describes an electron in an external field with
the Pauli-Schrédinger equation given by

{7“ (pu — %8M — eAM) — k;} U = 0.
In order to illustrate such result, let us consider a elec-
tron in an external field given by A, (A, A4, As), with

Ay = —¢ and A; = 0. Considering the representation
of the v* matrices

i (ot 0 4 (00 5_ ([0 —/2
7_(0 _O.i)vfy_<\/§o>a7_0 0 .
where ¢! are the Pauli matrices, and V2 is the iden-
tity 2x 2 matrix multiplied by v/2. We can rewrite the

object ¥, as ¥ = (@)7 where ¢ and x are 2-spinors

(35)

dependent on z#;u = 1,...,5. Thus, in the represen-
tation where k = 0, the Eq. (35) becomes

o <p—;[“)q—eA><p—\@<p5—;85>X:0,
. . (36)
\/§<p4—;8t—e¢)<p—a' (p—;ﬁq—eA>X=O.

Solving the coupled equations, we get an equation for
v and x. Replacing the eigenvalues of P, and Ps, we
have

1 ia A \
zm(" (P‘zq‘e)>+e¢’
1 ia A \

zm(" <P2qe)>“¢

These are the non-covariant form of the Pauli-
Schrédinger equation in the phase space independent
of the time with

¢ = FEop,

x = Ex.

fo=UxTU =ipxx —iy*ep.
This leads to

eB 1 s k2
B = <n+2 2) om’
where s = +1. It should be noted that the above
expression represents the Landau levels which show
the spin-splitting feature.
The above Figures 1 and 2 show the Wigner func-
tions for the ground and first excited states, respec-
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0.4

—0.2

—0.4

Fig. 1. Wigner Function (cut in ¢1,p1),Ground State

0.4

—0.2

—0.4

Fig. 2. Wigner Function (cut in ¢1,p1), First Excited State

tively, in the cut (q1,p1). These are the same solu-
tions known in the literature using the usual Wigner
method.

6. Concluding Remarks

We study the spin-1/2 particle equation, the Pauli—
Schrédinger equation, in the context of the Galilean
covariance, considering a symplectic Hilbert space.
We begin with a presentation on the Galilean mani-
fold which is used to review the construction of the
Galilean covariance and the representations of quan-
tum mechanics in this formalism, namely, the spin-
1/2 and scalar representations and the Schrodinger
(Klein-Gordon-like) and Pauli-Schrédinger (Dirac-
like) equations, respectively.

The quantum mechanics formalism in the phase
space is derived in this context of the Galilean cova-
riance giving rise to the representations of spin-0
and spin-1/2 equations. For the spin-1/2 equation
(the Dirac-like equation), we study the electron in
an external field. Solving it, we were able to re-
cover the non-covariant Pauli-Schrédinger equation
in phase space and to analyze, in this context, the
Landau levels.

This work was supported by CAPES and CNPq of
Brazil.
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CUMITJIEKTITYHA TEOPIA ITOJIA
TF'AJIINIEEBO-KOBAPIAHTHUX CKAJIAPHOI'O
I CIIIHOPHOT'O INPEJCTABJIEHDb

Peszmowme

Mu pochi/izKyeMo KOHIIENIifo po3mupenol rpynu lasises,
IEsIKOTO MPEACTABJICHHS [JIsi CHMIIJIEKTUIHOI KBaHTOBOI Me-
XaHIKM Ha MHOroBHAl §, 3aJaHOTO Ha CBITJIOBOMY KOHYCI
m’aTuBAMipHOTO IIpocTopy-dacy ge Cirrepa y daszoBomy mpo-
cropi. Ilobynysano I'inpbepriB npocrip, HajileHuil cuMILIe-
KTHYHOIO CTPYKTyporo. Mu BUBYaeMO yHITapHI OIlepaTopu, 1o
OIHMCYIOTh IIOBOPOTH i TPaHCJIAILII, FeHepaTOPU AKHUX yTBOPIO-
oThb anrebpy JIi B G. Ile npejacraBieHHss TOPOIXKY€E PIBHSIHHS
IlIpeniarepa (tuny Kusiina—T'opnona) st XBUIboBol PyHKILT
y dazoBoMy poCTOPi, Tak 10 3MiHHI MAIOTh 3MICT ITOJIOXKEHHST
i miniftHOTO IMIyIbCY. XBHILOBI DyHKIIT TOB’ A3aH] 3 QYHKIEIO
Biruepa uepes nobyrok Moitasa, Tak 1o XBuyiboBi MyHKIT pe-
MIPE3eHTYIOTh KBasiaMIuiTyay #mMosipHocTi. Mu 6ymyemo pis-
usauana [ayni-Ipeninrepa (tumy pisusmusa ipaka) y dazo-
BOMY IIpOCTOpi B sIBHO KoBapiaHTHilt dopmi. Ha 3aBeprienns
MM IOKa3y€MO €KBIBAJIEHTHICTH MiXK II'iTHBHMIpHUM (opmasti-
3MOM (pa30BOro IPOCTOPY i 3BMYAiiHUM (hOpMaIi3MOM, IIPOIIO-
HYIOYN PO3B’sI30K, HIO BiIHOBJIIOE HEKOBapiaHTHY (OpPMY piB-
uanns [aymi-Illpeninrepa y dazoBoMy mpocTopi.
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