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EVIDENCE OF THE COLLECTIVE
TRANSPORT IN ATOMIC LIQUIDS

AND LIQUID METALS

The behavior of the effective radii of “particles” (molecules and ions) as a manifestation of
the collective components of their thermal motion in atomic liquids and liquid metals has been
studied. The specific form of the temperature dependence of the effective radii of molecules
and ions is established in good agreement with the results obtained for the hydrodynamic radii
according to the Stokes—Finstein formula. Attention is drawn to the differences between the val-
ues of the radii of particles that are used to describe the thermodynamic and kinetic properties

of liquids.
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1. Introduction

The existence of a collective transport in liquid wa-
ter was predicted in work [1]. The extended theory
of collective mass transfer was initiated by I.Z. Fi-
sher in work [2]. The works [3-6] were devoted to
the further development and improvement of the-
oretical ideas about the nature of collective trans-
port. An extremely important role in the formation
of ideas concerning the collective transport in liquids
was played by the works of Bulavin et al. [7-11]. In
those works, as well as in the works by Mykhailenko
and et al. [12,13] dealing with computer simulations,
it was proved that the collective component in the
self-diffusion coefficient can reach a quarter of its to-
tal magnitude.

However, no complete agreement between theoret-
ical and experimental data has been attained, be-
cause the so-called “single-particle” component (see
works [2,14]) of the self-diffusion coefficient remained
unknown. Moreover, it was assumed that the tem-
perature dependence of this component may have
an activation character, similar to what takes place
in solids. The falsity of such ideas has been em-
phasized many times in works [6, 14-19]. In works
[6,16, 18], it was ultimately proved that the so-called
“single-particle” component of the self-diffusion coef-
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ficient emerges owing to the swings of small molecular
groups at small angles. A typical molecular group of
this kind is formed by a certain molecule and its im-
mediate molecular environment. Of course, the group
swing motions have no activation character, but a col-
lective one.

As was shown in work [16], the “single-particle”
component is described by the Stokes—Einstein for-
mula in which the radius of the molecule is deter-
mined from the analysis of the shear viscosity. As a
result, the self-diffusion coefficient of a molecule is
expressed by the sum (see also works [14,17])

Ds=D, + D, (1)
where
D kgT

© 107 /v

is a collective component associated with the nano-
scopic hydrodynamic vortex modes, and

ksT
6mnry

(2)

is a contribution from the swing motions of small
molecular groups. Here, kg is the Boltzmann con-
stant, T the temperature, n the dynamic shear vis-
cosity, v the kinematic shear viscosity, and 7y the
Maxwell relaxation time.
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Table 1. Values of the parameters in formula (1)

Parameter Ar Ne Kr Xe CgHg No Sn Bi Pb
o) 0.984 0.978 0.985 0.982 0.976 0.977 0.993 0.960 0.981
¢o 0.263 0.278 0.264 0.296 0.285 0.294 0.211 0.342 0.310

1- 170)1/3 0.251 0.279 0.243 0.261 0.288 0.284 0.190 0.342 0.272

Writing the molecular self-diffusion coefficient in
the form

T
DAT) = B
6mnry
we obtain the following formula for the hydrodynamic
radius of a molecule:

(D) (T) ksT

P T 6D (1) @

The temperature dependence T(PD) (T') was the subject
of research in a lot of works [19-22]. First of all, this

concerns liquid metals, where rggD) has to be identi-

fied with the ionic radius, r;(T) = ngD) (T'). However,
there are a lot of misunderstandings about the tem-
perature dependence of 7;.

In the framework of our approach, the correspond-
ing radius of a particle, which will be called its effec-

tive radius, is determined by the relations

1 1 n 3 (5)
Ty Y 5 w(@ma(T)

where rﬁfﬂr) (T) is a known temperature depen-
dence. In this work, the temperature dependences of
the radii réCH) and rl(,D) will be studied in detail for
argon-like liquids and liquid metals. Under argon-like
liquids, we understand all low-molecular liquids for
which the averaged potentials of intermolecular in-
teraction possess the argon-like structure. This class
of liquids includes argon and other atomic liquids ac-
cording to Bulavin’s classification [23], liquids with
dumbbell-like molecules of the No type and disc-like
molecules of the CgHg type, and some other lig-
uids. A good numerical agreement between the val-
ues of T,(fff) (T') and r,()D) (T') is considered as a clear
criterion for the existence of the collective transport
in liquids. A direct equivalent of this criterion is the
agreement between the experimental values of the
self-diffusion coeflicient and the values calculated by
formula (1).
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2. Shear Viscosity in Argon-Like Liquids
and the Determination of the Molecular
and Ionic Radii

As was shown in works [24-27|, the kinematic shear
viscosity of liquids is mainly determined by the effects
of friction between molecular layers that move relative
to one another. This parameter is described by the
equation

(i) 11/3
1_7)0] (6)
t)

5 — a5

(0, t) ~ [
for i = Ar, Kr, CgHg, C¢H5NO3, Ny, and so forth,
where D(t) = v(t)/vir; e is the kinematic shear vis-
cosity at the triple point, ¢t = T'/T}, and 0 = v/vg
are the dimensionless temperature and specific vol-
ume, respectively (T, and v, are the temperature
and the specific volume, respectively, at the triple
point); T)(SZ) = v((f)/ vt(;), and véz) is the excluded vol-
ume of the system, which corresponds to its shear
viscosity. Formula (6) successfully describes the shear
viscosity in all liquids for which the averaged inter-
molecular potentials are similar to the Lennard-Jones
potential in argon. It reproduces the temperature de-
pendence of the shear viscosity with a high accuracy
in such liquids as benzene, nitrobenzene, and nitro-
gen [25], as well as in liquid alkali [28] and transition
metals [29].

Table 1 contains the values of the parameters enter-
ing formula (6) for various liquids. As one can see, the
values of the excluded volume v, are almost identical
to the values of the specific volume in the indicated
liquids at the corresponding triple point. Such a sit-
uation also takes place for alkali and post-transition
metals. In the following calculations, we will assume
that vy ~ v,,.

In work [25], it was shown that formula (6) also
well reproduces the shear viscosity of water almost
within the entire temperature interval of its liquid
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state: 315 K < T < 620 K. We emphasize once more
that the values of the excluded volume almost co-
incide with the values of the specific volume at the
triple point for liquids or the melting point for met-
als. This fact is another confirmation that there is no
activation mechanism of the shear viscosity and self-
diffusion processes in liquids.

The analysis of the kinematic shear viscosity makes
it possible to determine the radii r,(,'/) of molecules or
ions in liquid metals. As it is in the van der Waals
equation, the excluded volume of a particle is equal to

four times its proper volume. Therefore, the particle

(v)

radius r,”’ can be calculated using the formula

In liquid metals, an important role is played by
the parameter of dense packing of ions, §, which is
defined as the ratio between the intrinsic volume of
the ion and the volume per ion in the system, i.e. as
the ratio between the intrinsic volume of the ion and
the volume of the sphere whose radius coincides with
the position of the maximum in the binary correlation
function for the system of solid spheres [30, 31]. For
alkali metals, this parameter takes the values § =
= 0.46--0.48 [32]. Therefore, the ionic radius turns
out related to the specific volume as follows:

The values of the radii 7"1(,”) of molecules and ions
together with the corresponding values for the gas
phase of the corresponding liquid, r,(,gas), and the val-
ues used in the Lennard-Jones potentials, rl(,LJ), are
quoted in Tables 2 and 3, respectively. As one can see,
the molecular radii determined from the equation of
state and from the analysis of the kinematic shear vis-
cosity are appreciably different from each other (e.g.,
r$ ) & 1.21 for argon). A similar situation is
also typical of the radii rg'), which are determined
from the shear viscosity of gases [33], but the corre-
sponding difference between r,(;LJ) and rl(,'/) is smaller.

Let us illustrate the origin of this situation by esti-
mating the radius that is responsible for the values of
thermodynamic quantities and the radius that deter-
mines the kinetic characteristics. The former roughly
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corresponds to the position of the minimum in the
intermolecular potential, U’(r),) = 0, whereas the lat-
ter is determined by the value of the potential core
radius at which U(r,) =~ kgTi,. In the case of argon,

the ratio between those two radii rl(;LJ)/rl(,V) ~ 1.16.

The ionic radii in liquid metals, which are deter-
mined from the equation of state and by analyz-
ing the kinematic shear viscosity, differ from each
other, as it is for molecular liquids, but the differ-
ence is somewhat larger. This situation arises due to a
“softer” repulsion between the ions. It can be demon-
strated using the general view of the potential from
works [36, 37]. In particular, the ratio r$™" /r}") be-
tween those two radii is approximately equal to 1.2
for liquid Na, and 1.29 for liquid Rb, which approx-
imately corresponds to the ratio of radii taken from
Table 3 [28].

3. Estimation of the Maxwell Relaxation
Time in Liquids and Liquid Metals and Its
Temperature Dependence

By definition, the Maxwell relaxation time (MRT)
equals [38, 39]

™ = n/Ga (7)

where 7 is the dynamic shear viscosity in a liquid,
and G the high-frequency shear modulus in the liquid

Table 2. Molecular radii (in A units)
(LJ)

obtained from the equation of state, r; 7,

(v)

and by analyzing the kinematic shear viscosity, rp

Radii of Ar | Kr | CgHg | CgHsNOs | Ny
molecules
i) 1411 | 155 | 2.19 2.38 1.49
i) 1701 | 1.77 | 2.62 2.80 1.85
rfEs) 173 | 1.80 | 2.63 - 1.82
Table 3. Tonic radii (in A units)
(L)

obtained from the equation of state, r; "/,

and by analyzing the kinematic shear viscosity, 'rév)

Radiiof | 'piv | no+ | g+ | Rb+ | Pb* |snt[Bit

molecules

i) 079 | 1.01 | 123 | 1.52 | 1.18 |1.24[1.27

ri=D 1,27 [34]1.13 [34]|1.62[35][2.02 [20] [1.7 [34]| — | -
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Table 4. The upper limits T, of the temperature interval

Tm < T < Ty, where the calculated MRT has physically correct values

Ar Kr CeHg

CeH5NO2 N2 Nat

Tu 1.19T,, =~ 100 K 1.14T,, = 132 K

1.42T,, ~ 400 K

1.33T,, = 375 K 1.317,, =~ 83 K 1.10T,, =~ 1132 K

system. Making use of the kinematic shear viscosity
v =n/p and the relationship G = pc?, we obtain

2
™ =v/c,
where
™ = v/}

is the high-frequency velocity of transverse sound in
liquids. Taking the inequality ¢; < ¢; into account, we
obtain

™ > v/ct (8)

for the lower MRT limit. Making allowance for the
approximate relationship ¢? ~ %clz between the ve-
locities of transverse and longitudinal sounds [40,41],
we get

3v

™ = —5-
2¢?

For atomic and low-molecular liquids, the tempera-
ture dependence of the longitudinal sound velocity is
known, so the fulfillment of inequality (8) is manda-
tory. For liquid metals, the temperature dependence
of the longitudinal sound velocity has not been stud-
ied so well, so Eq. (7) was used to calculate 7p; with
an acceptable accuracy. In the latter case, the MRT
equals

i (T) = TM<Tm>n”(gf), (9)
where
™ (Tn) = ”g;’j)

is the MRT value at the melting point. The scope of
MRT applications is limited from above by the tem-
perature T, determined from the equation

(10)

Here, the argument was used that the radius of the
Lagrangian particle, r;, = 2,/v7y has to be not
smaller than the radius of the molecular complex con-
sisting of the selected molecule and its immediate
environment. The values of the temperaturel, are
quoted in Table 4.

4. Comparison of the rz(fff) (T)-

and r{P)(T)-Values for Lliquids
and Liquid Metals

Let us compare the values of the effective and hydro-
dynamic molecular (ionic) radii making use of for-
mulas (4) and (5). In Fig. 1, the temperature depen-
dences of those parameters are illustrated for some
liquids.

For all liquids, the effective and hydrodynamic radii
of particles demonstrate a similar temperature be-
havior. Taking the collective contribution to the self-
diffusion coefficient of particles in liquids into ac-
count exhaustively explains the necessity of the ar-
tificial introduction of the particle radius dependence
on the temperature when comparing the theoretical
and experimental values of D4(T) on the basis of

the Stokes-Einstein formula. However, the r](fff)

r](,D)—values also reveal some difference. First of all,
this is a result of the measurement accuracy of self-
diffusion coefficients, which amounted to about 10%
or less in most experiments. Approximately the same
discrepancy takes place between the r;f,eﬁ)— and rj(gD)
values. For liquid Na and Pb, the measurement ac-
curacy of the corresponding self-diffusion coefficients

was about 6%. So, as one can see, the rl(fﬁ)

rz(,D)—values are practically identical, within the mea-
surement error for Dg(T) in the temperature interval,
where the collective motion of particles must be taken
into account.

(eff)

Another origin of the discrepancies between 7y

- and

- and

and T,()D) is the calculation error for the MRT param-
eter, which is determined by the transverse sound
velocity. There are experiments, where the trans-
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Fig. 1. Dependences of fog = T;EH)/T‘I(,V) (solid curves) and 7p = rz(,D)/réu) (dotted
curves) on the normalized temperature T/Tyr (T/Tm for liquid metals) for argon-like

liquids and liquid metals

verse sound velocity was measured for highly viscous
liquids [42]. For atomic and low-molecular liquids,
the MRT was calculated using molecular dynamics
[6, 43, 44]. However, we do not know about such ex-
periments or theoretical calculations for liquid met-
als. Nevertheless, despite the indicated uncertainties,
the rl(fﬁ)—values practically coincide with the r,(,D)—
ones to the measurement error of the self-diffusion
coefficient and correctly describe the temperature de-
pendence of the hydrodynamic particle radius. Thus,
taking the component D, of the self-diffusion coeffi-
cient into account is crucial for a wide scope of liquids:
atomic, low-molecular ones, and pure liquid metals.

5. Discussion of the Results Obtained

In this work, a clear definition of the effective radius
r,(fﬂ) of molecules and ions was given, and, on the ba-
sis of many liquids taken as examples, it was shown
that r,(,eﬁ) (T) ~ rl(;D)(T). This relationship is a strong
evidence of the existence of a collective transport in

ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 3

liquids and liquid metals. It was shown above that
the accuracy of this approximate equality depends,
first of all, on the measurement accuracy of the self-
diffusion coefficient values, as well as on the determi-
nation accuracy of the Maxwell relaxation time.

Let us discuss the comparison of our results with
those obtained in works [20, 45| for alkali metals Rb
and Cs in more detail. According to work [45], main
attention at the first stage was paid to the calcu-
lation of the effective interaction potential between
two ions. For this purpose, the cited authors used the
Schommers algorithm [46]. Then, using the molecular
dynamics method, the mean-square displacement of
the ion, <(Ar)2>, was calculated and, with the help
of the relation

((Ar)?)

Dy, = lim T

t—o0

the values of the ionic self-diffusion coefficient were
determined. This circumstance is especially impor-
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Fig. 2. Temperature dependences of r™’ (solid curve) and

rigs) (dotted curve). The marker T, denotes the upper limit
of the temperature interval, where the MRT values for liquid
Cs are physically correct

tant, because the experimental values of the self-
diffusion coefficient Dy were obtained only for three
temperatures: 301.8, 573, and 773 K. The D{®)-
values calculated in work [45] correspond to a rather
wide temperature interval 306 K < 7' < 1400 K, be-
ing in a quite satisfactory agreement with experimen-
tal data.

Below, we used the values D, for Cs that were ob-
tained in work [45]. The radius (S of a Cs* cation
was determined with the help of the Stokes—Einstein
relation rljl ~ D4n/T. The values of the radius rsjcs)

obtained in this way and the radius régs) calculated

using formula (5) are compared in Fig. 2. When cal-

culating régs), the value récs) =1.495 A correspond-
ing to the shear viscosity of the melt was used in-
stead of rz(,cs), and the MRT was calculated by for-
mula (7). The temperature dependence of régs) be-
comes appreciable only in the temperature interval
306 K < T < 700 K, where the collective contri-
bution to D, has to be taken into account. In what
follows, we took Tégs) — rl(pcs).

As one can see, the calculated ion radii agree with
one another by the order of magnitude, but the tem-
perature dependence of TE)CS) is substantially non-
monotonic, although there are no physical grounds
for such nonmonotonic behavior. From the compari-
son made above, it follows that the temperature de-
pendence of ré;}m) is completely governed by the col-
lective drift of a molecule or ion in the field of thermal
hydrodynamic nanoscopic fluctuations.

In work [21], the temperature dependences of the
self-diffusion coefficients of Al* and Nit cations in

Al-Ni melts were studied. It was shown that there
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are intervals, where the temperature dependences of
r%) (i = Al™ and Ni") are strong. Unfortunately, our
results cannot yet be compared with the results of
work [21] because of the lack of reliable values for the
shear viscosity coefficient obtained at various temper-

ature and melt concentration values.
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transport in liquids, his permanent support, and the
discussion of the results. I am also sincerely thankful
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B.M. Maxaativyx

IMPOABI ICHYBAHHS
KOJIEKTMBHOI'O IIEPEHOCY B ATOMAPHUX
PIAMMHAX TA PIAKNX METAJIAX

B pobori mociimKyeTbesi IpOsiB KOJIEKTUBHUX CKJIAJOBUX Te-
IJIOBOrO pPyXy ‘“‘dacTHHOK’ (MOJIeKysl Ta ioHIB) y HOBeAiHI] IX
edekTUBHUX pajiyciB. BcTaHOBIEHO KOHKPETHUN BUIVISLZ TE€M-
repaTypHOl 3aJIeXKHOCTI e(PEKTUBHUX PaJiiyCiB MOJIEKYJ Ta io-
uiB. JleMoHCTpyeThCs IX OOPE y3rOMKEeHHS 3 IigpoanHaMitTHu-
MM paJiiycaM#, [0 BU3HAYAIOTHCA 3a (opMyso AfHITaina—
Crokca. 3BepraeThcsl yBara Ha BIAMIHHOCTI MiXK 3HAYEHHSIMU
pa/iiyciB 4aCTUHOK, 1[0 BUKOPUCTOBYIOTBCS JJIsi OIIUCY TE€PMO-
JAUHAMIYHUX Ta KIHETUYHUX BJIACTHUBOCTEH PiIuH.

Katwwoei cao6a: TEIIOBUI PyX MOJIEKYJI, KOJIEKTUBHUMN IIe-
peHoc, koedinienT camonudysii MoIeKyII piguHn.
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