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EVIDENCE OF THE COLLECTIVE
TRANSPORT IN ATOMIC LIQUIDS
AND LIQUID METALS

The behavior of the effective radii of “particles” (molecules and ions) as a manifestation of
the collective components of their thermal motion in atomic liquids and liquid metals has been
studied. The specific form of the temperature dependence of the effective radii of molecules
and ions is established in good agreement with the results obtained for the hydrodynamic radii
according to the Stokes–Einstein formula. Attention is drawn to the differences between the val-
ues of the radii of particles that are used to describe the thermodynamic and kinetic properties
of liquids.
K e yw o r d s: thermal motion of molecules, collective transport, self-diffusion coefficient of
molecules in liquids.

1. Introduction

The existence of a collective transport in liquid wa-
ter was predicted in work [1]. The extended theory
of collective mass transfer was initiated by I.Z. Fi-
sher in work [2]. The works [3–6] were devoted to
the further development and improvement of the-
oretical ideas about the nature of collective trans-
port. An extremely important role in the formation
of ideas concerning the collective transport in liquids
was played by the works of Bulavin et al. [7–11]. In
those works, as well as in the works by Mykhailenko
and et al. [12, 13] dealing with computer simulations,
it was proved that the collective component in the
self-diffusion coefficient can reach a quarter of its to-
tal magnitude.

However, no complete agreement between theoret-
ical and experimental data has been attained, be-
cause the so-called “single-particle” component (see
works [2,14]) of the self-diffusion coefficient remained
unknown. Moreover, it was assumed that the tem-
perature dependence of this component may have
an activation character, similar to what takes place
in solids. The falsity of such ideas has been em-
phasized many times in works [6, 14–19]. In works
[6, 16, 18], it was ultimately proved that the so-called
“single-particle” component of the self-diffusion coef-
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ficient emerges owing to the swings of small molecular
groups at small angles. A typical molecular group of
this kind is formed by a certain molecule and its im-
mediate molecular environment. Of course, the group
swing motions have no activation character, but a col-
lective one.

As was shown in work [16], the “single-particle”
component is described by the Stokes–Einstein for-
mula in which the radius of the molecule is deter-
mined from the analysis of the shear viscosity. As a
result, the self-diffusion coefficient of a molecule is
expressed by the sum (see also works [14, 17])

𝐷𝑠 = 𝐷𝑟 +𝐷𝑐, (1)

where
𝐷𝑐 =

𝑘B𝑇

10𝜋𝜂
√
𝜈𝜏M

(2)

is a collective component associated with the nano-
scopic hydrodynamic vortex modes, and

𝐷𝑟 =
𝑘B𝑇

6𝜋𝜂𝑟
(𝜈)
𝑝

(3)

is a contribution from the swing motions of small
molecular groups. Here, 𝑘B is the Boltzmann con-
stant, 𝑇 the temperature, 𝜂 the dynamic shear vis-
cosity, 𝜈 the kinematic shear viscosity, and 𝜏M the
Maxwell relaxation time.
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Table 1. Values of the parameters in formula (1)

Parameter Ar Ne Kr Xe C6H6 N2 Sn Bi Pb

𝑣0 0.984 0.978 0.985 0.982 0.976 0.977 0.993 0.960 0.981
𝜁0 0.263 0.278 0.264 0.296 0.285 0.294 0.211 0.342 0.310

(1− 𝑣0)1/3 0.251 0.279 0.243 0.261 0.288 0.284 0.190 0.342 0.272

Writing the molecular self-diffusion coefficient in
the form
𝐷𝑠(𝑇 ) =

𝑘B𝑇

6𝜋𝜂𝑟
(𝐷)
𝑝

,

we obtain the following formula for the hydrodynamic
radius of a molecule:

𝑟
(𝐷)
𝑃 (𝑇 ) =

𝑘B𝑇

6𝜋𝜂𝐷𝑠(𝑇 )
. (4)

The temperature dependence 𝑟(𝐷)
𝑃 (𝑇 ) was the subject

of research in a lot of works [19–22]. First of all, this
concerns liquid metals, where 𝑟

(𝐷)
𝑃 has to be identi-

fied with the ionic radius, 𝑟𝐼(𝑇 ) = 𝑟
(𝐷)
𝑃 (𝑇 ). However,

there are a lot of misunderstandings about the tem-
perature dependence of 𝑟𝐼 .

In the framework of our approach, the correspond-
ing radius of a particle, which will be called its effec-
tive radius, is determined by the relations

1

𝑟
(eff)
𝑝 (𝑇 )

=
1

𝑟
(𝜈)
𝑝

+
3

5
√︀
𝜈(𝑇 )𝜏M(𝑇 )

, (5)

where 𝑟
(eff)
𝑃 (𝑇 ) is a known temperature depen-

dence. In this work, the temperature dependences of
the radii 𝑟(eff)

𝑝 and 𝑟
(𝐷)
𝑝 will be studied in detail for

argon-like liquids and liquid metals. Under argon-like
liquids, we understand all low-molecular liquids for
which the averaged potentials of intermolecular in-
teraction possess the argon-like structure. This class
of liquids includes argon and other atomic liquids ac-
cording to Bulavin’s classification [23], liquids with
dumbbell-like molecules of the N2 type and disc-like
molecules of the C6H6 type, and some other liq-
uids. A good numerical agreement between the val-
ues of 𝑟

(eff)
𝑝 (𝑇 ) and 𝑟

(𝐷)
𝑝 (𝑇 ) is considered as a clear

criterion for the existence of the collective transport
in liquids. A direct equivalent of this criterion is the
agreement between the experimental values of the
self-diffusion coefficient and the values calculated by
formula (1).

2. Shear Viscosity in Argon-Like Liquids
and the Determination of the Molecular
and Ionic Radii

As was shown in works [24–27], the kinematic shear
viscosity of liquids is mainly determined by the effects
of friction between molecular layers that move relative
to one another. This parameter is described by the
equation

𝜈(𝑣, 𝑡) ≈

[︃
1− 𝑣

(𝑖)
0

𝑣 − 𝑣
(𝑖)
0 (𝑡)

]︃1/3

(6)

for 𝑖 = Ar, Kr, C6H6, C6H5NO2, N2, and so forth,
where 𝜈(𝑡) = 𝜈(𝑡)/𝜈tr; 𝜈tr is the kinematic shear vis-
cosity at the triple point, 𝑡 = 𝑇/𝑇tr and 𝑣 = 𝑣/𝑣tr
are the dimensionless temperature and specific vol-
ume, respectively (𝑇tr and 𝑣tr are the temperature
and the specific volume, respectively, at the triple
point); 𝑣(𝑖)0 = 𝑣

(𝑖)
0 /𝑣

(𝑖)
tr , and 𝑣

(𝑖)
0 is the excluded vol-

ume of the system, which corresponds to its shear
viscosity. Formula (6) successfully describes the shear
viscosity in all liquids for which the averaged inter-
molecular potentials are similar to the Lennard-Jones
potential in argon. It reproduces the temperature de-
pendence of the shear viscosity with a high accuracy
in such liquids as benzene, nitrobenzene, and nitro-
gen [25], as well as in liquid alkali [28] and transition
metals [29].

Table 1 contains the values of the parameters enter-
ing formula (6) for various liquids. As one can see, the
values of the excluded volume 𝑣0 are almost identical
to the values of the specific volume in the indicated
liquids at the corresponding triple point. Such a sit-
uation also takes place for alkali and post-transition
metals. In the following calculations, we will assume
that 𝑣0 ≈ 𝑣𝑚.

In work [25], it was shown that formula (6) also
well reproduces the shear viscosity of water almost
within the entire temperature interval of its liquid
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state: 315 K < 𝑇 < 620 K. We emphasize once more
that the values of the excluded volume almost co-
incide with the values of the specific volume at the
triple point for liquids or the melting point for met-
als. This fact is another confirmation that there is no
activation mechanism of the shear viscosity and self-
diffusion processes in liquids.

The analysis of the kinematic shear viscosity makes
it possible to determine the radii 𝑟(𝜈)𝑝 of molecules or
ions in liquid metals. As it is in the van der Waals
equation, the excluded volume of a particle is equal to
four times its proper volume. Therefore, the particle
radius 𝑟

(𝜈)
𝑝 can be calculated using the formula

𝑟(𝜈)𝑝 =

(︂
3

16𝜋
𝑣𝑚

)︂1/3
.

In liquid metals, an important role is played by
the parameter of dense packing of ions, 𝛿, which is
defined as the ratio between the intrinsic volume of
the ion and the volume per ion in the system, i.e. as
the ratio between the intrinsic volume of the ion and
the volume of the sphere whose radius coincides with
the position of the maximum in the binary correlation
function for the system of solid spheres [30, 31]. For
alkali metals, this parameter takes the values 𝛿 =
= 0.46÷0.48 [32]. Therefore, the ionic radius turns
out related to the specific volume as follows:

𝑟(𝜈)𝑝 =

(︂
3

16𝜋
𝛿𝜈𝑚

)︂1/3
.

The values of the radii 𝑟(𝜈)𝑝 of molecules and ions
together with the corresponding values for the gas
phase of the corresponding liquid, 𝑟(gas)𝑝 , and the val-
ues used in the Lennard-Jones potentials, 𝑟(LJ)𝑝 , are
quoted in Tables 2 and 3, respectively. As one can see,
the molecular radii determined from the equation of
state and from the analysis of the kinematic shear vis-
cosity are appreciably different from each other (e.g.,
𝑟
(LJ)
𝑝 /𝑟

(𝜈)
𝑝 ≈ 1.21 for argon). A similar situation is

also typical of the radii 𝑟
(𝜈)
𝑝 , which are determined

from the shear viscosity of gases [33], but the corre-
sponding difference between 𝑟

(LJ)
𝑝 and 𝑟

(𝜈)
𝑝 is smaller.

Let us illustrate the origin of this situation by esti-
mating the radius that is responsible for the values of
thermodynamic quantities and the radius that deter-
mines the kinetic characteristics. The former roughly

corresponds to the position of the minimum in the
intermolecular potential, 𝑈 ′(𝑟𝑝) = 0, whereas the lat-
ter is determined by the value of the potential core
radius at which 𝑈(𝑟𝑝) ≈ 𝑘B𝑇tr. In the case of argon,
the ratio between those two radii 𝑟(LJ)𝑝 /𝑟

(𝜈)
𝑝 ≈ 1.16.

The ionic radii in liquid metals, which are deter-
mined from the equation of state and by analyz-
ing the kinematic shear viscosity, differ from each
other, as it is for molecular liquids, but the differ-
ence is somewhat larger. This situation arises due to a
“softer” repulsion between the ions. It can be demon-
strated using the general view of the potential from
works [36, 37]. In particular, the ratio 𝑟

(LJ)
𝑝 /𝑟

(𝜈)
𝑝 be-

tween those two radii is approximately equal to 1.2
for liquid Na, and 1.29 for liquid Rb, which approx-
imately corresponds to the ratio of radii taken from
Table 3 [28].

3. Estimation of the Maxwell Relaxation
Time in Liquids and Liquid Metals and Its
Temperature Dependence

By definition, the Maxwell relaxation time (MRT)
equals [38, 39]

𝜏M = 𝜂/𝐺, (7)

where 𝜂 is the dynamic shear viscosity in a liquid,
and 𝐺 the high-frequency shear modulus in the liquid

Table 2. Molecular radii (in Å units)
obtained from the equation of state, 𝑟

(LJ)
𝑝 ,

and by analyzing the kinematic shear viscosity, 𝑟
(𝑣)
𝑝

Radii of
molecules

Ar Kr C6H6 C6H5NO2 N2

𝑟
(𝑣)
𝑝 1.411 1.55 2.19 2.38 1.49

𝑟
(LJ)
𝑝 1.701 1.77 2.62 2.80 1.85
𝑟
(gas)
𝑝 1.73 1.80 2.63 – 1.82

Table 3. Ionic radii (in Å units)
obtained from the equation of state, 𝑟

(LJ)
𝑝 ,

and by analyzing the kinematic shear viscosity, 𝑟
(𝑣)
𝑝

Radii of
molecules

Li+ Na+ K+ Rb+ Pb+ Sn+ Bi+

𝑟
(𝑣)
𝑝 0.79 1.01 1.23 1.52 1.18 1.24 1.27
𝑟
(LJ)
𝑝 1.27 [34] 1.13 [34] 1.62 [35] 2.02 [20] 1.7 [34] – –
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Table 4. The upper limits 𝑇𝑢 of the temperature interval
𝑇𝑚 < 𝑇 < 𝑇𝑢, where the calculated MRT has physically correct values

Ar Kr C6H6 C6H5NO2 N2 Na+

𝑇𝑢 1.19𝑇𝑚 ≈ 100 K 1.14𝑇𝑚 ≈ 132 K 1.42𝑇𝑚 ≈ 400 K 1.33𝑇𝑚 ≈ 375 K 1.31𝑇𝑚 ≈ 83 K 1.10𝑇𝑚 ≈ 1132 K

system. Making use of the kinematic shear viscosity
𝜈 = 𝜂/𝜌 and the relationship 𝐺 = 𝜌𝑐2𝑡 , we obtain

𝜏M = 𝜈/𝑐2𝑡 ,

where

𝜏M = 𝜈/𝑐2𝑡

is the high-frequency velocity of transverse sound in
liquids. Taking the inequality 𝑐𝑡 < 𝑐𝑙 into account, we
obtain

𝜏M > 𝜈/𝑐2𝑙 (8)

for the lower MRT limit. Making allowance for the
approximate relationship 𝑐2𝑡 ≈ 2

3𝑐
2
𝑙 between the ve-

locities of transverse and longitudinal sounds [40,41],
we get

𝜏M =
3𝜈

2𝑐2𝑙
.

For atomic and low-molecular liquids, the tempera-
ture dependence of the longitudinal sound velocity is
known, so the fulfillment of inequality (8) is manda-
tory. For liquid metals, the temperature dependence
of the longitudinal sound velocity has not been stud-
ied so well, so Eq. (7) was used to calculate 𝜏𝑀 with
an acceptable accuracy. In the latter case, the MRT
equals

𝜏M(𝑇 ) = 𝜏M(𝑇𝑚)
𝜂(𝑇 )

𝜂(𝑇𝑚)
, (9)

where
𝜏M(𝑇𝑚) =

𝜂(𝑇𝑚)

𝐺cr

is the MRT value at the melting point. The scope of
MRT applications is limited from above by the tem-
perature 𝑇𝑢 determined from the equation

𝜈(𝑇𝑢)

𝑐𝑙(𝑇𝑢)
=

√︂
3

2
𝑟𝑝. (10)

Here, the argument was used that the radius of the
Lagrangian particle, 𝑟𝐿 = 2

√
𝜈𝜏M has to be not

smaller than the radius of the molecular complex con-
sisting of the selected molecule and its immediate
environment. The values of the temperature𝑇𝑢 are
quoted in Table 4.

4. Comparison of the 𝑟(eff)
𝑝 (𝑇 )-

and 𝑟(𝐷)
𝑝 (𝑇 )-Values for Lliquids

and Liquid Metals

Let us compare the values of the effective and hydro-
dynamic molecular (ionic) radii making use of for-
mulas (4) and (5). In Fig. 1, the temperature depen-
dences of those parameters are illustrated for some
liquids.

For all liquids, the effective and hydrodynamic radii
of particles demonstrate a similar temperature be-
havior. Taking the collective contribution to the self-
diffusion coefficient of particles in liquids into ac-
count exhaustively explains the necessity of the ar-
tificial introduction of the particle radius dependence
on the temperature when comparing the theoretical
and experimental values of 𝐷𝑠(𝑇 ) on the basis of
the Stokes–Einstein formula. However, the 𝑟

(eff)
𝑝 - and

𝑟
(𝐷)
𝑝 -values also reveal some difference. First of all,

this is a result of the measurement accuracy of self-
diffusion coefficients, which amounted to about 10%
or less in most experiments. Approximately the same
discrepancy takes place between the 𝑟

(eff)
𝑝 - and 𝑟

(𝐷)
𝑝 -

values. For liquid Na and Pb, the measurement ac-
curacy of the corresponding self-diffusion coefficients
was about 6%. So, as one can see, the 𝑟

(eff)
𝑝 - and

𝑟
(𝐷)
𝑝 -values are practically identical, within the mea-

surement error for 𝐷𝑠(𝑇 ) in the temperature interval,
where the collective motion of particles must be taken
into account.

Another origin of the discrepancies between 𝑟
(eff)
𝑝

and 𝑟
(𝐷)
𝑝 is the calculation error for the MRT param-

eter, which is determined by the transverse sound
velocity. There are experiments, where the trans-
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Fig. 1. Dependences of 𝑟eff = 𝑟
(eff)
𝑝 /𝑟

(𝜈)
𝑝 (solid curves) and 𝑟𝐷 = 𝑟

(𝐷)
𝑝 /𝑟

(𝜈)
𝑝 (dotted

curves) on the normalized temperature 𝑇/𝑇tr (𝑇/𝑇𝑚 for liquid metals) for argon-like
liquids and liquid metals

verse sound velocity was measured for highly viscous
liquids [42]. For atomic and low-molecular liquids,
the MRT was calculated using molecular dynamics
[6, 43, 44]. However, we do not know about such ex-
periments or theoretical calculations for liquid met-
als. Nevertheless, despite the indicated uncertainties,
the 𝑟

(eff)
𝑝 -values practically coincide with the 𝑟

(𝐷)
𝑝 -

ones to the measurement error of the self-diffusion
coefficient and correctly describe the temperature de-
pendence of the hydrodynamic particle radius. Thus,
taking the component 𝐷𝑐 of the self-diffusion coeffi-
cient into account is crucial for a wide scope of liquids:
atomic, low-molecular ones, and pure liquid metals.

5. Discussion of the Results Obtained

In this work, a clear definition of the effective radius
𝑟
(eff)
𝑝 of molecules and ions was given, and, on the ba-

sis of many liquids taken as examples, it was shown
that 𝑟(eff)

𝑝 (𝑇 ) ≈ 𝑟
(𝐷)
𝑝 (𝑇 ). This relationship is a strong

evidence of the existence of a collective transport in

liquids and liquid metals. It was shown above that
the accuracy of this approximate equality depends,
first of all, on the measurement accuracy of the self-
diffusion coefficient values, as well as on the determi-
nation accuracy of the Maxwell relaxation time.

Let us discuss the comparison of our results with
those obtained in works [20, 45] for alkali metals Rb
and Cs in more detail. According to work [45], main
attention at the first stage was paid to the calcu-
lation of the effective interaction potential between
two ions. For this purpose, the cited authors used the
Schommers algorithm [46]. Then, using the molecular
dynamics method, the mean-square displacement of
the ion,

⟨︀
(Δr)2

⟩︀
, was calculated and, with the help

of the relation

𝐷𝑠 = lim
𝑡→∞

⟨︀
(Δr)2

⟩︀
6𝑡

,

the values of the ionic self-diffusion coefficient were
determined. This circumstance is especially impor-
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Fig. 2. Temperature dependences of 𝑟
(Cs)
𝐷 (solid curve) and

𝑟
(Cs)
eff (dotted curve). The marker 𝑇𝑢 denotes the upper limit

of the temperature interval, where the MRT values for liquid
Cs are physically correct

tant, because the experimental values of the self-
diffusion coefficient 𝐷𝑠 were obtained only for three
temperatures: 301.8, 573, and 773 K. The 𝐷

(Cs)
𝑠 -

values calculated in work [45] correspond to a rather
wide temperature interval 306 K < 𝑇 < 1400 K, be-
ing in a quite satisfactory agreement with experimen-
tal data.

Below, we used the values 𝐷𝑠 for Cs that were ob-
tained in work [45]. The radius 𝑟

(Cs)
𝐷 of a Cs+ cation

was determined with the help of the Stokes–Einstein
relation 𝑟−1

𝑝 ∼ 𝐷𝑠𝜂/𝑇 . The values of the radius 𝑟
(Cs)
𝐷

obtained in this way and the radius 𝑟
(Cs)
eff calculated

using formula (5) are compared in Fig. 2. When cal-
culating 𝑟

(Cs)
eff , the value 𝑟

(Cs)
𝑝 = 1.495 Å correspond-

ing to the shear viscosity of the melt was used in-
stead of 𝑟

(Cs)
𝑝 , and the MRT was calculated by for-

mula (7). The temperature dependence of 𝑟
(Cs)
eff be-

comes appreciable only in the temperature interval
306 K < 𝑇 < 700 K, where the collective contri-
bution to 𝐷𝑠 has to be taken into account. In what
follows, we took 𝑟

(Cs)
eff → 𝑟

(Cs)
𝑝 .

As one can see, the calculated ion radii agree with
one another by the order of magnitude, but the tem-
perature dependence of 𝑟

(Cs)
𝐷 is substantially non-

monotonic, although there are no physical grounds
for such nonmonotonic behavior. From the compari-
son made above, it follows that the temperature de-
pendence of 𝑟(ion)eff is completely governed by the col-
lective drift of a molecule or ion in the field of thermal
hydrodynamic nanoscopic fluctuations.

In work [21], the temperature dependences of the
self-diffusion coefficients of Al+ and Ni+ cations in
Al–Ni melts were studied. It was shown that there

are intervals, where the temperature dependences of
𝑟
(𝑖)
𝐷 (𝑖 = Al+ and Ni+) are strong. Unfortunately, our

results cannot yet be compared with the results of
work [21] because of the lack of reliable values for the
shear viscosity coefficient obtained at various temper-
ature and melt concentration values.
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Translated from Ukrainian by O.I. Voitenko

В.М.Махлайчук

ПРОЯВИ IСНУВАННЯ
КОЛЕКТИВНОГО ПЕРЕНОСУ В АТОМАРНИХ
РIДИНАХ ТА РIДКИХ МЕТАЛАХ

В роботi дослiджується прояв колективних складових те-
плового руху “частинок” (молекул та iонiв) у поведiнцi їх
ефективних радiусiв. Встановлено конкретний вигляд тем-
пературної залежностi ефективних радiусiв молекул та iо-
нiв. Демонструється їх добре узгодження з гiдродинамiчни-
ми радiусами, що визначаються за формулою Айнштайна–
Стокса. Звертається увага на вiдмiнностi мiж значеннями
радiусiв частинок, що використовуються для опису термо-
динамiчних та кiнетичних властивостей рiдин.

Ключ о в i с л о в а: тепловий рух молекул, колективний пе-
ренос, коефiцiєнт самодифузiї молекул рiдини.
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