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An anomalous asymptotic dependence of the small-angle neutron scattering intensity 𝐼(Q),
when 𝐼(Q) increases infinitely as Q → 0, has been studied. This behavior is shown to be
associated with the presence of the random field of a scattering density, whose typical linear
size is much larger than the reciprocal magnitude of Q. In the considered case, the sought
asymptotic dependence is found to have the form 𝐼(Q) ∼ 𝑄−3.
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1. Introduction

According to the classical theory [1], the scattering
intensity at Q → 0 has the following dependence:

𝐼clas(Q) ∼ 1−𝑄2𝑏2, (1)

where 𝑏 is a characteristic linear dimension of the sys-
tem, which coincides by its order of magnitude with
the correlation length (the inhomogeneity size). We
will refer to the behavior of the intensity described
by formula (1) as the classical asymptotics.

In some experiments [2–5], deviations from the clas-
sical dependence (1) are observed (see Figure, where
the dashed curve is determined by formula (1), and
the solid one corresponds to the experimental depen-
dence). The behavior of the intensity described in the
figure by the solid curve will be referred to as the
anomalous asymptotics of a small-angle neutron scat-
tering. In this paper, a possible physical mechanism
of its emergence is discussed.

2. Anomalous Asymptotics
of Neutron Scattering Intensity

One of the known models used to describe the scatter-
ing of neutrons by a physical system [2] is the contin-
uum one. In its framework, the system is considered
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as a statistically homogeneous field 𝜙(x) of a random
variable 𝜙, which is called the scattering density. This
field, as any other random homogeneous field, is char-
acterized by the correlation coefficient

Γ(r) =
⟨𝜙(x)𝜙(x′)⟩

𝜎2
, (2)

where r = x−x′, x is the radius vector of the point in
the space occupied by the system, ⟨...⟩ the operator
of averaging over the field, and 𝜎2 the dispersion of
the random variable.

Another characteristic of the indicated field is the
quantity 𝑠(q) called the normalized spectral density
or the normalized spectrum (below, the term “spec-
trum” will be used). This quantity is connected with
the correlation coefficient by the Fourier transforma-
tion:

𝑠(q) =
1

(2𝜋)3

∞∫︁
−∞

∞∫︁
−∞

∞∫︁
−∞

Γ(r) exp(−𝑖rq) 𝑑r, (3)

Γ(r) =

∞∫︁
−∞

∞∫︁
−∞

∞∫︁
−∞

𝑠(q) exp(𝑖rq) 𝑑q. (4)

According to the classical theory of scattering [1],
the scattering intensity is proportional to the random
field spectrum. This result is used to find the spec-
trum from experimental data. Namely, by measuring
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the scattering intensity 𝐼(Q) for various scattering
vectors Q and using the mentioned dependence, the
experimental spectrum 𝑠exp(Q) is calculated as

𝐼(Q) ∼ 𝑠exp(Q). (5)

It is evident that

𝑠exp(Q) = 𝑠(q = Q). (6)

We associate the emergence of the anomalous asymp-
totics in the small-angle neutron scattering intensity
with the existence of a random field, for which the
following condition is satisfied:

𝑏 ≫ 𝑄−1. (7)

Provided that condition (7) holds true, let us con-
sider a passage to the limit defined by the depen-
dences

𝑄−1 → ∞, (8)

𝑏 → ∞. (9)

Then, for the correlation coefficient, the relation

Γ(r) → 1 (10)

takes place. Substituting it into equality (3), we ob-
tain

𝑠(q) → 𝛿(q). (11)

Dependence (8) can be rewritten in the form

Q → 0. (12)

Here, some numerical sequence tending to zero is
meant:

Q1,Q2,Q3, ..., 0; (13)

whereas, when writing down relation (11), the se-
quence of functions

𝑠(q)1, 𝑠(q)2, 𝑠(q)3, ..., 𝛿(q) (14)

converging to the delta-function in the space of gener-
alized functions was assumed [6]. By comparing rela-
tions (13) and (14), one can see that every dispersion
vector Q𝐽 in sequence (13) has its “counterpart” term
𝑠𝐽(q) in sequence (14). Such a sequence is called the

Classical (a) and anomalous (b) asymptotics of the neutron
scattering intensity

delta-sequence [6]. It is supposed [6] that since the in-
dicated sequence converges to the delta-function, any
term in the sequence can be considered, in principle,
as a delta-function approximation. For this purpose,
it is necessary that the indicated term should have the
properties of the delta-function. Proceeding from the
last condition, let us determine the analytical form
of the function 𝑠𝐽(q), i.e. the 𝐽-th term in the delta-
sequence.

In the physical literature [7], the delta-function is
considered as a function with the following properties:
∞∫︁

−∞

∞∫︁
−∞

∞∫︁
−∞

𝛿(q) 𝑑q = 1, (15)

𝛿(q) = 0 (q ̸= 0), (16)
𝛿(q) = ∞ (q = 0). (17)

The approximate delta-function (the term 𝑠𝐽(q)
in the delta-sequence) must have similar proper-
ties. Property (15) of the delta-function remains the
same for the 𝑠𝐽(q) term in the delta-sequence,

∞∫︁
−∞

∞∫︁
−∞

∞∫︁
−∞

𝑠𝐽(q) 𝑑q = 1. (18)

But the formulations that give rise to properties (16)
and (17) of the delta-function have to be corrected
in the case of an approximate delta-function, i.e. the
𝑠𝐽(q) term. As follows from formula (16), the values
of delta-function are equal to zero for all scattering
vectors, except for the vector q = 0. It is clear that
the zero value is unattainable for the scattering vec-
tor in the real experiment. We may say only that the
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magnitude of the vector Q𝐽 given in the experiment
is small enough for it to be considered as equal to
zero. In this case, the magnitude of scattering vector
Q𝐽 plays the role of the determination error for the
so-called “zero” in this experiment.

It was already mentioned that the term 𝑠𝐽(q) in the
delta-sequence corresponds to the magnitude of Q𝐽 .
Therefore, if we intend to consider the term 𝑠𝐽(q) in
the delta-sequence as an approximate delta-function,
we should approximately adopt that we deal with a
“zero” that occupies the region |q| ≤ |Q𝐽 |. The ob-
tained approximate delta-function 𝑠𝐽(q) is “smeared”
over a spherical region with the radius |Q𝐽 |. Beyond
this region, the values of term 𝑠𝐽(q) in the delta-
sequence must be equal to zero as is inherent to the
delta-function,.

It is evident that the indicated “smearing” does not
allow property (16) of the delta-function to be attri-
buted to the term 𝑠𝐽(q) in the delta-sequence at full
scale, because the approximate delta-function “smea-
red” over the indicated sphere |q| ≤ |Q𝐽 | cannot be
equal to infinity, since equality (16) becomes violated
otherwise. At the same time in our case, it is impor-
tant that the delta-function has a unique value at
zero, and just this peculiarity of the delta-function
has to be preserved for the terms of the delta-sequ-
ence. In other words, if we want to consider the term
𝑠𝐽(q) in the delta-sequence as the delta-function, we
have to accept that, at “zero” in the region |q| ≤ |Q𝐽 |,
this term has a unique value, which will be denoted
below as ℎ𝐽 .

Taking all the aforesaid into account, the function
𝑠𝐽(q) is selected in the form

𝑠𝐽(q) = ℎ𝐽{𝐻(|q|)−𝐻(|q| − |Q|)}, (19)

where 𝐻(𝑧) is the Heaviside step function. Substitu-
ting it into equality (18) and integrating, we obtain

ℎ𝐽 =
3

4𝜋
𝑄−3

𝐽 . (20)

By definition, the experimentally observed spectrum
at the given scattering vector Q𝐽 equals

𝑠exp(Q𝐽) = 𝑠𝐽(q = Q𝐽). (21)

Substituting 𝑠𝐽(q = Q𝐽) calculated with the use of
formulas (19) and (20) into equality (21), we obtain

𝑠exp(Q) =
3

4𝜋
𝑄−3. (22)

In addition, according to formula (5), we have

𝐼anom(Q) ∼ 𝑄−3 (Q → 0) (23)

for the anomalous asymptotics of the small-angle neu-
tron scattering intensity.

As is seen from the figure, a specific feature of
the anomalous asymptotics in comparison with its
classical analog is a sharp growth of the intensity
in the case where the scattering vector tends to
zero. Relation (23) describes this feature. Therefore,
we have all grounds to consider the mechanism of
anomalous asymptotics at the small-angle neutron
scattering considered above as a true one. It is clear
that the condition of thermodynamic limit is not real-
ized in a real experiment, and the neutron scattering
intensity at the zero angle will not be infinite [8].

3. Conclusion

The speculations presented above bring us to a con-
clusion that inequality (7) is the unique reason for the
anomalous asymptotics (23) to emerge. This means
that we will always observe experimentally the de-
scribed anomalous behavior of the small-angle neu-
tron scattering intensity, if the examined system in-
cludes a large-scale random field of the scattering
condensed medium density with characteristic linear
dimensions considerably exceeding the inverse mag-
nitudes of scattering vectors realized in this experi-
ment. In addition, this also means that since no mi-
croscopic ideas were used while deriving formula (23),
the latter remains valid for any field satisfying condi-
tion (7).

Which field is it? On the one hand, the pres-
ence of the indicated field can testify to the exis-
tence of a large-scale superstructure in the condensed
medium. On the other hand, it is not excluded that
when the scattering vector tends to zero, the small-
angle scattering intensity starts to be affected by the
spatial confinement of the examined system. Then
the system size will play the role of a characteris-
tic dimension 𝑏. The answer to this question should
be obtained in further experiments planned by us.
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АНОМАЛЬНА МАЛОКУТОВА АСИМПТОТИКА
IНТЕНСИВНОСТI РОЗСIЯННЯ НЕЙТРОНIВ

Р е з ю м е

Стаття присвячена розгляду асимптотичної залежностi iн-
тенсивностi малокутового розсiяння нейтронiв 𝐼(Q) при
Q → 0. Розглядається аномальна асимптотика iнтенсивно-
стi розсiяння, коли 𝐼(Q) рiзко зростає при Q → 0. Показа-
но, що така поведiнка iнтенсивностi зумовлена присутнiстю
випадкового поля розсiюючої густини з характерним лiнiй-
ним розмiром, який значно перевищує обернене значення
модуля Q. Встановлено, що в розглянутому випадку шука-
на асимптотична залежнiсть має вигляд 𝐼(Q) ∼ 𝑄−3.
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