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1. Introduction

Since the works by Fermi and Göppert-Mayer, sim-
plified versions of potentials in the form of 𝛿-like in-
teraction potentials have been used in various fields
of theoretical physics. In one time, a discussion of the
role of relativistic correction terms in the form of 𝛿-
potentials to the Coulomb interaction in the QED was
problematic when considering the quasi-relativistic
Breit potentials [1]. Modern studies of Bose conden-
sation effects are based on using the self-consistent
Gross–Pitaevskii field [2,3] and the idea of 𝛿-like inter-
action potentials (see works [4,5]). In general, various
𝐷-dimensional nonlinear evolution equations like the
nonlinear Schrödinger one are often considered as as-
sociated with certain many-body systems character-
ized by 𝛿-like interaction potentials. Some versions of
effective Skyrme forces [6] (see also works [7,8]) in the
form of a superposition of two- and three-particle 𝛿-
like potentials remain still popular in nuclear physics
as a model of interaction between nucleons, which
is used to describe the structure characteristics of
atomic nuclei, from light and intermediate ones up
to the most heavy nuclei, within the simplest one-
particle self-consistent mean-field approximation.

It should be noted that a consideration of the prob-
lems containing 𝛿-potentials is very often restricted to
calculations in the first-order approximation of per-
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turbation theory (which are convenient to be done
just with such potentials) and assuming that the ex-
act solution of the problem does not change the result
from the qualitative point of view. However, such an
assumption has not been substantiated. In this work,
we study the issue of whether 𝛿-potentials are appli-
cable and effective in the case of many-body systems
in a 𝐷-dimensional space, as well as the role of the
consistent account of pair correlation effects in such
problems.

2. Formulation
and Preliminary Analysis of the Problem

Consider a quantum-mechanical system of 𝑁 parti-
cles in a 𝐷-dimensional space. In addition to some
usual potentials, 𝑈 (𝑟𝑖𝑗), the interaction between par-
ticles also includes 𝛿-like potentials. Moreover, the
system can be located in an external potential field
𝑉 (r). As a result, the Hamiltonian of the system
looks like

�̂� =

𝑁∑︁
𝑖=1

(︂
p2
𝑖

2𝑚
+ 𝑉 (r𝑖)

)︂
+

𝑁∑︁
𝑗>𝑖=1

𝑈 (𝑟𝑖𝑗)+

+ 𝑔

𝑁∑︁
𝑗>𝑖=1

𝛿𝜀 (r𝑖𝑗). (1)

Hereafter, the 𝛿-functions are defined by means of
a sequence of 𝛿𝜀-like functions, in particular, in the
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form

𝛿𝜀 (x) =
1

(
√
𝜋 𝜀)

𝐷
𝑒−x2/𝜀2 , 𝛿𝜀 (x) −−→

𝜀→0
𝛿 (x), (2)

where x2 ≡
∑︀𝐷
𝑘=1 𝑥

2
𝑘 is the squared interval in the

𝐷-dimensional space. Generally speaking, the specific
profile of 𝛿𝜀 is not too important, and it is chosen
in form (2) for convenience. It is important that the
limit 𝜀 → 0 should be understood as the one carried
out in the final solutions obtained for a given 𝜀.

Let us firstly consider, for simplicity, a model con-
sisting of two particles interacting via the oscillator
and repulsive 𝛿-like potentials (in the center-of-mass
frame, with the unit reduced mass and the unit cir-
cular oscillation frequency):(︂
−1

2
△+

1

2
r2 + 𝑔𝛿 (r)

)︂
𝜓 (r) = 𝐸𝜓 (r). (3)

Which physical consequences follow from the pres-
ence of the 𝛿-potential in Eq. (3) in the𝐷-dimensional
space? In the one-dimensional case, one can find that,
due to the repulsive 𝛿-potential, all even-parity os-
cillator levels would shift upward, and they would
approach the neighbor odd-parity oscillator levels as
𝑔 → ∞. At the same time, the odd-parity oscillator
levels would not be shifted by the 𝛿-potential, which
turns out inefficient for them (because the corre-
sponding wave functions equal zero just at the point,
where the 𝛿-function is located).

Let us consider a nontrivial three-dimensional case
for Eq. (3) and a spherically symmetric state of the
system (since the 𝛿-potential is not efficient for the
states with non-zero angular momenta owing to the
factor ∼𝑟𝑙 in the wave function). Expanding the so-
lution of the Schrödinger equation (3) into a series of
oscillator eigen-functions for the zero-order (unper-
turbed by the 𝛿-potential) problem,

𝜓 (𝑟) =
∑︁
𝑘

𝑐𝑘𝜓𝑘 (𝑟), (4)

we obtain the explicit solution

𝜓 (𝑟) =
1√︃

𝐾∑︀
𝑖=0

|𝜓𝑖(0)|2
(𝐸−𝐸𝑖)

2

𝐾∑︁
𝑘=0

𝜓*
𝑘 (0)

𝐸 − 𝐸𝑘
𝜓𝑘 (𝑟), (5)

which approaches the exact one, as 𝐾 grows. As𝐾 →
→ ∞, series (5) would have been an exact solu-

tion, if it is convergent. The energy levels in the 𝐷-
dimensional problem (5) are determined from the sec-
ular equation

1

𝑔
=

𝐾∑︁
𝑘=0

|𝜓𝑘 (0)|2

𝐸 − 𝐸𝑘
=

=
1

𝜋𝐷/2Γ (𝐷/2)

𝐾∑︁
𝑘=0

1

Δ− 2𝑘

Γ (𝑘 +𝐷/2)

Γ (𝑘 + 1)
, (6)

where Δ ≡ 𝐸 − 𝐷/2 is the energy shift, and Γ (𝑧)
is the Euler gamma function. At a fixed 𝐾, the tran-
scendental equation (6) has a solution Δ0 describing
the upward shift of the ground-state energy, which
obviously falls within the interval 0 < Δ0 < 2. The
shift Δ1 of the first excited state lies within the inter-
val 2 < Δ1 < 4; the shift of the next level, Δ2, within
the interval 4 < Δ2 < 6; and so on. The terms

𝑏𝑘 =
1

Δ− 2𝑘

Γ (𝑘 +𝐷/2)

Γ (𝑘 + 1)

in series (6) have the following asymptotic behavior
at large 𝑘:

𝑏𝑘 ≈ 𝐶 𝑘𝐷/2−2. (7)

Therefore, in the case 𝐷 ≥ 2, sum (6) diverges if the
set of basis functions is extended (𝐾 → ∞). In the
limiting two-dimensional case, series (6) is logarithmi-
cally divergent; at higher dimensions, it is power-like
divergent. One can verify that, in the case 𝐷 ≥ 2,
the resulting energy levels of the ground and excited
states become closer and closer to the corresponding
oscillator levels, as 𝐾 → ∞; i.e. the level shifts van-
ish. In particular, the ground-state energy tends to
the unperturbed energy level as follows:

𝐸0 −−−→
𝐾→∞

𝐷

2
+

(𝐷 − 2) Γ (𝐷/2)

(𝐾 +𝐷/2)
(𝐷−2)/2

, 𝐷 ≥ 2;

𝐸0 −−−→
𝐾→∞

1 +
2

ln𝐾 + 𝛾
, 𝐷 = 2,

(8)

where 𝛾 = 0.5772 ... is the Euler constant. At the
same time, the wave function tends to the unper-
turbed oscillator one at all distances but the point
𝑟 = 0, where it vanishes: 𝜓 (0) = 0.

In Figure, in order to illustrate what happens to
the wave function (5) when the basis is expanded,
we show successive approximations for the ground-
state wave function calculated for various 𝐾’s in
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the three-dimensional case (for definiteness, we took
𝑔 = 1). Similar results could be demonstrated for var-
ious 𝐷 ≥ 2 and coupling constants 𝑔. The larger is
𝐾, the smaller is the value of wave function at the
point 𝑟 = 0, and that is why the role of the repul-
sive 𝛿-potential becomes less important (the integral
of its product with the squared absolute value of wave
function tends to zero). In the limit 𝐾 → ∞, the con-
tribution of the repulsive 𝛿-potential exactly equals
zero (for 𝐷 ≥ 2). Note also that, at other points, the
successive approximations tend to the unperturbed
function, though non-uniformly.

Thus, the repulsive 𝛿-potential with an arbitrary
coupling constant 𝑔 does not shift the energy levels
and does not change the wave functions of the unper-
turbed problem almost everywhere, except the dis-
continuity point at the coordinate origin, i.e. it is not
efficient in the case 𝐷 ≥ 2.

It should be emphasized once again that the con-
sideration of problem (3) in the first approximation
of perturbation theory with respect to the 𝛿-potential
has no sense at 𝐷 ≥ 2. In particular, in the first-order
approximation for the energy levels 𝐸(1)

𝑛 , one has

𝐸(1)
𝑛 = 2𝑛+

𝐷

2
+ 𝑔 |𝜓𝑛 (0)|2, (9)

whereas higher-order correction terms form a diver-
gent series. At the same time, the exact energy shift
equals zero; in other words, the repulsive 𝛿-potential
is not efficient at 𝐷 ≥ 2. This fact can be confirmed
reliably only in the framework of non-perturbative
analysis. In the next section, we give the proof of this
fact on the basis of the variational principle, without
use of perturbation theory.

To confirm the general conclusions about the role
of 𝛿-like potentials, let us demonstrate similar results
obtained at 𝐷 = 3 for another profile of an external
field (instead of the oscillator in Eq. (3)): for a spher-
ical rectangular well of radius 𝑅, where 𝑉 (𝑟) = 0
if 𝑟 < 𝑅, and 𝑉 (𝑟) → ∞ if 𝑟 > 𝑅. In addition,
instead of the sequence of functions 𝛿𝜀 in form (2),
we take the potential 𝛿𝜀 as a repulsive spherical bar-
rier of radius 𝜀; i.e. the potential is nonzero only at
𝑟 < 𝜀, where it is constant: 𝛿𝜀 = 3

4𝜋𝜀3 𝑔. The pas-
sage to the limit 𝜀 → 0 is done in the solutions that
are obtained in the explicit form. It can be shown
directly that, at 𝜀 → 0, the ground-state energy
of this system approaches the value 𝐸0 = 𝜋2

𝑅2 for
the unperturbed problem with the spherical potential
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Successive approximations of the ground-state wave func-
tion (5) of problem (3) in the three-dimensional case. The num-
bers near the curves denote the number 𝐾 of basis functions
that were taken into account. In the insert, the region of small
distances is shown for large 𝐾. The dotted line depicts the
wave function of the unperturbed problem

well as 𝐸𝜀 ≡ 𝑘2 −−→
𝜀→0

𝜋2

(𝑅−𝜀)2

(︁
1− 2

√︁
4𝜋𝜀
3𝑔

𝜀
𝑅 + ...

)︁
. The

corresponding wave function at 𝜀 < 𝑟 < 𝑅 also ap-
proaches the unperturbed one: 𝜓𝜀 (𝑟) −−→

𝜀→0
𝜓0 (𝑟) =

= sin(𝑘0𝑟)
𝑟 , where 𝑘0 = 𝜋/𝑅. Only within the in-

ternal region of the repulsive potential, the wave
function rapidly decreases near the coordinate ori-
gin according to the law 𝜓𝜀 (𝑟) = 𝑐 sinh(𝜆𝑟)

𝑟 , where

𝜆 =
√︁

3𝑔
4𝜋𝜀3 − 𝑘2, being exponentially small at 𝑟 = 0:

𝜓𝜀 (0) = 𝑐𝜆−−→
𝜀→0

2𝜋
𝑅 exp

(︂
−
√︁

3𝑔
4𝜋𝜀

)︂
. Even in the case

𝑔 → ∞ (the hard core), both the ground-state en-
ergy 𝐸𝜀 = 𝑘2 = 𝜋2

(𝑅−𝜀)2 and the wave function

𝜓𝜀 (𝑟) = 1
𝑟 sin

(︁
𝜋 (𝑅−𝑟)

(𝑅−𝜀)

)︁
approach the corresponding

unperturbed values (in the region 𝑟 > 𝜀) as 𝜀→ 0. If
this conclusion is correct even for the repulsive hard
core, it is all the more correct for a weaker repulsive
potential with a finite radius and an arbitrary pro-
file. Note that, for rapidly decreasing repulsive poten-
tials (in particular, like formula (2)), all main conclu-
sions remain valid irrespective of the specific potential
profile.

Note that, in the case 𝐷 < 2, the sum in
Eq. (6) converges for both repulsive and attractive 𝛿-
potentials. Hence, in this case (in particular, in the of-
ten used one-dimensional space), the shifts of energy
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levels are finite (upward for the repulsive 𝛿-potential),
and the wave functions change substantially. For the
attractive 𝛿-potential, the ground-state energy de-
creases (Δ0 < 0). The same is observed for excited
states, but the corresponding shifts remain within the
intervals 2 (𝑛− 1) < Δ𝑛 < 2𝑛. Thus, the attractive
𝛿-potential can stimulate the appearance of only one
bound state with a negative energy in the system with
Hamiltonian (3) in accordance with the fact that the
𝛿-potential is the first-rank operator.

A specific role is played by the attractive 𝛿-po-
tentials in the case 𝐷 ≥ 2 where problem (3)
is known to have no sense, since the system col-
lapses. Generally speaking, the sum of the standard
Hamiltonian, which has the ordinary interaction po-
tential distributed in the space, and an attractive 𝛿-
potential becomes an operator that is not bounded
below, and the ground state of the system becomes
undefined. In this case, there is no sense to use ex-
pansions of type (5), (6), because they also become
undefined. At the same time, the consideration of
this problem in the first order of perturbation the-
ory has no sense as well, because it brings us to solu-
tion (9) that has no relation to the final result. Note
also the well-known important example: the three-
particle problem in the limit of zero force range [8].
This limit can be interpreted as the attraction be-
tween particles described by a 𝛿-like interaction po-
tential of type (2), but the attraction intensity also
tends to zero as 𝜀→ 0 following a law that allows a fi-
nite (given a priori) energy of the two-particle bound
state to be fixed. However, even in the case of such
a “weaker” 𝛿-like attraction potential, the system of
three and more particles will collapse. The collapse in
the system of three particles in the three-dimensional
case and in the limit of zero force range was studied in
works [9, 10] in detail. The cited authors even found
the law describing how the energy levels, the num-
ber of which becomes infinitely large, tend to minus
infinity and predicted the main relations for the phe-
nomenon, which is now known as the Efimov effect.

Conclusions drawn for problem (3), irrespective of
whether the 𝛿-potential is repulsive or attractive, are
completely confirmed by other examples of similar
problems. In particular, besides the example of in-
teraction in an external area in the form of a spher-
ical potential well, which was mentioned above, we
could take other exactly solvable problems, e.g., a 𝐷-
dimensional cubic box with infinitely high walls or the

Coulomb potential. In all those cases, the divergence
of (6)-type series at 𝐷 ≥ 2 leads to results similar
to Eq. (8). The main conclusion concerning the inef-
ficiency of the repulsive 𝛿-potential in the case 𝐷 ≥ 2
remains valid. Note that, for problems with external
potentials that generate a finite number of discrete
levels and a continuous spectrum, while considering
a generalized expression of type (6) with an additional
(besides the summation over the discrete spectrum)
integration over the continuum spectrum, all the prin-
cipal conclusions concerning the inefficiency of the 𝛿-
potential remain in force.

In the next section, we prove the statements made
above with the help of the variational principle used
in the framework of rather general assumptions con-
cerning the Hamiltonian that contains a repulsion in
the form of the 𝛿-potential.

3. Proof on the Basis
of the Variational Principle

First, let us consider the case 𝐷 = 2 in detail, which
is the most delicate for proof. This is a “critical” case,
because the repulsive 𝛿-potential becomes efficient at
𝐷 < 2: it affects the physical observable quantities
and changes the wave functions. We accept the most
general assumptions for the Hamiltonian unperturbed
by the 𝛿-potential: the only requirement is that the
wave functions of the unperturbed problem should be
finite at 𝑟 = 0, which is reasonable for a wide class
of commonly used potentials 𝑉 (𝑟). Let the ground
state of the unperturbed system have the energy 𝐸0

and be described by the wave function 𝜓0 (𝑟). In or-
der to variationally estimate the ground-state energy,
keeping in mind the preliminary consideration of the
possible influence of the 𝛿-potential on the system and
understanding that the account of the wave function
behavior at small distances is crucially important, we
construct the trial wave function 𝜓 (𝑟) in the form

𝜓 (𝑟) = 𝑓 (𝑟)𝜓0 (𝑟) . (10)

The correlation factor is chosen to equal 𝑓 (𝑟) ≡
≡ 1 − exp

(︁
−(𝛽𝑟)

1/𝛼
)︁
, where the parameter 𝛼 =

= 𝛼 (𝛽) is an infinitely increasing function of 𝛽, i.e.
𝛼 (𝛽) −−→

𝛽→∞
∞. Omitting the general analysis of allow-

able functions 𝛼 = 𝛼 (𝛽), we restrict ourselves to
the example 𝛼 ≡ ln (ln𝛽), which is sufficient for the
proof of our statement. The ground-state energy is
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denoted by 𝐸0, and the corresponding wave function
of the unperturbed (by the 𝛿-potential) problem by
𝜓0 (𝑟). The variational estimate of the ground-state
energy corresponding to the Hamiltonian with an ad-
ditional repulsive 𝛿-potential with the use of the wave
functions (10) can be presented in the form

𝐸 ≤
∫︀
𝜓* (𝑟)

(︀
− 1

2△+ 𝑉 (𝑟) + 𝑔𝛿 (r)
)︀
𝜓 (𝑟) 𝑑r∫︀

|𝜓 (𝑟)|2 𝑑r
≡

≡ 𝐸0 +
1
2

∫︀
|𝜓0 (𝑟)|2 (∇𝑓 (𝑟))2 𝑑r∫︀
|𝜓0 (𝑟)|2 𝑓2 (𝑟) 𝑑r

, (11)

where the integration is carried out over the two-
dimentional space. Note that the 𝛿-potential itself
makes no contribution to the numerator in Eq. (11)
because of the correlation factor property 𝑓 (0) = 0.
However, owing to the same correlation factor, there
arises another, additional to 𝐸0, term in Eq. (10),
which follows from the kinetic energy operator. If the
normalized wave function of the unperturbed prob-
lem is finite, i.e. |𝜓0 (𝑟)|2 ≤ 𝐶0 (which is valid for an
arbitrary non-singular Hamiltonian), the normaliza-
tion integral in the denominator of Eq. (11) tends to
1 as 𝛽 → ∞,∫︁

|𝜓 (𝑟)|2 𝑑r−−→
𝛽→∞

1 +𝒪
(︂
𝛼Γ (2𝛼)

𝛽2

)︂
−−→
𝛽→∞

1, (12)

since 𝛼 = ln (ln𝛽) and due to the asymptotic proper-
ties of the gamma function Γ (𝑧). Let us consider now
the integral in the numerator of Eq. (10),

1

2

∫︁
|𝜓0 (𝑟)|2 (∇𝑓 (𝑟))2 𝑑r ≤ 1

2
𝐶0

∫︁
(∇𝑓 (𝑟))2 𝑑r =

=
𝜋𝐶0

4𝛼
. (13)

Hence, we have 𝐸 ≤ 𝐸0 +
𝜋𝐶0

4𝛼 −−→
𝛽→∞

𝐸0. Since the re-
pulsive 𝛿-potential can shift the energy only upward,
i.e. 𝐸 ≥ 𝐸0, we ultimately obtain that 𝐸 = 𝐸0 in the
two-dimensional case.

The proof becomes essentially simpler for spaces of
higher dimensionalities, because the larger is 𝐷, the
more important role is played by the 𝑟𝐷−1 factor in
the integration at small distances. Already for 𝐷 > 2,
it is sufficient to choose a simpler correlation factor
in the trial function (10), e.g.,

𝑓 (𝑟) = 1− exp
(︁
− (𝑟/𝑏)

2
)︁
, (14)

and pass to the limit 𝑏→ 0 in final expressions. Using
the correlation factor (14), let us consider the prob-
lem of 𝛿-potential efficiency for the systems of 𝑁 par-
ticles in the case 𝐷 > 2. To carry out the variational
estimation of the ground-state energy, we use a trial
variational function in the form

Ψ = Ψ0𝐹 (𝑟12, 𝑟13, ...) = Ψ0

𝑁∏︁
𝑖>𝑗=1

𝑓 (𝑟𝑖𝑗), (15)

where the pair correlation factors 𝑓 (𝑟𝑖𝑗) have form
(14), and Ψ0 is the wave function of the ground
state for the Hamiltonian 𝐻0 that differs from Hamil-
tonian (1) by the absence of the term 𝛿𝑉 =

= 𝑔
∑︀𝑁
𝑖>𝑗=1 𝛿 (r𝑖𝑗). For the ground-state energy of

problem (1), we obtain the following variational esti-
mate (similar to Eq. (11)):

𝐸 ≤ 𝐸0 +

1
2𝑚

𝑁∑︀
𝑖=1

∫︀
(𝑑r)

𝑁 |Ψ0|2
(︁
(∇𝑖𝐹 )

2
+ 𝛿𝑉 𝐹 2

)︁
∫︀
(𝑑r)

𝑁 |Ψ0|2 𝐹 2
=

= 𝐸0 +

1
2𝑚

𝑁∑︀
𝑖=1

∫︀
(𝑑r)

𝑁 |Ψ0|2 (∇𝑖𝐹 )
2

∫︀
(𝑑r)

𝑁 |Ψ0|2 𝐹 2
. (16)

The potential 𝛿𝑉 disappears from the numerator of
Eq. (16) due to the following correlation factor prop-
erty: 𝐹 = 0 if any of the pair distances 𝑟𝑖𝑗 = 0. We
emphasize once more that the term additional to 𝐸0

in Eq. (16) originates from the kinetic energy oper-
ator action on the correlation factors. We omit the
straightforward but cumbersome calculations of the
derivatives of 𝐹 , as well as the estimation of the inte-
grals in Eq. (16) as 𝑏 → 0, and give the ultimate es-
timate for the energy (under the natural assumption
that the squared wave function is finite, |Ψ0|2 ≤ 𝐶0):

𝐸 ≤ 𝐸0 +𝒪
(︀
𝑏𝐷−2

)︀
. (17)

The higher the dimension 𝐷 of the space, the more
rapidly tends this value of energy to the unperturbed
value, thus 𝐸 ≤ 𝐸0 as 𝑏→ 0. It is clear a priori that
any repulsive potential 𝛿𝑉 can result only in 𝐸 ≥ 𝐸0.
Therefore, we ultimately obtain that 𝐸 = 𝐸0.

We point out that, in the case 𝐷 = 2, the cor-
relation factor may be taken in the form used in
Eq. (10) for the two-particle problem, and the above-
mentioned arguments can be repeated for a system
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of 𝑁 particles. But instead of formula (17), we will
obtain an estimation of type (13).

Note that the obtained results concerning the ineffi-
ciency of a repulsive 𝛿-potential in spaces with 𝐷 ≥ 2
dimensions can be directly generalized to the excited
energy levels. To this end, it is sufficient to take into
account that the trial variational wave functions of
the 𝑛-th excited state should be orthogonal to the
functions corresponding to the lower levels. This re-
quirement is satisfied automatically for the functions
of type (10) or (15) (where Ψ0 is to be substituted
by Ψ𝑛) in the limit of zero correlation radius, due to
the orthogonality of the wave functions in the unper-
turbed problem.

It is important to understand that the repulsive
𝛿-potential does not affect other physical observable
quantities. In particular, it was shown in work [11]
that the repulsive 𝛿-potential does not change the
phase shifts in the two-dimensional case, which is
the most delicate for the proof. This means that, if
𝐷 > 2, the obtained result is even more valid (unfor-
tunately, this fact was not emphasized in work [11]).
In any case, if a repulsive 𝛿-potential affects neither
the spectrum nor the phase shifts, it is inefficient at
𝐷 ≥ 2.

4. Conclusions

To summarize, it has been shown that a repulsive
𝛿-potential is inefficient for a quantum system of
particles with an interaction containing 𝛿-potentials,
if the space dimensionality 𝐷 ≥ 2. The considera-
tion of such problems in the first order of pertur-
bation theory leads to incorrect results. The consis-
tent account of short-range correlations demonstrates
that such potentials make no influence on the en-
ergy spectrum and other physical observable quan-
tities. On the other hand, in the case 𝐷 ≥ 2, attrac-
tive 𝛿-potentials are known to produce the collapse
of a system. So, the 𝛿-potentials are efficient only for
one-dimensional problems. But for a system in a 𝐷-
dimensional space with 𝐷 ≥ 2 and in the framework

of the accurate problem formulation, there is no sense
to use such interaction potentials at all.
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I.В. Сименог, Б.Є. Гринюк, М.В.Кузьменко

ПРО НЕЕФЕКТИВНIСТЬ
ВIДШТОВХУВАЛЬНИХ 𝛿-ПОТЕНЦIАЛIВ
У БАГАТОВИМIРНИХ ПРОСТОРАХ

Р е з ю м е

Показано, що 𝛿-подiбнi вiдштовхувальнi потенцiали взаємо-
дiї при повному врахуваннi кореляцiй є неефективними для
будь-якої 𝑁 -частинкової квантової системи у 𝐷-вимiрному
просторi при 𝐷 ≥ 2.
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