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TO THE THEORY OF FORCE
CONSTANTS FOR MULTIATOMIC SYSTEMS
IN THE TIGHT-BINDING MODEL (PART II)PACS 61.66.-f, 65.40.Ba

An approximate expression for the Coulomb interaction energy in solids has been obtained
in the framework of the tight-binding model. The condition of adiabatic approximation and
the procedure of quantum statistical averaging for the first (static) term in the expansion of
the average potential energy in small nuclear shifts are analyzed, which allowed the electron
contribution to the thermal expansion of solids to be calculated. An equation of state for a solid
is obtained in the harmonic approximation by analyzing the internal energy and the thermal
properties of the solid. A relationship between the specific heats 𝐶𝑣 and 𝐶𝑝, which agrees with
the Grüneisen law, is found.
K e yw o r d s: theory of force constants, Coulomb interaction energy, energy of a multiatomic
system, Grüneisen law.

1. Energy of a Multiatomic
System and Coulomb Interaction
in the Tight-Binding Model

In the spirit of the tight-binding approximation, we
consider a multiatomic system consisting of atoms,
the valence electrons of which are basically located
near their “own” atoms and, due to the wave prop-
erties, interact with “other” surrounding atoms. For
simplicity, all atoms are regarded to be identical. Be-
low, atoms without their valence electrons will be re-
ferred to as nuclei.

The Hamiltonian of a system consisting of 𝑁 atoms
and 𝑍 electrons (𝑍 is the atomic valency) looks like

̂︀𝐻=
∑︁
𝑖

𝑝2𝑖
2𝑚

− 𝑒2𝑍
∑︁
𝑖,𝑘

1

|R𝑘 − r𝑖|
+
𝑒2

2

∑︁
𝑖 ̸=𝑗

1

|r𝑗 − r𝑖|
+

+
𝑒2𝑍2

2

∑︁
𝑘 ̸=𝑙

1

|R𝑘 −R𝑙|
+
∑︁
𝑘

𝑃 2
𝑘

2𝑀
, (1)

where the subscripts 𝑖 and 𝑗 enumerate the electrons,
and the subscripts 𝑘 and ̸ 𝑙 the nuclei; 𝑚 and 𝑀 are
the masses, and 𝑝𝑖 and 𝑃𝑘 the momenta of electrons
and nuclei, respectively. Let us introduce the coordi-
nates of electrons with respect to their “own” nuclei,

r𝑖 = R𝑘 + r𝑖𝑘,

c○ I.O. MARUSHKO, 2014

where r𝑖𝑘 is the electron coordinate in the 𝑘-th
atom, and the subscript 𝑖 enumerates valence elec-
trons. Then the Hamiltonian reads

̂︀𝐻 =
∑︁
𝑖

𝑝2𝑖
2𝑚

− 𝑒2𝑍
∑︁
𝑖,𝑘,𝑙

1

|R𝑘 −R𝑙 − r𝑖𝑙|
+

+
𝑒2

2

∑︁
𝑖, 𝑗, 𝑘, 𝑙
𝑖𝑘 ̸= 𝑗𝑙

1

|R𝑘 + r𝑖𝑘 −R𝑙 − r𝑗𝑙|
+

+
𝑒2𝑍2

2

∑︁
𝑘 ̸=𝑙

1

|R𝑘 −R𝑙|
+
∑︁
𝑘

𝑃 2
𝑘

2𝑀
. (2)

Grouping the terms with 𝑘 = 𝑙 in the sums over 𝑘
and 𝑙, we obtain

̂︀𝐻=
∑︁
𝑖,𝑘

𝑝2𝑖𝑘
2𝑚

− 𝑒2𝑍
∑︁
𝑖,𝑘

1

|r𝑖𝑘|
+
𝑒2

2

∑︁
𝑖 ̸=𝑗,𝑘

1

|r𝑖𝑘 − r𝑗𝑘|
+

+
∑︁
𝑘

𝑃 2
𝑘

2𝑀
− 𝑒2𝑍

∑︁
𝑖,𝑘 ̸=𝑙

1

|R𝑘 −R𝑙 − r𝑖𝑙|
+
𝑒2

2
×

×
∑︁

𝑖,𝑗,𝑘 ̸=𝑙

1

|R𝑘 + r𝑖𝑘 −R𝑙 − r𝑗𝑙|
+

+
𝑒2𝑍2

2

∑︁
𝑘 ̸=𝑙

1

|R𝑘 −R𝑙|
. (3)

The first three sums give the internal energy of free
atoms. The next sums are the kinetic energy of nu-
clei and the energy of interaction between electrons
and nuclei (the energy of interatomic interaction), re-
spectively. The latter will be denoted as 𝑈(𝑅, 𝑟), and,
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together with the kinetic energy of nuclei, it equals
the energy of nuclear motion. Hence, the Hamiltonian
of the system iŝ︀𝐻 = ̂︀𝐻0 + ̂︀𝐻 ′, (4)

where ̂︀𝐻0 =
∑︀
𝑘

̂︀𝐻𝑘 is the sum of Hamiltonians of free

atoms, and

̂︀𝐻 ′ =
∑︁
𝑘

̂︀𝑃 2
𝑘

2𝑀
+ 𝑈(𝑅, 𝑟), (5)

where

𝑈(𝑅, 𝑟) = −𝑒2𝑍
∑︁
𝑖,𝑘 ̸=𝑙

1

|R𝑘 −R𝑙 − r𝑖𝑙|
+
𝑒2

2
×

×
∑︁

𝑖,𝑗,𝑘 ̸=𝑙

1

|R𝑘 + r𝑖𝑘 −R𝑙 − r𝑗𝑙|
+
𝑒2𝑍2

2

∑︁
𝑘 ̸=𝑙

1

|R𝑘 −R𝑙|

(6)

is the energy of interatomic interaction. Some approx-
imate simplifications in the expression for 𝑈(𝑅, 𝑟) can
be made taking into account that the absolute value
|R𝑘 −R𝑙| ̸= 0, and its minimum equals the distance
between the neighbor atoms, so that |R𝑘 −R𝑙| >
> (|r𝑖| , |r𝑖 − r𝑗 |). Then the dependences on 𝑖 and 𝑗
in the denominators can be neglected, and the sum-
mation over 𝑖 and 𝑗 can be carried out. As a result,
we obtain

𝑈(𝑅, 𝑟) = −𝑒
2𝑍2

2

∑︁
𝑘 ̸=𝑙

(︃
2

|R𝑘 −R𝑙 − r𝑙|
−

− 1

|R𝑘 −R𝑙 + r𝑘 − r𝑙|
− 1

|R𝑘 −R𝑙|

)︃
. (7)

Let us analyze the expression for 𝑈(𝑅, 𝑟). It in-
cludes three Coulomb sums, each being a diverg-
ing series. However, at large enough distances, when
|R𝑘 −R𝑙| ≫ (|r𝑖| , |r𝑖 − r𝑗 |), all three terms are mu-
tually compensated, which testifies to the finiteness
of 𝑈(𝑅, 𝑟). Moreover, we may talk about the relative
smallness of this quantity if we take the virial the-
orem into account, according to which the average
value of potential energy in a system of particles with
the Coulomb interaction equals twice its kinetic en-
ergy. Then, since the kinetic energy of nuclei is low in
comparison with that of electrons, the potential en-
ergy of nuclei 𝑈(𝑅, 𝑟) is also low in comparison with
that of electrons, i.e. 𝑈(𝑅, 𝑟) ≪ 𝐻0, which allows us
to apply the standard perturbation theory.

Bearing all that in mind, let us consider a change
of the electron energy in the atom if the interaction is
“switched on”. The corresponding Schrödinger equa-
tion for the system is(︁̂︀𝐻0 + ̂︀𝐻 ′

)︁
𝜓(𝑅, 𝑟) = 𝐸𝜓(𝑅, 𝑟), (8)

wherê︀𝐻 ′ =
∑︁
𝑘

̂︀𝑃 2
𝑘

2𝑀
+ 𝑈(𝑅, 𝑟) (9)

is considered now as a small perturbation. The Schrö-
dinger equation for the eigenfunctions and the eigen-
values of the nonperturbed system looks like

̂︀𝐻𝜓0
𝑛 (𝑅, 𝑟) = 𝐸0

𝑛𝜓
0
𝑛 (𝑅, 𝑟) . (10)

Since the Hamiltonian �̂�0 is a sum of free-atom Ha-
miltonians, and the corresponding wave function is
a product of atomic functions, 𝐸0

𝑛 is a sum of the
energies of separate atoms in the 𝑛-th state, i.e. 𝐸0

𝑛 =
=
∑︀

𝑘 𝜀
0
𝑛𝑘. For identical atoms, 𝐸0

𝑛 = 𝑁𝜀0𝑛, where 𝑁
is the number of atoms, and 𝜀0𝑛 is the energy of one
atom in the 𝑛-th state.

If the eigenfunction of free atoms 𝜓0
𝑛 (𝑅, 𝑟) is taken

for the wave function in the zeroth-order approxima-
tion, the first-order corrections to the energy equal

𝐸(1)
𝑛 =

∫︁
𝜓0*
𝑛 (𝑅, 𝑟)𝑈(𝑅, 𝑟)𝜓0

𝑛(𝑅, 𝑟)𝑑r = 𝑈𝑛𝑛(𝑅). (11)

Here, we took into consideration that 𝜓0
𝑛 (𝑅, 𝑟) de-

pends on 𝑅 as a parameter that only enumerates the
atoms. Therefore, the operator of the nuclear kinetic
energy commutes with 𝜓0

𝑛 (𝑅, 𝑟) and can be taken
outside the integral. The following integration of the
expression

⃒⃒
𝜓0
𝑛 (𝑅, 𝑟)

⃒⃒2 over r gives 1, and we obtain

∑︁
𝑘

̂︀𝑃 2
𝑘

2𝑀

∫︁ ⃒⃒
𝜓0
𝑛 (𝑅, 𝑟)

⃒⃒2
𝑑r = 0. (12)

The corresponding energy 𝐸𝑛 for the system of inter-
acting atoms equals

𝐸𝑛 = 𝐸0
𝑛 + 𝑈𝑛𝑛 (𝑅) . (13)

Note that 𝑈𝑛𝑛 (𝑅) is a double sum over the vec-
tors and depends on their differences. Then, we may
change to the sum over the vector differences with
the corresponding multiplication of the sum by the
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vector number, i.e. by the number of nuclei 𝑁 (more
exactly, by 𝑁 − 1). At the same time, the potential
𝑈(𝑅, 𝑟), which includes the coordinates of electrons,
does not possess this property. Hence, we may write
𝑈𝑛𝑛 (𝑅) = 𝑉

𝑣 𝑈
0
𝑛𝑛, where 𝑉 = 𝑁𝑣 is the crystal vol-

ume, 𝑣 is the volume of a unit cell, and the quan-
tity 𝑈0

𝑛𝑛 = 𝑣
𝑉 𝑈𝑛𝑛 (𝑅) does not depend on the vol-

ume. Then 𝜕𝑈𝑛𝑛(𝑅)
𝜕R𝑖

= 𝑉
𝑣

𝜕𝑈0
𝑛𝑛

𝜕l𝑖
𝜕l𝑖
𝜕R𝑖

, where l𝑖 is the lat-
tice vector equal to the vector difference between the
𝑖-th lattice site and the lattice site at the coordinate
origin.

The correction 𝑈𝑛𝑛 to the electron energy is a func-
tion of the coordinates of nuclei. It equals the en-
ergy of interaction between atoms, and its deriva-
tives with respect to nuclear coordinates give expres-
sions for the force constants of the corresponding or-
der. By generalizing the Gell-Mann–Feynman theo-
rem [2] about the differentiation of the energy with
respect to atomic coordinates – namely, using the the-
orem proved by the author [3] about the arbitrary-
order differentiation of the energy of a system with re-
spect to atomic coordinates – we can write the follow-
ing expression for the force constants of any order 𝑚:
𝜕𝑚𝑈𝑛𝑛

𝜕R𝑘
=

∫︁
𝜓0*
𝑛 (𝑅, 𝑟)

𝜕𝑚𝑈 (𝑅, 𝑟)

𝜕R𝑚
𝑘

𝜓0
𝑛 (𝑅, 𝑟) 𝑑r =

=

(︂
𝜕𝑚𝑈 (𝑅, 𝑟)

𝜕R𝑚
𝑘

)︂
𝑛𝑛

, (14)

which, taking the statistical averaging into account,
looks like

𝜕𝑚�̄�𝑛𝑛

𝜕R𝑚
𝑘

=

(︂
𝜕𝑚�̄� (𝑅, 𝑟)

𝜕R𝑚
𝑘

)︂
𝑛𝑛

. (15)

2. Energy of Nuclear
Motion and Adiabatic Approximation

Let us consider the exact Schrödinger equation for a
multiatomic system,(︁̂︀𝐻0 + ̂︀𝐻 ′

)︁
𝜓 (𝑅, 𝑟) = 𝐸𝜓 (𝑅, 𝑟). (16)

The sought solution 𝜓 (𝑅, 𝑟) is expanded in a series
in eigenfunctions of the operator �̂�0, i.e.

𝜓 (𝑅, 𝑟) =
∑︁
𝑛

𝑎𝑛(𝑅)𝜓
0
𝑛(𝑅, 𝑟). (17)

Since∫︁ ⃒⃒
𝜓0
𝑛 (𝑅, 𝑟)

⃒⃒2
𝑑r𝑑R = 1,

we have∫︁
𝑑R
∑︁
𝑛

|𝑎𝑛 (𝑅)|
2
= 1

and

𝑎𝑛(𝑅) =

∫︁
𝜓0*
𝑛 𝑡(𝑅, 𝑟)𝜓(𝑅, 𝑟)𝑑r.

Substituting expansion (17) into the Schrödinger
equation,

̂︀𝐻0

∑︁
𝑛

𝑎𝑛 (𝑅)𝜓
0
𝑛 (𝑅, 𝑟) +

̂︀𝐻 ′
∑︁
𝑛

𝑎𝑛 (𝑅)𝜓
0
𝑛 (𝑅, 𝑟) =

= 𝐸
∑︁
𝑛

𝑎𝑛 (𝑅)𝜓
0
𝑛 (𝑅, 𝑟), (18)

multiplying the result by 𝜓0*
𝑛′ (𝑅, 𝑟), and integrating

the product over r, we obtain∑︁
𝑛

𝑎𝑛𝐸
0
𝑛𝛿𝑛𝑛′ +

∑︁
𝑛

𝑎𝑛

∫︁
𝜓0*
𝑛′ (𝑅, 𝑟) ̂︀𝐻 ′𝜓0

𝑛 (𝑅, 𝑟) 𝑑r =

= 𝐸
∑︁
𝑛

𝑎𝑛𝛿𝑛𝑛′ (19)

or∑︁
𝑛

𝑎𝑛

∫︁
𝜓0*
𝑛′ (𝑅, 𝑟)

∑︁
𝑘

̂︀𝑃 2
𝑘

2𝑀
𝜓0
𝑛 (𝑅, 𝑟) 𝑑r+

∑︁
𝑛

𝑎𝑛 ×

×
∫︁
𝜓0*
𝑛′ (𝑅, 𝑟)𝑈 (𝑅, 𝑟)𝜓0

𝑛 (𝑅, 𝑟) 𝑑r =

=
(︀
𝐸 − 𝐸0

𝑛′

)︀
𝑎𝑛′ . (20)

In view of the commutativity of the operator of ki-
netic energy with 𝜓0

𝑛(𝑅, 𝑟), we obtain

∑︁
𝑘

̂︀𝑃 2
𝑘

2𝑀
𝑎𝑛 +

∑︁
𝑛′

𝑎𝑛′𝑈𝑛𝑛′ (𝑅) =
(︀
𝐸 − 𝐸0

𝑛

)︀
𝑎𝑛 (21)

or∑︁
𝑘

̂︀𝑃 2
𝑘

2𝑀
𝑎𝑛 + 𝑈𝑛𝑛(𝑅)𝑎𝑛 +

∑︁
𝑛′ ̸=𝑛

𝑈𝑛𝑛′ (𝑅) 𝑎𝑛 =

=
(︀
𝐸 − 𝐸0

𝑛

)︀
𝑎𝑛. (22)

Neglecting the non-diagonal terms 𝑈𝑛𝑛′(𝑅) in this
equation, we obtain the following equation for 𝑎𝑛(𝑅):(︃∑︁

𝑘

̂︀𝑃 2
𝑘

2𝑀
+ 𝑈𝑛𝑛 (𝑅)

)︃
𝑎𝑛 = 𝜀𝑛𝑎𝑛, (23)

where
𝜀𝑛 = 𝐸 − 𝐸0

𝑛. (24)
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The equation obtained for 𝑎𝑛 (𝑅) is the Schrödinger
equation for the wave function of the nuclear subsys-
tem,

�̂�𝑅𝑎𝑛 = 𝜀𝑛𝑎𝑛. (25)

Here,

�̂�𝑅 =
∑︁
𝑘

𝑃 2
𝑘

2𝑀
+ 𝑈𝑛𝑛 (𝑅) . (26)

Note that the functions describing the states of the
electron and nuclear subsystems ( ̂︀𝐻0𝜓0

𝑛 = 𝐸0
𝑛𝜓

0
𝑛 and̂︀𝐻𝑅𝑎𝑛 = 𝜀𝑛𝑎𝑛) were separated provided that the non-

diagonal matrix elements of the interaction energy
calculated with the use of the wave functions of free
atoms are small.

The non-diagonal structure of the matrix 𝑈𝑛𝑛′ is
related to the non-orthogonality of atomic wave func-
tions for different atoms. If the adiabatic approxima-
tion is understood as a separate description of states
belonging to either the electron or nuclear subsys-
tem, it is satisfied in the tight-binding model under
the condition 𝑈𝑛𝑛′ ≪ 𝑈𝑛𝑛. However, the indepen-
dence of the description of the electron and nuclear
subsystems turns out relative even if the adiabatic-
ity condition is obeyed. Namely, the potential energy
of nuclear motion is the potential energy of the sys-
tem averaged over the electron states, and the wave
function of the nuclear subsystem state depends on
the quantum state of the electron subsystem. As a
rule, if there are no considerable perturbations in the
system, which are capable of inducing the electron
transitions, it is the ground state of the electron sub-
system.

Note that the theory of adiabatic approximation
was first developed by M. Born [1]. However, while
using the perturbation theory, a certain incorrectness
was made, which consisted in that the kinetic energy
of nuclei rather than the potential energy of their in-
teraction was taken as a small perturbation, although
the latter, in accordance with the virial theorem, has
the same order of smallness as the former. As a result,
the criterion of adiabaticity obtained in the form of
harmonic approximation for the motion of the nuclear
subsystem turned out too strict and little plausible,
i.e. the adiabaticity of tracing the nuclear motion by
electrons turned out dependent on the character of
this motion, rather than on its quantum state.

Attempts to find a more acceptable criteria for the
adiabatic approximation are discussed in the text-

books on quantum mechanics (e.g., by L.I. Glauber-
man and O.S. Davydov). They are based on the non-
commutativity condition for the operator of nuclear
kinetic energy and the wave function of the elec-
tron subsystem depending on the coordinates of nu-
clei parametrically, rather than functionally. We con-
sider this condition to be wrong. This is the more
so, because it conflicts with the Gell-Mann–Feynman
theorem of the differentiation of the energy of a mul-
tiatomic system with respect to the atomic coordi-
nates [2].

The subsequent analysis of the Schrödinger equa-
tion for the nuclear subsystem is carried out in the
standard way. The energy 𝑈𝑛𝑛 (𝑅) is expanded in a
series in small shifts of the nuclei with respect to their
equilibrium positions,

𝑈𝑛𝑛 (𝑅) = 𝑈𝑛𝑛 (𝑅0) +
∑︁
𝑘

𝜕𝑈𝑛𝑛 (𝑅0)

𝜕R𝑘
u𝑘 +

+
1

2

∑︁
𝑘,𝑙

𝜕2𝑈𝑛𝑛 (𝑅0)

𝜕R𝑘𝜕R𝑙
u𝑘u𝑙 + ..., (27)

where 𝑅0 means the equilibrium configuration of nu-
clei, for which all coefficients in the expansion are cal-
culated. In the harmonic approximation, taking into
account that the first derivatives of the potential en-
ergy with respect to the atomic coordinates in the
equilibrium configuration equal zero, we obtain

𝑈𝑛𝑛 (𝑅) = 𝑈𝑛𝑛 (𝑅0) +
1

2

∑︁
𝑘,𝑙

𝜕2𝑈𝑛𝑛 (𝑅0)

𝜕R𝑘𝜕R𝑙
u𝑘u𝑙, (28)

which allows the equation for 𝑎𝑛 (𝑅) in the harmonic
approximation to be written in the form(︃∑︁

𝑘

̂︀𝑃 2
𝑘

2𝑀
+
1

2

∑︁
𝑘,𝑙

𝜕2𝑈𝑛𝑛 (𝑅0)

𝜕R𝑘𝜕R𝑙
u𝑘u𝑙

)︃
𝑎0𝑛(𝑅) =

= 𝜀𝑛1𝑎
0
𝑛(𝑅), (29)

where 𝑎𝑛 (𝑅) was renamed as 𝑎0𝑛(𝑅), and

𝜀𝑛1 = 𝜀𝑛 − 𝑈𝑛𝑛 (𝑅0) . (30)

The obtained equation is the known one for the wave
function of a multiatomic system in the vibration
state. After changing to normal vibrations, the Ha-
miltonian transforms into a sum of the Hamiltonians
for independent harmonic oscillators.
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Let us designate the Hamiltonian in the harmonic
approximation as ̂︀𝐻0

𝑅 and write down the equation
for a harmonic oscillator,̂︀𝐻0

𝑅𝑎
0
𝑛𝜈 = 𝜀𝑛𝜈𝑎

0
𝑛𝜈 . (31)

Here, 𝜈 is the quantum number of an oscillator. Then

𝜀𝑛1 =
∑︁
𝜈

𝜀𝑛𝜈 = 𝜀𝑛 − 𝑈𝑛𝑛(𝑅0) =

= 𝐸 − 𝐸0
𝑛 − 𝑈𝑛𝑛(𝑅0). (32)

Accordingly,

𝐸 = 𝐸0
𝑛 + 𝑈𝑛𝑛 (𝑅0) +

∑︁
𝜈

𝜀𝑛𝜈 . (33)

The dynamics of a solid in the harmonic approxi-
mation has been studied in detail, which allowed the
contribution of lattice vibrations to thermodynamic
quantities and some thermal properties of crystals
to be determined [4], in particular, the heat (ther-
mal) capacity at a constant volume, 𝐶𝑣. However,
the fact that the potential energy of nuclear mo-
tion is the value of the operator of potential ener-
gy of the system 𝑈𝑛𝑛 (𝑅0) in the equilibrium con-
figuration averaged over the electron states seems
to be underestimated. Strictly speaking, it should
be averaged, as any other observable physical quan-
tity, not only quantum-mechanically, but also statis-
tically. The term “equilibrium configuration” has to
be related to the thermal equilibrium. Then it be-
comes evident that the equilibrium configuration it-
self depends on the temperature due to the thermal
expansion. In the lattice dynamics, which is devel-
oped on the basis of the expansion of the potential
energy (such expansion is unavoidable while distin-
guishing between the electron and vibrational states)
in small atomic shifts, the static energy 𝑈𝑛𝑛 (𝑅0) does
not play a substantial role, and the statistical av-
eraging is carried out only over the vibrational en-
ergy. In our opinion, the statistical averaging of the
static component of the potential energy has to reveal
its temperature dependence, which is responsible, in
particular, for the thermal expansion of solids and,
probably, for the electron contribution to the crystal
heat capacity.

3. Thermal Properties of Solids

By the thermal properties, we understand, first of all,
the heat capacity and the coefficient of thermal ex-
pansion. Thermodynamically, those properties have

been studied well enough. However, their quantita-
tive calculation requires the application of quantum
statistics.

The determination of those properties is associated
with the calculation of the energy of the system and
its derivatives with respect to nuclear coordinates.
Such calculations become possible in principle as a
result of both the generalization of the Gell-Mann–
Feynman theorem of the differentiation of the energy
of a multiatomic system with respect to the atomic
coordinates, when the differentiation of wave func-
tions is not needed, and the simplifications of the ex-
pression for the interaction energy 𝑈(𝑅, 𝑟).

In the harmonic approximation, the energy of nu-
clear motion equals

𝐸1 = 𝑈𝑛𝑛 (𝑅0) +
∑︁
𝜈

𝜀𝜈 . (34)

Hereafter, the subscript 𝑛 at 𝜀𝜈 , which enumerates
the electron states, is omitted. The observable quan-
tities in any system are its quantum-mechanically and
statistically averaged operators. Therefore, the quan-
tity 𝐸1 has to be statistically averaged as well. The
latter operation will be conditionally denoted by a
bar over the corresponding symbol, so that

�̄�1 = �̄�𝑛𝑛 (𝑅0 (𝑇 )) +
∑︁
𝜈

𝜀𝜈 (𝑇 ) . (35)

As a result of this averaging, the averaged values be-
come dependent on the temperature 𝑇 : 𝜀𝜈 (𝑇 ) ex-
plicitly and �̄�𝑛𝑛 (𝑅0 (𝑇 )) implicitly. Let us denote∑︀

𝜈 𝜀𝜈 (𝑇 ) by 𝐸𝑘; this is the well-known energy of
vibrational nuclear motion, i.e. the thermal energy
of the object, which governs–to a great extent, but
not in full–its thermal properties. The proportional-
ity between this energy and the crystal volume can be
found when summing up over 𝜈 = (𝑗,k), where 𝑗 is
the number of a normal vibration branch, and k is its
wave vector, with the corresponding density of states
being proportional to the crystal volume. Therefore,
we can write 𝐸𝑘 = 𝑉 𝐸0

𝑘, where 𝐸0
𝑘 does not depend

on the volume. Hence, the energy of the nuclear sub-
system �̄�1 turns out consisting of the thermal energy
and the energy of interaction between the nuclei in
a certain configuration. This static energy can be re-
garded as that having the mechanical origin, although
this statement contradicts the viewpoint–to tell the
truth, not substantiated [5]–that the internal energy
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of a crystal cannot be divided into the thermal and
mechanical ones. In our opinion, just this component
of the energy governs all mechanical properties of a
solid, and its temperature dependence determines the
temperature dependence of mechanical characteris-
tics of a solid, such as the elastic moduli and oth-
ers. In what follows, in order to simplify notations,
we put �̄�1 = 𝐸.

One should pay attention to that the statistical
averaging of the total crystal energy 𝐸1 over the
canonical Gibbs distribution is not possible because
of its negative value, which is typical of the sys-
tems with coupled particles. At the same time, a par-
tial averaging of its positive part (the vibrational
energy) can be done [4]. Such opportunity follows
from the structure of the canonical Gibbs distribu-
tion, which allows its factorization with respect to
different types of energy. The negative values of en-
ergy �̄�1 follows from the virial theorem, according to
which �̄�1 = −𝐾, where 𝐾 is the average kinetic en-
ergy of particles. On the other hand, 𝐸𝑘 = 2𝐾, so
that 𝐾 = 1

2

∑︀
𝜈 𝜀𝜈 .

Nevertheless, the averaging of 𝑈𝑛𝑛 (𝑅) is still pos-
sible, at least formally, if we use the microcanon-
ical Gibbs distribution and consider the solid as a
closed system (in our opinion, this assumption is not
too strict). In a closed system, the energy is con-
stant, which results in the delta-like Gibbs distri-
bution 𝛿 (𝑈𝑛𝑛 (𝑅)− 𝑈𝑛𝑛 (𝑅, 𝑇 )) [6]. The normalizing
multiplier is absent here owing to the deterministic
character of both the coordinates of atoms in the lat-
tice and the energy of interatomic interaction, from
which the undetermined part in the form of the ther-
mal energy is excluded. Therefore, we have

�̄�𝑛𝑛 =

∫︁
𝑈𝑛𝑛(𝑅)𝛿(𝑈𝑛𝑛(𝑅)−

−𝑈𝑛𝑛(𝑅, 𝑇 ))𝑑𝑅 = 𝑈𝑛𝑛(𝑇 ). (36)

Now, let us make assumption – in our opinion,
which is not deprived of plausibility – that, since 𝑈𝑛𝑛

depends only on the lattice vectors, 𝑅, the statisti-
cal averaging will result in the temperature depen-
dence of the lattice vectors only. Moreover, since the
crystal symmetry remains unchanged in rather a wide
temperature interval, the temperature-induced varia-
tion of lattice vectors will result in the corresponding
change of their lengths. Then

�̄�𝑛𝑛 = 𝑈𝑛𝑛 (𝑅 (𝑇 )) =
𝑉

𝑣
𝑈0
𝑛𝑛 (𝑅 (𝑇 )) (37)

and, respectively,

𝐸 = (𝑈01
𝑛𝑛 (𝑅 (𝑇 )) + 𝐸0

𝑘)𝑉, (38)

where
𝑈01
𝑛𝑛 =

1

𝑣
𝑈0
𝑛𝑛. (39)

In turn, according to the results of work [5],

𝜕𝐸

𝜕𝑉
= −𝑃. (40)

Then

𝑈01
𝑛𝑛 (𝑅 (𝑇 )) + 𝐸0

𝑘 = −𝑃 (41)

and

𝐸 = −𝑃𝑉. (42)

Accordingly, the relation

𝑃𝑉 =
1

2

∑︁
𝜈

𝜀𝜈 (43)

can be considered as the equation of crystal state in
the harmonic approximation. At high temperatures,
~𝜔𝜈 ≪ 𝑘𝑇 , it transforms into the well-known classical
expression

𝑃𝑉 =
3

2
𝑁𝑘𝑇. (44)

Since

𝐶𝑝 =

(︂
𝜕𝐸

𝜕𝑇

)︂
𝑃

, (45)

we have

𝐶𝑝 = −𝑃 𝜕𝑉
𝜕𝑇

. (46)

On the other hand,

𝐶𝑝 =
𝜕

𝜕𝑇

(︃∑︁
𝜈

𝜀𝜈

)︃
+
𝑑�̄�𝑛𝑛

𝑑𝑇
. (47)

In turn,

𝑑�̄�𝑛𝑛

𝑑𝑇
=
∑︁
𝑘

𝜕�̄�𝑛𝑛

𝜕R𝑘

𝑑R𝑘

𝑑𝑇
. (48)

As a rule, in the course of the thermal expansion,
the crystal keeps its symmetry in a wide tempera-
ture interval. Therefore, we assume that the vectors
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𝑑R𝑘 and R𝑘 have the same direction. Multiplying
each term on the right-hand side of Eq. (48) by
R𝑘/R𝑘 = 1, we obtain

𝑑�̄�𝑛𝑛

𝑑𝑇
=
∑︁
𝑘

𝜕�̄�𝑛𝑛

𝜕R𝑘

R𝑘

𝑅𝑘

𝑑𝑅𝑘

𝑑𝑇
. (49)

We can demonstrate that the combination 1
𝑅𝑘

𝑑𝑅𝑘

𝑑𝑇 ,
which is a coefficient of the linear thermal expansion,
does not depend on 𝑘 for the cubic crystal. We will
denote it by 𝛼1 in contrast to the coefficient of bulk
thermal expansion 𝛼. Note that the coefficient 𝛼1 is
related to the static (electron) part of the potential
energy; therefore, it would be more proper to call it
the electron contribution to the thermal expansion
with regard for a probable phonon contribution, the
calculation of which goes beyond the scope of the har-
monic approximation.

So, we have

𝑑�̄�𝑛𝑛

𝑑𝑇
= 𝛼1

∑︁
𝑘

𝜕�̄�𝑛𝑛

𝜕R𝑘
R𝑘. (50)

Let us introduce the notation

𝐴𝑛𝑛 =
∑︁
𝑘

𝜕�̄�𝑛𝑛

𝜕R𝑘
R𝑘. (51)

Then Eq. (50) reads

𝑑�̄�𝑛𝑛

𝑑𝑇
= 𝛼1𝐴𝑛𝑛. (52)

Accordingly, for the heat capacities, we obtain

𝐶𝑝 =
𝜕

𝜕𝑇

(︃∑︁
𝜈

𝜀𝜈

)︃
+ 𝛼1𝐴𝑛𝑛 (53)

and

𝐶𝑣 = −𝑉 𝜕𝑃
𝜕𝑇

= 𝑉
𝜕

𝜕𝑇

(︀
𝑈01
𝑛𝑛 + 𝐸0

𝑘

)︀
=

=
𝜕𝐸𝑘

𝜕𝑇
=
∑︁
𝜈

𝜕𝜀𝜈
𝜕𝑇

. (54)

Here, we took into account that 𝑈01
𝑛𝑛 does not depend

explicitly on the temperature. Formula (54) agrees
with the result of work [4]. From Eqs. (53) and (54),
it follows that

𝐶𝑝 = 𝐶𝑣 + 𝛼1𝐴𝑛𝑛 (55)

or

𝐶𝑃 − 𝐶𝑣 = 𝛼1𝐴𝑛𝑛. (56)

Since 𝐴𝑛𝑛 does not depend explicitly on the temper-
ature, the ratio 𝐶𝑝−𝐶𝑣

𝛼1
= 𝐴𝑛𝑛, being an expression of

the Grüneisen law, allows one to determine the coef-
ficient of linear thermal expansion,

𝛼1 =
𝐶𝑃 − 𝐶𝑣

𝐴𝑛𝑛
. (57)

By definition, 𝛼1 = 𝑑𝑅
𝑅𝑑𝑇 for a cubic crystal.

Let us determine the temperature dependence of
the lattice vector

𝑅 (𝑇 ) = 𝑅 (0) 𝑒𝛼1𝑇 , (58)

where 𝑅(0) is the corresponding value at the absolute
zero temperature. Since 𝛼1𝑇 ≪ 1 within the whole
interval of real temperatures, we may put

𝑅 (𝑇 ) = 𝑅 (0) (1 + 𝛼1𝑇 ) . (59)

4. Conclusions

As a rule [4], while analyzing the lattice dynamics,
the abstract potential energy as a function of the nu-
clear coordinates, as well as its derivatives with re-
spect to the nuclear coordinates, is used, without ac-
count for the possibility of their calculation. In this
work, it is shown that, while describing the dynamics
of nuclei, the corresponding dynamic equations in-
clude actually the averaged quantum-mechanical val-
ues of potential energy and its derivatives, which is
a consequence of the division between the motions of
the electron and nuclear subsystems. This division is
carried out in the adiabatic approximation, the cri-
terion of which is the smallness of the non-diagonal
elements in the interaction energy matrix in compar-
ison with the diagonal ones (𝑈𝑛𝑛′ ≪ 𝑈𝑛𝑛). In addi-
tion, while expanding the potential energy in a series
in small nuclear shifts from the equilibrium positions,
it is necessary to take into account that the matter
concerns the potential energy that is averaged statis-
tically as well. As a result, there emerges the temper-
ature dependence of not only the vibrational energy,
but also the static one, 𝑈𝑛𝑛, governing the thermal
expansion, the temperature-induced shift of equilib-
rium positions, and the temperature dependence of
force constants.

In this work, all preliminary conditions required for
the calculation of both the average potential energy
𝑈𝑛𝑛 (with the use of 𝑈(𝑅, 𝑟)) and its arbitrary-order
derivatives with respect to the nuclear coordinates
(force constants)) are formulated. The main objective
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of the work was to express all examined characteris-
tics of a solid in terms of the quantum-statistically
averaged interaction energy �̄�𝑛𝑛(𝑅) and its de-
rivatives.
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ДО ТЕОРIЇ СИЛОВИХ СТАЛИХ
БАГАТОАТОМНИХ СИСТЕМ У МОДЕЛI
СИЛЬНОГО ЗВ’ЯЗКУ (ЧАСТИНА II)

Р е з ю м е

У роботi в моделi сильного зв’язку наведено наближений
вираз для енергiї кулонiвської взаємодiї в твердому тiлi.
Проаналiзовано умову адiабатичного наближення та вико-
нано аналiз квантово-статистичного усереднення першого
(статичного) члена розкладу середньої потенцiальної енер-
гiї по малих змiщеннях ядер. Такий аналiз дозволив ви-
значити електронний внесок у теплове розширення твердо-
го тiла. На основi аналiзу внутрiшньої енергiї та теплових
властивостей твердого тiла отримано рiвняння стану твер-
дого тiла в гармонiчному наближеннi. Вiдповiдно знайдено
зв’язок теплоємностей 𝐶𝑣 та 𝐶𝑝, що узгоджується iз зако-
ном Грюнайзена.
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