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A technique for the calculation of high-order virial coefficients, which combines the quadrature
integration and the Mayer sampling Monte Carlo method (MSMC), is proposed. Unlike the
original MSMC, this technique does not require to know the reference coefficients for the hard-
sphere potential and can be used in a wide range of temperatures and for various interaction
potentials. In addition, the proposed method has a higher accuracy at lower computational
costs. It has been used to obtain some new data on the seventh virial coefficient of the Lennard-
Jones (12-6) model.
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1. Introduction

The theoretical description of condensed states of
matter and, in particular, the first order phase tran-
sitions remains a challenging problem for statistical
physics [1]. Over a hundred years, one of the wide-
ly known approaches with the exact statistical sub-
stantiation involves the virial equation of state, in
which the power (virial) coefficients are determined
in terms of the so-called irreducible integrals of the
corresponding order [2],

𝐵𝑘+1 = − 𝑘

𝑘 + 1
𝛽𝑘.

Recently, on the basis of the exact cluster expan-
sion of a configuration integral, another approach has
been proposed [3–7], which has a wider range of appli-
cability. In the framework of this approach, both the
configuration integral and the equation of state are
also expressed in terms of irreducible integrals, which
makes the problem of calculating those integrals (or
virial coefficients) even more actual.

Unfortunately, this problem still involves consider-
able technical difficulties even for the simplest model
potentials of intermolecular interaction, despite the
rapid development of computation facilities. For re-
alistic potentials, which make allowance for both at-
traction and repulsion, the virial coefficients can be
calculated nowadays using quadrature methods only
up to the fifth order inclusive [8–10].
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An absolutely new approach to the calculation of
virial coefficients was proposed by D. Kofke and col-
laborators [11–13]. It is based on the “umbrella sam-
pling” method, a variant of the Metropolis Monte
Carlo algorithm [14], in which the integrand (a sum
of various products of Mayer functions [2]) is used
as the probability distribution. This method was in-
tended only for the calculation of virial coefficients,
and the choice of the probability distribution deter-
mined its name, the Mayer Sampling Monte Carlo
(MSMC) [11]. Today, this method allowed the values
of the sixth and seventh virial coefficients (and even
a few values of the eighth coefficient) to be calculated
at various temperatures for the Lennard-Jones (12-6)
potential [12, 13].

However, the original form of the Mayer sampling
has some restrictions. It requires that the value of a
reference virial coefficient of the same order should
already be known. The virial coefficients for the hard-
sphere potential, which are rather precisely deter-
mined for today up to the tenth order inclusive,
are used for this purpose. At high temperatures, this
choice of the reference is quite justified, but at low
and near-critical temperatures, the essential differ-
ence between the behaviors of the Lennard-Jones
and hard-sphere potentials results in considerable
calculation errors.

A further development and improvement of the
available Mayer sampling method was the aim of
this work. A fulfillment of this task would allow us
to eliminate its existing restrictions and to raise its
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Fig. 1. Some of simple graphs of the seventh virial coefficient:
No. 1 (a), 14 (b), and 26 (c) according to the enumeration of
work [15]

efficiency, while calculating the virial coefficients of
higher orders for various potentials of intermolecular
interaction.

2. Theoretical Substantiation

The essence of the Mayer sampling consists in the
determination of the virial coefficient (or irreducible
cluster integral) Γ of the 𝑛-th order in terms of an
already known reference integral Γ0 (a version of the
direct sampling),

Γ = Γ0
⟨𝛾/𝜋⟩𝜋
⟨𝛾0/𝜋⟩𝜋

. (1)

In Eq. (1), the symbol 𝛾 stands for the value of inte-
grand, a complicated sum of products of Mayer func-
tions

𝑓(𝑟𝑖𝑗) = exp

(︂
−𝑢(𝑟𝑖𝑗)

𝑘𝑇

)︂
− 1 (2)

for various molecular pairs 𝑖𝑗 selected from 𝑛
molecules at the given interaction potential 𝑢(𝑟). The
quantity 𝛾 corresponds to the required integral, and
𝛾0 to the reference one. The function 𝜋 in Eq. (1)
is the probability distribution used to accept or re-
ject the given configuration (a point in the config-
uration space of molecules) according to the ordi-
nary Metropolis algorithm. The angle brackets mean
the averaging over the whole ensemble of configura-
tions. The spatial step of the random trial moves of
points (configurations) is selected experimentally to
provide a 50% acceptance for configurations [14].

In order to reduce the scatter of obtained values,
i.e. to improve the accuracy and the efficiency of the
method, the choice of both reference parameters Γ0

and 𝛾0, on the one hand, and the probability dis-
tribution 𝜋, on the other hand, plays the crucial
role. It is important that the configuration spaces

for 𝛾 and 𝛾0 should differ from each other as less
as possible or overlap in the most contributing re-
gions, and the function 𝜋 should adequately reflect
those contributions. Such methods are most efficient
in the cases where the configuration space of one in-
tegral is only a part of the space of the other integral,
i.e. the former is completely overlapped by the lat-
ter (whence the common name of the methods–the
umbrella sampling–follows) [14]. Then, the probabil-
ity distribution 𝜋 is selected to be proportional to the
integrand value of the second integral.

At the Mayer sampling in its original form, the
quantities 𝛾 and 𝛾0 are calculated as complete ir-
reducible cluster integrals (for all possible product
combinations of Mayer functions). However, 𝛾 is cal-
culated for the sought potential, whereas 𝛾0 for the
reference (hard-sphere) one.

For the sixth virial coefficient, the calculation of
both 𝛾 and 𝛾0 means the summation over 56 different
combinations (different graphs). For the seventh coef-
ficient, the number of different graphs already reaches
a value of 468 (!) [15]. As the probability distribution,
D. Kofke and collaborators proposed to use 𝜋 = |𝛾|.

It should be noted that the principal difference be-
tween the potentials forced the authors to use a “tran-
sient” function 𝛾𝑂𝑆 (𝛾, 𝛾0) [16] and, instead of direct
sampling, to realize the so-called overlap sampling. In
so doing, every coefficient was, in essence, indepen-
dently calculated two times, with the individual se-
lection of the spatial step and the parameters of the
function 𝛾𝑂𝑆 in each variant [12, 13].

Instead of introducing the “transient” function, the
efficiency of calculations can be improved by selecting
the reference integral, i.e. the quantity 𝛾0. The mat-
ter is that, among the set of all possible products of
Mayer functions (every product is usually represented
by the corresponding graph) that form the complete
irreducible integral of any large order, there are al-
ways a considerable number of such products that can
be calculated rather simply with the use of quadra-
ture methods. For instance, the integration of the
10-connected graph of the seventh virial coefficient
(Fig. 1, c) is practically not more difficult than the
integration of the third virial coefficient [9, 10]. The
calculation of integrals represented by graphs a and
b in Fig. 1 by quadrature methods is also not much
more difficult.

In general, of 56 graphs for the sixth virial coeffi-
cient, the summation of 41 graphs using the quadra-
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The seventh virial coefficient in the dimensionless form (𝐵*
7 = 𝐵7/𝜎18)

for the Lennard-Jones (12-6) potential at various reduced temperatures 𝑇 * = 𝑘𝑇/𝜖.
The magnitudes of 67%-confidence interval, the order of which corresponds
to the position of the least significant digit, are indicated in parentheses

𝑇 * 𝐵*
7 𝐵*

7 with [13] 𝑇 * 𝐵*
7 𝐵*

7 with [13] 𝑇 * 𝐵*
7 𝐵*

7 with [13]

0.200 −5(2)×1026 0.9250 −3.08(4)×104 1.450 −1.1(6)
0.250 −3.8(2)×1020 0.9500 −1.75(4)×104 1.475 −0.1(8)
0.300 −8.19(9)×1016 0.9750 −10.0(2)×103 1.500 2(1)
0.400 −4.64(1)×1012 1.0000 −5.8(2)×103 −5.4(2)×103 1.525 4(1)
0.500 −1.342(2)×1010 1.0250 −3.1(1)×103 1.550 2(1)
0.550 −1.466(3)×109 1.0500 −2.0(1)×103 1.575 0.6(8)
0.575 −5.448(10)×108 1.0750 −1.01(8)×103 1.600 3(2) 2(1)
0.600 −2.153(3)×108 −2.13(3)×108 1.1000 −680(70) 1.650 4.1(9)
0.625 −9.01(2)×107 1.1250 −340(50) 1.700 4(1)
0.650 −3.97(1)×107 1.1500 −200(40) 1.800 5.2(7)
0.675 −1.809(5)×107 1.1750 −110(30) 1.900 5.2(6)
0.700 −8.62(3)×106 1.2000 −30(10) −60(20) 2.000 5.2(4) 5.5(2)
0.725 −4.23(2)×106 1.2250 −12(9) 2.100 4.9(3)
0.750 −2.114(9)×106 1.2500 −10(7) 2.250 4.2(3)
0.775 −1.102(5)×106 1.2625 −4(6) 2.500 3.2(2)
0.800 −5.84(3)×105 −5.87(10)×105 1.2750 4(5) 3.000 1.67(9) 1.77(1)
0.825 −3.15(2)×105 1.2875 6(5) 4.000 0.71(3) 0.728(4)
0.850 −1.71(1)×105 1.3000 4(4) 5.000 0.34(4)
0.875 −9.7(1)×104 1.3500 1(4) 7.000 0.13(3)
0.900 −5.38(7)×104 1.4000 −0.7(5) 10.00 0.05(2) 0.0698(2)
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Fig. 2. Seventh virial coefficient of the Lennard-Jones potential (a) in the reduced temperature range (0.25,...,15) and (b) in the
near-critical region. Vertical solid segments mark 67%-confidence intervals. Points in panel (b) correspond to the data of work
[13] with the same confidential interval (dotted segments)
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ture methods is not more difficult than the calculation
of the fourth virial coefficient [9, 10]. The same con-
cerns more than 200 of 468 graphs for the seventh
virial coefficient.

On the one hand, in order to determine the coeffici-
ent, the sum over a smaller number of graphs remains
to be calculated using the Mayer sampling, which
means a simpler and faster algorithm. On the other
hand, the already known – i.e. previously calculated
by the method of quadratures – simple integrals can
be used as reference ones for the determination of Γ0

and 𝛾0.
For the seventh coefficient, all graphs that can-

not be calculated using the method of quadratures
are more complicated variants of only three simple
graphs depicted in Fig. 1. The difference consists in
the presence of various additional “connections” be-
tween particles (Mayer functions). The absence of
such a “connection” can be regarded as the function
𝑓0 ≡ 1 in the product. Since the Mayer function (2)
vanishes rapidly, as the distance grows, its presence
in the product efficiently confines the configuration
space of the corresponding integral in comparison
with the case where this function is substituted by
𝑓0 ≡ 1.

From this viewpoint, the integral that corresponds
to the simplest graph in such a hierarchy has a con-
figuration space that is common for all its deriva-
tives, i.e. graphs with additional “connections”, and
can serve as a reference for them, and its integrand
can be a function of 𝛾0. The choice of a simple 𝛾0, in
turn, simplifies and accelerates the calculation algo-
rithm. As the probability distribution for such a vari-
ant, it would be the most reasonable to use 𝜋 = |𝛾0|
or 𝜋 = |𝛾0|+ |𝛾|.

For a higher accuracy, it is desirable to select the
reference integrals of the highest complexity, with the
configuration space as close to the sought sum of inte-
grals as possible. However, the separate calculations
of several integral groups can hardly be character-
ized as an efficient method for the determination of
the entire virial coefficient. It is the more so that the
resulting error, which is a sum of errors of separate
calculations, may turn out too large even if every con-
tribution to it is small.

Taking the aforesaid into account, the following
modifications are proposed to be made in the method
of calculation of virial coefficients with the help of the
Mayer sampling.

(i) All integrals in the coefficient are preliminary
divided into two groups: to be determined by the
quadrature method or the Mayer sampling. In order
to reduce the error, it is important that the contri-
bution of the second group to the total sum should
be as small as possible (just the total sum produced
by complicated integrals in the second group rather
than their number). Test calculations showed that the
exclusion of only one integral from this group very
strongly affects the total sum. In order to diminish
this sum, it is even possible to remove one or a few
integrals from one group to the other.

(ii) From the first group, a minimum possible num-
ber of reference integrals is selected, in terms of which
all integrals of the second group are expressed (by
adding new “connections” to them). The integrands
in those reference integrals are used as 𝛾0 in the sub-
sequent calculations of integrals belonging to the sec-
ond group using the Mayer sampling method. Since
the behavior of the corresponding 𝛾 and 𝛾0 is very
complicated, in order to guarantee the correct ac-
count for all weighty configurations, the most perti-
nent choice for the probability density is the function
𝜋 = |𝛾0|+ |𝛾|.

3. Practical Implementation

In order to analyze the efficiency and adequacy of
the proposed complex procedure for the calculation
of virial coefficients, the seventh coefficient for the
Lennard-Jones (12-6) potential

𝑢 (𝑟) = 4𝜖

[︂(︁𝜎
𝑟

)︁12
−

(︁𝜎
𝑟

)︁6]︂
was chosen. On the one hand, there are already the
data on this coefficient for comparison [12, 13]. On
the other hand, the body of those data, as well as
their accuracy (especially, in the near-critical region),
is still rather confined, so that the additional calcu-
lations could substantially increase the available in-
formation.

Of 468 integrals entering the seventh virial coef-
ficient [15], 156 integrals were calculated using the
Gauss method [10] (two of them, partially). Such a
number was selected to reduce the sum of other in-
tegrals in the low-temperature interval (in the high-
temperature interval, the data [12, 13] have rather
small errors and do not require to be calculated more
precisely).
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Modern graphic processors can support hardware
multithreading, which makes repeated operations
with float numbers hundreds times more effective
in comparison with similar calculations on the basis
of central processor unit. The capabilities of graphic
processor computation functions are provided today
by the CUDA platform and the DirectX11 library
(with the help of ComputeShader technology), ap-
proximately in the equal proportion.

To accelerate the calculations, the second variant
with DirectX11 was used. A single procedure was
used to calculate both the sum of all 156 integrals
and separate reference integrals for their use at the
next stage of calculations. For every of the selected
temperatures, the integral values were calculated us-
ing the Gauss quadrature formula with 30, 60, and
120 nodes; and the error was evaluated by Aitken’s
process [17].

The other integrals of the seventh coefficient (314
integrals, including 2 incomplete ones) were divided
into three groups: 148 integrals that can be obtained
by adding connections to the simple integral repre-
sented by graph (a) in Fig. 1, 122 integrals that are
derivatives of graph (b), and 44 integrals that are
derivatives of graph (c). Just those three integrals
were selected as the reference ones.

At the computer realization of the Mayer sam-
pling algorithm, the ComputeShader multithread
technology of DirectX11 library was also used. In
every thread, a separate sample of seven molecules
was simulated, and a separate generator of random
numbers was used. Since it is impossible to real-
ize the Mersenne twister in the multithread mode,
some authors [13] use a linear congruent genera-
tor in such cases. However, a relatively short pe-
riod of this generator (of about 232) may result in
a considerable correlation of the results. Therefore,
a little more complicated generator Taus88 with a
longer period of about 288 [18] was used in every
thread.

Three different variants of direct Mayer sampling
were implemented:

(i) Three quantities–the sum of 148 integrals
(taken as 𝛾) at the reference integral (a) in Fig. 1
(taken as 𝛾0), and the sum of 122 integrals with
the reference integral (b) in Fig. 1 together with
the sum of 44 integrals with the reference integral
(c) in Fig. 1 – were determined independently by
formula (2);

(ii) two independent sums were determined: 148
integrals with the reference integral (a) and 166 inte-
grals with the reference integral (b) in Fig. 1;

(iii) the sum of all other 314 integrals (𝛾) was de-
termined with the reference integral (𝛾0) calculated
as the sum of integrals (a) and (b) in Fig. 1.

Despite that the convergence of some results was
better in variants (i) and (ii), the total error turned
out of the same order as in variant (iii). Therefore, in
specific calculations, the variant with the calculation
of the total sum was used as the most efficient.

The results of calculations are presented in the di-
mensionless form (𝐵*

7 = 𝐵7/𝜎
18) in Table and Fig. 2.

For every reduced temperature 𝑇 * = 𝑘𝑇/𝜖, from 50 to
400 simulations were carried out, with 5× 109 points
(configurations) in each sampling. For comparison,
the data of work [13], which were obtained using the
overlap (!) Mayer sampling in its original form for
432 to 18800 separate simulations with 109 points in
each, are also shown.

The results obtained allow us to draw a conclusion
that the proposed technique is more efficient than the
ordinary Mayer sampling, at least – expectedly – at
low temperatures. With its help, the values of the sev-
enth virial coefficient for the Lennard-Jones potential
were obtained for the first time for temperatures be-
low 0.6𝜖/𝑘, and the body of data in the near-critical
region was enriched.

4. Conclusions

Substantial modifications were made to the well-
known calculation method of high-order virial coef-
ficients based on the so-called Mayer sampling. The
developed technique combines the advantages of both
quadrature methods and the Mayer sampling. The
most important advantages are flexibility and univer-
sality: the method does not require that the reference
virial coefficient of the same order obtained by other
methods for more simple potentials should be known,
and it can be applied in any temperature range and
to various interaction potentials. In addition, the pro-
posed technique has a higher accuracy at lower com-
putational expenses, which plays a key role while cal-
culating the virial coefficients of high orders. A rela-
tive complexity of the method can be classed as its
shortcoming: the method requires a considerable re-
search work at its preliminary stage, but those efforts
are compensated by the efficiency of calculations.
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М.В.Ушкац

МОДИФIКАЦIЯ МЕТОДУ ВИБIРКИ
МАЙЕРА ДЛЯ РОЗРАХУНКУ ВIРIАЛЬНИХ
КОЕФIЦIЄНТIВ ВИЩИХ ПОРЯДКIВ

Р е з ю м е

Запропоновано комплексну методику обчислення вiрiаль-
них коефiцiєнтiв вищих порядкiв, що поєднує в собi ква-
дратурнi методи iнтегрування i сучасний статистичний ме-
тод вибiрки Майера. На вiдмiну вiд оригiнальної вибiрки
Майера дана методика не вимагає наявностi вже вiдомих
еталонних вiрiальних коефiцiєнтiв для потенцiалу твердих
сфер i може використовуватися в широкому дiапазонi тем-
ператур при будь-яких потенцiалах взаємодiї. Крiм того,
запропонована методика має бiльшу точнiсть при менших
обчислювальних витратах. За її допомогою були отриманi
новi данi по сьомому вiрiальному коефiцiєнту для потенцi-
алу Леннард-Джонса (12-6).
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