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ON THE WORK FUNCTION
AND SCHOTTKY BARRIER HEIGHTS OF METAL
NANOFILMS IN A DIELECTRIC ENVIRONMENTPACS 73.40.Ns, 73.30.+y

We suggest a method for self-consistent calculations of the characteristics of metal films in
a dielectric environment. Within a modified Kohn–Sham method and the stabilized jellium
model, the most interesting case of asymmetric metal-dielectric sandwiches is considered, for
which the dielectric media are different on the two sides of the film. We calculate the spectrum,
electron work function, and surface energy of polycrystalline and crystalline films of Na, Al,
and Pb placed into passive isolators. It is found that a dielectric environment generally leads
to a decrease of both the electron work function and the surface energy. It is revealed that the
change of the work function is determined only by the average of dielectric constants on both
sides of the film. We introduced the position of a conduction band in the dielectric as a parame-
ter in the self-consistency procedure. The calculations with the use of the image potential for an
aluminum film with ideal interfaces vacuum/Al(111)/SiO2 and vacuum/Al(111)/Al2O3 and
the sandwich SiO2/Al(111)/Al2O3 are performed. As a result, the effective potential profiles
and the Schottky barrier heights are calculated.
K e yw o r d s: metal nanofilm, dielectric, work function, surface energy, Schottky barrier
height.

1. Introduction

Thin metal films and flat islands on semiconductor
or dielectric substrates can be considered as two-
dimensional electron systems with properties, which
are of interest both from the fundamental point of
view and from the perspective of their application to
nanoscale electronic devices.

There are a limited number of experimental works
focused on quantum size effects in such systems (for
reviews, see [1–9]) due to difficulties in the fabrication
of samples, as well as because of the lack of suitable
experimental methods. One of the most important
characteristics of metal nanostructures is the electron
work function.

As a rule, the calculations of electron work func-
tions for films are performed for the idealized case
of films in vacuum. Similarly to clusters, the work
function defines an ionization potential. There are
different methods, which enable one to calculate the
electron structure of slabs (in vacuum) consisting
of a few monoatomic layers (ML). Let us combine
them into three groups according to the complexity
of computations: I – Sommerfeld electrons in the box
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model (analytical calculations, slabs and wires) [10–
15]; II – self-consistent calculations within various
versions of the jellium model (slabs and wires) [16–
20]; III – ab initio calculations (slabs) [21–24]. The
obtained results are illustrated in Fig. 1 for all these
three groups. An important ingredient of approaches
within group III is the monolayer number in the film
(see dots in Fig. 1). For groups I and II, 𝐿 changes
continuously.

In group I, the Fermi energy (kinetic energy) 𝜀F(𝐿)
is reckoned from the flat bottom of the conduction
band, while the work function 𝑊 (𝐿) is reckoned from
the vacuum level. Therefore, their size dependences
are “asymmetric”. In addition to quantum oscilla-
tions, these quantities contain monotonic size con-
tributions, which, at small film thicknesses, together
show up through inequalities 0 < 𝑊 (𝐿) < 𝑊0 and
𝜀F(𝐿) > 𝜀F > 0, where 𝑊0 and 𝜀F correspond to a
three-dimensional (3D) metal (allowing for the energy
counting for 𝜀F).

In [25, 26], the asymptotic behavior of the electron
chemical potential for spherical clusters of radius 𝑅
was determined. It yields

𝑊 (𝑅) =𝑊0 −
𝑐1
𝑅
< 𝑊0, (1)
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where 𝑐1 ≃ 2.5 eV × 𝑎0 for simple metals, and 𝑎0 =
= ~2/(𝑚𝑒2). It is expectable that such a monotonic
contribution must appear for films as well. However,
in contrast to the case of group I, the self-consistent
calculations of groups II and III (see Fig. 1) at
small film thicknesses point out to the suppression
of the monotonic dependence (with asymptotic (1))
by corrections of higher orders of smallness. For in-
stance, the compensation of terms −𝑐1/𝐿 + 𝑐2/𝐿

2

occurs at 𝐿* = 𝑐2/𝑐1, and 𝐿* is large, provided
𝑐2 ≫ 𝑐1 > 0.

The experimental results also do not allow one to
draw unambiguous conclusions on the character of the
monotonic component of 𝑊 (𝐿): in experiments [3], it
is absent (Yb films on Si substrate), while, according
to [2, 5], it coincides with the one of group I. Note
that the comparison of a measured work function for
the sandwich consisting of an Ag film on Fe(100) in
[2, 5] with calculated results for slabs in vacuum is
rather relative.

Let the film placed on a substrate be considered. In
order to determine the characteristics of contacts in
the easiest case, it is necessary to know the dielectric
constant 𝜖 as well as the position of the conduction
band −𝜒 (𝜒 is the electron affinity) in a dielectric ma-
terial. The approximation 𝜒 = 0 was widely used for
the work function, polarizability, and surface plasmon
resonance of jellium spheres and wires embedded in
different dielectric matrices (see [19,27–29] and refer-
ences therein).

The aim of this work is to compute the energy cha-
racteristics of metal films in dielectrics. A method
for self-consistent calculations of the equilibrium pro-
files of the electron concentration, effective poten-
tial, energy spectrum, and integral characteristics of
metal films in dielectrics and dielectric substrates
is suggested. The developed method is based on
the stabilized jellium model [30] and the local den-
sity approximation for an exchange-correlation po-
tential [31], which were used by us [32] to analyze
the characteristics of a semi-infinite metal with di-
electric coating. For our problem, in the spirit of
Serena et al. [33], we introduce a nonlocal poten-
tial matched at the image-plane positions to the lo-
cal exchange-correlation potential. We also intro-
duce the position of a conduction band in the di-
electric as a parameter in the self-consistency proce-
dure and perform calculations of the effective poten-
tial profiles and the Schottky barrier heights for the
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Fig. 1. Illustration of the computation results for groups I, II,
and III (data for group I are deduced from [12])

Fig. 2. Scheme of a film in the dielectric environment

vacuum/Al(111)/SiO2 and vacuum/Al(111)/Al2O3

and the sandwich SiO2/Al(111)/Al2O3.
This paper is organized as follows. In Section II,

we formulate our model. In Section III, we present
our main results and provide a discussion of them.
The conclusions are drawn in Section IV.

2. Model

Let us consider a metallic film of thickness 𝐿 at zero
temperature. We direct the 𝑧-axis perpendicularly to
the film surface (Fig. 2, ℒ ≫ 𝐿).

The main identities for a film can be obtained
within the model of a rectangular well for conduction
electrons. To perform a preliminary analysis, we sup-
pose that the bottom of the potential well is flat, and
we reckon energies starting from its value. The final
expression for the kinetic energies of conduction elec-
trons depends only on energy differences; therefore,
the counting of energies in such a way is allowable.

We study a film of thickness 𝐿 comparable in mag-
nitude to the Fermi wavelength �̄�F = 2𝜋/𝑘F of an
electron in a 3D metal. The longitudinal sizes of the
sample are assumed to be considerably larger than
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Fig. 3. Scheme for the occupation of electronic states in the
𝑘 space

the film thickness (𝐿 ≪ 𝐿𝑥, 𝐿𝑦), which leads to the
pronounced quantization of the transverse component
of the electron momentum. The three-dimensional
Schrödinger equation for a quantum box can be sep-
arated into one-dimensional equations.

The eigenenergies are given by

𝜀𝑖𝑘‖ = 𝜀𝑖 +
𝑘2‖

2
, 𝑘2‖ = 𝑘2𝑥 + 𝑘2𝑦, (2)

where 𝜀𝑖 is the eigenvalue of the 𝑖-th perpendicular
state 𝜓𝑖(𝑧) (hereafter, the Hartree atomic units are
used: ~ = 𝑚 = 𝑒 = 1). The eigenvalue 𝜀𝑖 is the
bottom of the 𝑖-th subband. For finite and periodic
systems in the 𝑧-direction, the Dirichlet and periodic
boundary conditions are used, respectively. There-
fore, possible allowed electron states 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 form a
system of parallel planes in the 𝑘-space, 𝑘𝑧 ≡ 𝑘𝑖.

The occupation of electron states starts from the
point {0, 0, 𝑘1} and follows an increase of the radius-
vector. As a result, it turns out that all occupied
states are contained within the area of the 𝑘-space
confined between the plane 𝑘𝑧 = 𝑘1 and a semi-sphere
of the radius 𝑘F =

√
2𝜀F(see Fig. 3).

The number of states 𝑑𝑍 in each of the circles
formed by the intersection of the Fermi semisphere
with the planes 𝑘𝑧 = 𝑘𝑖 of the area 𝑆 = 𝐿𝑥𝐿𝑦, within
the interval of wave vectors (𝑘‖, 𝑘‖ + 𝑑𝑘‖) and tak-
ing both possible spin projections into account, is
𝑑𝑍(𝑘‖) = = 2𝑆𝑑(𝜋𝑘2‖)/(2𝜋)

2. The maximum value
of 𝑘‖ in each circle numbered by 𝑖 is equal to the cir-
cle radius 𝑘F(𝑖) = (𝑘2F − 𝑘2𝑖 )

1/2. In order to find the
number of occupied states, which coincides with the
number of valence electrons 𝑁 in the film, one should
integrate 𝑑𝑍 over 𝑘‖ in each circle, and then sum up

the contributions of all circles:

𝑁 =
𝑆

𝜋

𝑖F∑︁
𝑖=1

𝑘F(𝑖)∫︁
0

𝑑𝑘‖ 𝑘‖ =
𝑆

2𝜋

(︃
𝑖F𝑘

2
F −

𝑖F∑︁
𝑖=1

𝑘2𝑖

)︃
. (3)

With regard for the electron kinetic energy 1
2 (𝑘

2
‖ +

+ 𝑘2𝑖 ), the total kinetic energy of the electron subsys-
tem equals

𝑇s =
𝑆

2𝜋

𝑖F∑︁
𝑖=1

𝑘F(𝑖)∫︁
0

𝑑𝑘‖𝑘‖

(︁
𝑘2‖ + 𝑘2𝑖

)︁
=

=
𝑆

4𝜋

𝑖F∑︁
𝑖=1

𝑘2F(𝑖)

(︃
𝑘2F(𝑖)

2
+ 𝑘2𝑖

)︃
, (4)

where 𝑖F is the number of the last occupied or par-
tially occupied subband.

In the frame of the density-functional theory and
the stabilized jellium model (SJ), the total energy of
a metal sample is represented by the functional of the
inhomogeneous electron concentration 𝑛(r):

𝐸SJ[𝑛(r)] = 𝑇s + 𝐸xc + 𝐸H + 𝐸ps + 𝐸M, (5)

where 𝑇s is the (non-interacting) electron kinetic en-
ergy, 𝐸xc is the exchange-correlation energy, 𝐸H is the
Hartree (electrostatic) energy, 𝐸ps is the pseudopo-
tential (Ashcroft) correction, and 𝐸M is the Madelung
energy. The sum of first three terms in expression (5)
corresponds to the “ordinary” jellium energy 𝐸J. The
average energy per valence electron in the bulk of
a metal is 𝜀SJ, J = 𝐸SJ, J[�̄�]/𝑁 , where 𝑁 is the total
number of free electrons with concentration �̄� defined
by the valence and the atomic density.

The positive (ionic) charge distribution can be
modeled by the step function

𝜌(𝑧) = �̄�𝜃(𝐿/2− |𝑧|). (6)

Solving the Kohn–Sham equations

−1

2
∇2𝜓𝑖 (𝑧) + 𝑣eff [𝑧, 𝑛 (𝑧)]𝜓𝑖 (𝑧) = 𝜀𝑖𝜓𝑖 (𝑧) , (7)

𝑣eff [𝑧, 𝑛(𝑧)] = 𝜑(𝑧)+ 𝑣xc(𝑧)+ ⟨𝛿𝑣⟩face 𝜃(𝐿/2−|𝑧|) (8)

together with the Poisson equation

∇2𝜑(𝑧) = − 4𝜋

𝑓(𝑧)
[𝑛(𝑧)− 𝜌(𝑧)], (9)
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with the step function

𝑓(𝑧) =

⎧⎪⎨⎪⎩
1; 𝑧 < −ℒ/2, |𝑧| < 𝐿/2, 𝑧 > ℒ/2,
𝜖l; −ℒ/2 < 𝑧 < −𝐿/2,
𝜖r; 𝐿/2 < 𝑧 < ℒ/2,

(10)

we obtain the single-electron wave function and the
eigenvalue 𝜀𝑖 self-consistently.

It is generally believed that the more “physical” the
potential, the better the result of computations for
the location of the Fermi energy (as the eigenvalue of
the highest occupied state). One of the limitations of
the method of effective potentials in LDA is its fail-
ure in reproducing a correct behavior of image poten-
tials outside metal surfaces (see [34,35] and references
therein). Therefore, we introduce the nonlocal po-
tential 𝑣NL

xc (𝑧) matched at the image-plane positions
to the local exchange-correlation potential 𝑣LDxc (𝑧) =
= 𝑑[𝑛(𝑧)𝜀xc(𝑧)]/𝑑𝑛(𝑧) in the spirit of work [33]:

𝑣xc(𝑧) =

⎧⎪⎨⎪⎩
𝑣NL,l
xc (𝑧), 𝑧 ≤ 𝑍 l,

𝑣LDxc (𝑧), 𝑍 l ≤ 𝑧 ≤ 𝑍r,

𝑣NL,r
xc (𝑧), 𝑧 ≥ 𝑍r,

(11)

where 𝑍 l = −𝐿/2−𝑧l0, 𝑍r = 𝐿/2+𝑧r0, and the image-
plane positions (𝑧l,r0 > 0) are reckoned from the left
and right sides of film surfaces,

𝑣NL,l
xc = −𝜒l +

1−
[︁
1− 𝑧−𝑍l

4𝜆l

]︁
𝑒(𝑧−𝑍l)/𝜆l

4𝜖l(𝑧 − 𝑍 l)
, (12)

𝑣NL,r
xc = −𝜒r −

1−
[︁
1 + 𝑧−𝑍r

4𝜆r

]︁
𝑒−(𝑧−𝑍r)/𝜆r

4𝜖r(𝑧 − 𝑍r)
. (13)

For instance, far from the surface, (13) has a correct
asymptotic behavior {−𝜒r−[4𝜖r(𝑧−𝑍r)]−1}, which is
an image potential. From the condition of the match-
ing of potential (11), as well as its first derivatives in
the image planes from left and right sides, we obtain
simple relations:

𝜆l,r = − 3

16𝜖l,r[𝑣LDxc (𝑍 l,r) + 𝜒l,r]
, (14)⃒⃒⃒

𝑑𝑣LDxc (𝑧)/𝑑𝑧
⃒⃒⃒
𝑧=𝑍l,r

[𝑣LDxc (𝑍 l,r) + 𝜒l,r]2
=

16

9
𝜖l,r. (15)

The relation in (15) is treated as an equation for 𝑧l,r0 .
The values of 𝑧l,r0 at the left and right sides out of

the film are calculated self-consistently by solving the
Kohn–Sham equations at each iteration. In this way,
the effective potential is matched self-consistently to
its image-potential-like form at large distances. The
result of work [33] for the semiinfinite metal is repro-
duced for 𝜖 = 1 and 𝜒 = 0.

The term ⟨𝛿𝑣⟩face in (8), which makes it possible to
distinguish different crystal faces, represents the dif-
ference between the potential of the ionic lattice and
the electrostatic potential of the positively charged
background averaged over the Wigner–Seitz cell:

⟨𝛿𝑣⟩face = ⟨𝛿𝑣⟩WS −
(︁𝜀M
3

+
𝜋�̄�

6
𝑑2
)︁
,

⟨𝛿𝑣⟩WS = −�̄�𝑑𝜀J
𝑑�̄�

,

where 𝑑 is the distance between the atomic planes
parallel to the surface. The term ⟨𝛿𝑣⟩WS describes
a polycrystalline sample [30]. In Eq. (10), 𝜖l and 𝜖r
are dielectric constants of isolators from the left and
right side of the film, respectively.

The electron density profile 𝑛(𝑧) is expressed in
terms of the wave functions 𝜓𝑖(𝑧) as

𝑛(𝑧) =
1

2𝜋

𝑖F∑︁
𝑖=1

𝑘2F(𝑖)
|𝜓𝑖(𝑧)|2∫︀ +∞

−∞ 𝑑𝑧 |𝜓𝑖(𝑧)|2
. (16)

The values of 𝑖F and 𝜀F are determined by solving the
equation

𝜋𝐿�̄�+

𝑖F∑︁
𝑖=1

𝜀𝑖−𝑖F𝜀F = 0; 𝜀𝑖 ≤ 𝜀F; 𝑖 = 1, 2, ..., 𝑖F, (17)

which follows from the normalization condition (3)
and definition of the Fermi energy. In this equation,
the integration over 𝑘‖ is already performed, and,
therefore, the summation is made only over the sub-
band number.

In nanofilms, the spatial oscillation of the electronic
density is significant throughout the sample. There-
fore, the energies are reckoned from the vacuum level,
which is the energy of the electron in rest in the area
|𝑧| ≫ ℒ/2. For bound states, the energies are nega-
tive, including 𝜀F.

We use the iterative procedure (see Appendix A)
allowing us to solve self-consistently the system of
equations (7), (9), (16) and to find the optimal pro-
files 𝑛(𝑧), 𝜑(𝑧), as well as the spectrum of one-
particle energies. As a result, the metal/vacuum and
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Fig. 4. Results of self-consistent calculations of the profiles of
the electron density 𝑛(𝑧)/�̄�, the one-electron effective poten-
tial 𝑣eff(𝑧), and the electrostatic potential 𝜑(𝑧) for sandwiches:
{1|Al|1}, {1|Al|5} and {3|Al|3} with 𝐿 = 2�̄�F

metal/dielectric work functions are defined in the
form

𝑊 = −𝜀F, (18)

𝑊 l,r
d = −𝜀F(𝜖l,r, 𝜒l,r)− 𝜒l,r. (19)

There are two situations, when |𝜀F| > 𝜒l,r and ≤ 𝜒l,r.
The value 𝑊d is the Schottky barrier height.

3. Results and Discussion

We perform calculations for both polycrystalline and
crystalline films made of Na, Al, and Pb with the
electron concentration �̄� = 3/4𝜋𝑟3𝑠 with the corre-
sponding electron parameter 𝑟𝑠 = 3.99, 2.07, and 2.30
𝑎0. The minimal thickness of “crystalline” sandwiches
should be not less than 2𝑑, and 𝑑 is comparable to

�̄�F/2 (�̄�F = 13.06, 6.78, and 7.53 𝑎0 for Na, Al, and
Pb, respectively).

Let us firstly perform calculations: (i) with regard
for formulas (11)–(15), in which it is formally as-
sumed that 𝜒 = 0 and 𝑣xc ≡ 𝑣LDxc ; (ii) using (11)–(15)
and 𝜒 ̸= 0.

(i) For a symmetric sandwich, the effect of a dielec-
tric coating on the surfaces is reduced to the “elon-
gation” of the electron distribution tail and the effec-
tive potential beyond the surface of a metal (polycrys-
talline films {1|Al|1} and {3|Al|3} on Fig. 4). The cal-
culations were performed for 𝜖 = 1, ..., 12. Inside the
film, one can see the Friedel oscillations of the elec-
tron density with peaks near the geometrical bound-
aries. The period of oscillations is close to 1

2 �̄�F and
only weakly depends on the presence of dielectric
coatings. The situation is similar for Na and Pb films.

At the boundaries between the metal film and the
coatings, there are jumps in the derivative of the elec-
trostatic potential 𝜑′(𝑧), which disappear, provided
the dielectric constants of the coatings are equal to
1. These jumps are due to the boundary conditions
(A2) at 𝑧 = ±𝐿/2. The jumps are also reflected on
the 𝑣eff(𝑧) profile, since 𝜑(𝑧) is one of its components.
In addition, at the borders, there are another jumps
of not only the derivative 𝑣′eff(𝑧), but also of 𝑣eff(𝑧)
profile itself for any values of 𝜖, including 𝜖 = 1. Such
jumps have another origin compared to the first ones.
This fact is linked to some features of the model [30],
namely to the presence of the effective potential com-
ponent ⟨𝛿𝑣⟩face 𝜃(𝐿/2−|𝑧|). These nonphysical jumps
should not be taken into account in the estimation of
the effective force

Feff(𝑧) ≡ −∇𝑣eff(𝑧).

It is seen from Fig. 4 that the force orientations are
opposite at both sides of the film, so that the film
on the whole must be stressed. The existence of the
force should lead to an increase of the spacings be-
tween some lattice planes 𝑑, while the spacings be-
tween other planes must become narrower.

The depth of the potential well, in which the elec-
trons are located in a metal film, decreases “on the av-
erage” with increasing 𝜖 and, as a result, the electron
work function 𝑊 = −𝜀F(𝜖l,r, 𝜒l,r = 0) also decreases
(see Fig. 5).

The film {1|Al𝐿|1} spectra are presented in Fig. 5.
For comparison, in the same figure, we also show the
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results obtained within the electrons-in-a-box model
with the well depth 𝑈0 = −(𝑊0 + 𝜀F) < 0.

It is seen from Fig. 5 that the dependence of the
eigenstate energies on the film thickness, within the
SJ model, is oscillating and decreasing. For subbands
with large numbers 𝑖 = 10, 11, there are gaps due to
the algorithm instability in a vicinity of the vacuum
level. Within the rectangular-box model, this depen-
dence is only decreasing. Due to smoother edges of
the self-consistent well, it contains more subbands
compared to the model of a rectangular box. Dif-
ference in subbands numbers significantly affects the
calculated dielectric function and the optical conduc-
tivity of a nanofilm [14].

Within the rectangular-box model, in contrast to
the SJ model, 𝜀F(𝐿) is always located above one for
a 3D metal. The amplitudes of oscillations decrease
as 𝐿 increases. Within both models, the maximum
Fermi energies (minimum work functions (18)) corre-
spond to the points, at which the curves of eigenener-
gies intersect Fermi energies. Within the SJ model, in
contrast to the rectangular-box model, the minimum
Fermi energies correspond to the points, at which the
Fermi energy is located between two nearest eigenen-
ergies (magic film thicknesses similar to magic num-
bers in clusters).

The asymmetric sandwiches {𝜖l|Me|𝜖r} and
{1|Me|𝜖}, which are in contact with air or vacuum,
are of particular interest from the viewpoint of
experimental investigations due to the perspective
of their use in technological applications (see, for
example, [5]).

Let us consider both the electron density and po-
tential profiles for the polycrystalline film {1|Al|5}.
The presence of a dielectric at the right side of the
film leads to the asymmetry of the electron distribu-
tion (see the insets in Fig. 4), so that there appears
a hump in both the electrostatic and effective po-
tentials at the left side above the vacuum level. This
should result, for example, in the anisotropy of a field
emission along the 𝑧-axis. It is worth noting that the
bottoms of wells for sandwiches {1|Al|5} and {3|Al|3}
are essentially the same, some difference appears only
in the “tails” of potential profiles.

It is of interest to compare the heights of humps
at 𝐿 = 10, 12, 13.5 and 20, 22, 23.5 𝑎0. These thick-
nesses correspond to the minimum and maximum of
the dependence 𝑊 (𝐿) for {1|Al|5}. It turns out that,
with the increase of 𝐿, the hump height weakly oscil-

Fig. 5. Results of calculations for the energy spectrum (sub-
bands) and the Fermi energy 𝜀F(𝐿) of the film {1|Al|1} by the
self-consistent method (solid lines) and in the rectangular-box
model (dashed lines)

lates and decays similarly to the work function, but
the maxima of the hump height correspond to the
minima of 𝑊 (𝐿). For the values of 𝐿, as given above,
these heights are 0.176, 0.148, 0.170 and 0.158, 0.139,
0.156 eV, respectively.

In order to analyze such a behavior of the poten-
tial profiles, it is necessary to go beyond the isotropic
model based on a defined (6) distribution of the ho-
mogeneous positively charged background, i.e. one
has to consider not only the reaction of the electron
subsystem, but also the reaction of the ion subsystem
to the presence of a dielectric. The spacings between
the lattice planes are determined by the balance of
forces from the right and left sides for each plane. A
simplest realization of this idea is to disregard vari-
ations of spacings between the lattice planes and to
vary the profile of the ion jellium distribution (6). We
found that such a procedure leads to a significant de-
formation of the well bottom, but does not result in
considerable changes of both the spectrum and the
hump height.

Figure 6 shows the results of our calculations of
the electron work function for crystalline sandwiches
using expression (18). Horizontal lines correspond to
semiinfinite samples. In contrast to the surface en-
ergy, the size dependences 𝑊 (𝐿) have deep and pro-
nounced minima. It is easier to analyze them us-
ing a simple model [12]. The amplitudes of largest
work function “oscillations” are smaller than 0.5 eV.
By considering the dependences for different metals,
it is easy to see that all the differences are due to
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Fig. 6. Work function for crystalline sandwiches {𝜖l|Me|𝜖r}
and a semiinfinite metal covered by a dielectric {Me∞|𝜖} (Me ≡
≡ Na, Al, Pb), 𝜒 = 0

Table 1. The examples of a simple coating
and substrates [37, 38]

Material He Ne Ar Kr Xe SiO2 Al2O3 Si

𝜖 1.10 1.20 1.50 1.65 1.90 4 9 13

𝜒, eV −1.0 0.10 0.20 0.45 0.68 1.1 1.35 4.05

values of 𝑟𝑠. For Al, which has the smallest 𝑟𝑠, work
function oscillations are maximum, while the period
is minimum. Positions of both maxima and minima
depend weakly on 𝜖 of a dielectric and slightly shift
toward smaller 𝐿 with increase in 𝜖.

The unexpectable result of self-consistent calcula-
tions is the coincidence of the dependences 𝑊 (𝐿) for
sandwiches {1|Me|12} and {6.5|Me|6.5}. The com-
putations for {1|Me|5} and {3|Me|3} give a similar
result. This means that the electron work function
for asymmetric sandwiches {𝜖l|Me|𝜖r} coincides with
high accuracy with the work function for symmet-
ric sandwiches {⟨𝜀⟩|Me|⟨𝜖⟩} with the averaged value
⟨𝜖⟩ = 1

2 (𝜖l + 𝜖r).
The work function has both the bulk and sur-

face contributions. Because the bulk metal contribu-
tions 𝑊 (𝐿) for sandwiches {1|Me𝐿|12} (like to vac-
uum/metal/Si) and {6.5|Me𝐿|6.5} are the same by
definition. The same are the contributions of dipole
surface barriers. We here imply the total contribution
of both sides of a sandwich, since the work function is
an “isotropic” characteristic [36]. The coincidence of
the work functions is most likely a geometric effect.
This feature will be addressed elsewhere.

The results obtained by using the developed itera-
tion procedure enable us to draw a conclusion about
its efficiency. Moreover, one can follow the behavior
of electron spatial profiles and potentials, as well as
calculate a spectrum. The results for 𝜒 = 0 and in
LDA provide reference data for simplified treatments.

(ii) Let us apply this approach (𝜒 ̸= 0) to study
the energetics of three samples with “ideal” interfaces:
the film Al(111) on SiO2 and on Al2O3, as well as
the sandwich SiO2/Al/Al2O3. For such a structure,
we use the values of 𝜒l,r from Table 1. 𝜒l = 0 and
𝜖l = 1 for the vacuum/metal interface. For illustra-
tive purposes, we present the results of self-consistent
calculations of potential profiles in Fig. 7.

It turns out that all approaches give the same po-
tential well depth and its profile near the bottom.
The dependences 𝑣xc(𝑧) at the left side of the film
(in vacuum) are essentially the same according to ap-
proaches (i) and (ii). For the right side of the plane,
they differ due to the presence of the conduction band
(𝜒 ̸= 0) in the dielectric.

It should be noted that the use of the nonlocal
exchange-correlation potential in the iterative proce-
dure leads to the essential disappearance of the po-
tential hump in the effective potential (but not in the
electrostatic one), which appears at the left side of
the film, see Fig. 4.

In Table 2, we present our data, which correspond
to scheme (ii) only. In both approaches (i) and (ii),
𝜀F and surface energies differ from each other by less
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than 1 percent, while the values of matching param-
eters can be rather different: for instance, 𝑧r0 = 5.95
and 𝜆r = 0.998 for ML = 1 the film Al(111) on SiO2 of
the method (i). As a result, we conclude that our ma-
nipulations with the exchange-correlation potential
did not lead to any noticeable changes of the Fermi
level position, i.e. 𝜀F(⟨𝜖⟩, 𝜒l,r = 0) ≈ 𝜀F(⟨𝜖⟩, 𝜒l,r ̸= 0).

We also performed computations for infinite-size
systems (𝐿 = ∞): 𝑊 r

d = 2.00 and 1.48 eV for Al/SiO2

and Al/Al2O3, respectively. However, in these cal-
culations, it is not taken into account that the vac-
uum/metal interface exists at the left side of the sam-
ples. Therefore, the comparison with the data of Ta-
ble 2 is not possible, since the results do depend on
the average dielectric constant of two media ⟨𝜖⟩, and
not only on 𝜖r.

Our results point out that it is possible to con-
trol the Schottky barrier by tuning the metal film
thickness (in the metal-insulator-semiconductor de-

Table 2. Calculated values for a film
Al(111) of thickness 𝐿 (in monolayers) on SiO2

(upper numbers), Al2O3 (middle numbers),
and the sandwich SiO2/Al/Al2O3 (lower numbers)

𝐿 𝑧l0 𝑧r0 𝜆l 𝜆r 𝑊 l
d 𝑊 r

d 𝛾

[ML] [a0] [a0] [a0] [a0] [eV] [eV] [J/m2]

1 1.05 3.35 0.977 0.706 3.43 2.33 0.82
1.00 4.25 0.962 0.518 3.01 1.66 0.76
3.30 4.15 0.707 0.519 1.79 1.54 0.61

2 0.95 2.85 0.946 0.643 3.26 2.16 0.76
0.95 3.60 0.945 0.474 2.84 1.49 0.70
2.85 3.60 0.640 0.479 1.62 1.37 0.55

3 0.85 2.60 0.921 0.606 2.94 1.84 0.73
0.85 3.50 0.919 0.476 2.63 1.28 0.70
2.95 3.80 0.672 0.512 1.56 1.31 0.56

4 0.90 3.05 0.933 0.683 3.23 2.13 0.78
0.95 4.05 0.948 0.531 2.86 1.51 0.74
3.10 4.05 0.688 0.535 1.69 1.44 0.58

5 0.90 2.95 0.932 0.661 3.23 2.13 0.76
0.95 3.85 0.948 0.507 2.84 1.49 0.72
3.00 3.85 0.671 0.512 1.65 1.40 0.56

6 0.90 2.85 0.934 0.651 3.13 2.03 0.75
0.90 3.65 0.933 0.489 2.73 1.38 0.71
2.85 3.65 0.645 0.491 1.54 1.29 0.55

7 0.90 2.95 0.934 0.669 3.17 2.07 0.77
0.90 3.90 0.933 0.520 2.80 1.45 0.73
3.05 3.95 0.684 0.527 1.65 1.40 0.57
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Fig. 7. Self-consistent profiles of the electrostatic, ex-
change-correlation and effective potentials for the sandwiches
vacuum/Al(111)/Al2O3 and SiO2/Al(111)/Al2O3. The film
thickness 𝐿 = 3 ML. 1ML = 4.4 𝑎0

vices, the thickness of a gate insulating film is a tool
to control the current in the channel [39]). For the
evaluation of the Fowler–Nordheim tunneling current
[40], it is necessary to know a spatial profile of the
effective potential, which should be added to the ex-
ternal electrostatic potential 𝜙ext(𝑧), starting from
points at 𝑧 = 𝑍 l,r.

Let us compare our results with experimental
data. The calculated work function for the inter-
face Al(111)/vacuum is 4.12 eV; the experimental one
∈ (3.11, 4.26) eV [41]; and 4.28 eV for polycrystalline
Al [42]. The recommended 𝜒 = 3.03 and 3.3 eV in
[43], corresponding for SiO2 and Al2O3, differ from
data in Table 1. The measured Schottky barrier
height [43] for Au/Al2O3 equals 3.5 ± 0.1 eV. Note
that experimental values of work function for Au and
Al in Ref. [41] are close to each other, while they
differ by almost 1 eV, according to Ref. [42].
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On the other hand, the measured Schottky barrier
heights in Ref. [44] for Al, Ag, and Cu, placed on a
thick (35 nm in thickness) film of Al2O3, equal 1.66,
1.72, and 1.80 eV, respectively. It is in accordance
with 1.5 eV for Al/Al2O3 [38] and the results from Ta-
ble 2. As we see, experimental data are rather diverse.

An important question is about the conditions, un-
der which our approach becomes questionable. When
|𝜀F| ≤ ≤ 𝜒l,r, our model does not work. In accordance
with Fig. 5 and Table 1, values 𝑊d ∈ (0.4, 0.75) eV
for Al/Si, Pb/Si [38] and 𝑊d ∈ (0.49, 0.6) eV for thick
films of Ti (𝐿 ∈ (50, 90) nm) on the Si-substrate [45]
should correspond to the regime |𝜀F| ≤ 𝜒l,r. The
efficient approach in this case is the local density for-
malism pseudopotential method [46–49]. In our ap-
proach, it is also not possible to consider the role of
virtual gap states and defects in metal-dielectric con-
tacts [50]. Nevertheless, we expect that our method
provides a correct estimate for the size dependence of
characteristics of films in contact with dielectrics, for
which 𝜖 and 𝜒 are not large.

We use the simplest model, in which the dielectric
constant is approximated by the step function. This
approximation grasps main physical properties of the
system. However, the dielectric constant should be a
function of the coordinate, 𝜖(𝑧). In order to make the
model more realistic, one can replace the step fun-
ction by the smooth distribution 𝜖(𝑧) with variatio-
nal parameters. As a result, the obtained dependen-
ces on 𝜖 should be weaker. From our experience, we
expect that such a modification should lead to the
weaker effect.

The effect of the temperature was studied earlier
in Ref. [26], when determining the ionization poten-
tial of a metallic cluster. It turns out that the effect
is not significant at room temperature, as it can be
expected. For the film-dielectric contact, of impor-
tance is the ratio of −𝜒r and the Fermi energy. If
these quantities are comparable, the result should be
sensitive to the temperature of the system.

4. Summary and Conclusions

We have proposed a method for self-consistent cal-
culations of the spectra, electron work function, and
surface energy of metal films placed into passive di-
electrics. As typical examples, we considered Na, Al,
and Pb films.

The effective force acting on the film from out-
side is due to the inhomogeneous electron distribu-
tion. This force should lead to the film stressing in a
transverse direction. The effect of the stressing gen-
erally becomes more significant with increase in the
film thickness.

In contrast to the surface energy, the size depen-
dences of the work function have deep and strongly
pronounced minima. The smaller 𝑟𝑠, the more dif-
ficult the problem of numerical analysis of the size
dependences in vicinities of these minima.

With increase in the film thickness up to a few
�̄�F, size variations of both the work function and the
surface energy occur near their average values (for
symmetric sandwiches, these values correspond to 3D
metals and do not contain significant monotonous size
contributions). A dielectric environment generally
leads to a decrease of the electron work function and
the surface energy.

We also considered asymmetric metal-dielectric
sandwiches with different dielectrics at both sides of
the film. One of the examples of such systems is a film
on a dielectric substrate. We found that the presence
of a dielectric from one side of the film leads to such a
“deformation” of the electron distribution that there
appears a “hump” above the vacuum level both in the
electrostatic and effective potentials. The potential
profile asymmetry should lead to an anisotropy of the
field emission. In addition to the size dependences,
the shift of the work function is generally determined
by the average dielectric constants of environments.

We introduced the position of the conduction band
in a dielectric as a parameter in the self-consistency
procedure and performed calculations for the alu-
minum film on SiO2 and Al2O3, using a nonlocal
exchange-correlation potential. As a result, the pro-
files of electron concentration, the effective potential,
and the energy spectrum are calculated.

Finally, let us formulate some methodological con-
clusions:

(i) The introduction of a nonlocal potential, as well
as the position of the conduction band in a dielec-
tric material does not lead to significant changes of
the Fermi level of a metal film contacting with a
dielectric.

(ii) Accounting for the conduction band in a di-
electric and self-consistency condition for the poten-
tial well shape, one changes the spectrum (subbands
number), as well as the density of states. Therefore,
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the matrix elements of optical transitions are also
changed, which leads to a modification of the optical
absorption coefficient [14]. The equilibrium profile of
electrons and the electrostatic potential are involved
in the calculation of the field emission of electrons,
as well as annihilation characteristics of positrons in
nanostructures.

We thank V.V. Pogosov and P.V. Vakula for read-
ing the manuscript.

APPENDIX A
Self-consistent procedure

The initial approximation 𝑛(𝑧) is chosen for solving the Kohn–
Sham equations in the form of a one-parametric trial function
𝑛(0)(𝑧) = �̄�Φ(𝑧), where

Φ(𝑧) =

⎧⎪⎨⎪⎩
− 1

2
𝑒(𝑧−𝐿/2)/𝜆 + 1

2
𝑒(𝑧+𝐿/2)/𝜆, 𝑧 < −𝐿/2,

1− 1
2
𝑒(𝑧−𝐿/2)/𝜆 − 1

2
𝑒−(𝑧+𝐿/2)/𝜆, |𝑧| < 𝐿/2,

− 1
2
𝑒−(𝑧+𝐿/2)/𝜆 + 1

2
𝑒−(𝑧−𝐿/2)/𝜆, 𝑧 > 𝐿/2,

𝜆 is a variational parameter, which is found through the min-
imization of the surface energy. The solution by a direct vari-
ational method is an independent problem, which is not ad-
dressed in this paper (for simple metals, 𝜆 is closed to 1 𝑎0).
As a result of the integration of Eq. (9) within the initial ap-
proximation, we obtain 𝜑(0)(𝑧) = −4𝜋�̄�𝜆2Φ(𝑧).

Each wave function 𝜓(𝑧) is constructed as

𝜓(𝑧) =

{︃
𝜓left(𝑧), 𝑧 < 𝑧0,

𝜓right(𝑧), 𝑧 > 𝑧0,

under the condition of continuity of the functions 𝜓left(𝑧0) =

= 𝜓right(𝑧0), as well as of their derivatives 𝜓′
left(𝑧0) =

= 𝜓′
right(𝑧0). 𝑧0 is an arbitrary point in the interval 𝑧 ∈

∈ [−𝐿/2;+𝐿/2], while 𝜓left(𝑧) and 𝜓right(𝑧) are functions,
which are found by the numerical solution of Eq. (7) by
the Numerov‘s method from 𝑧 = 𝑧− to 𝑧 = 𝑧0 and from
𝑧 = 𝑧+ to 𝑧 = 𝑧0, respectively. It is sufficient to take val-
ues 𝑧∓ = ∓(𝐿 + 20) 𝑎0. At these points, the potential profile
𝑣eff(𝑧) is cut off. The boundary conditions (7) here are deter-
mined by the behavior of the wave function 𝜓 under the barrier
from the left (𝑒𝑧

√
|𝜀𝑖|) and right (𝑒−𝑧

√
|𝜀𝑖|) sides from the slab

(|𝑧| ≥ |𝑧∓|), respectively. Boundary conditions provide the
wave function, as well as its derivative, at 𝑧 = 𝑧∓. This pe-
culiarity of our computations is due to the fact that the errors
of the numerical method for the wave function 𝜓right(𝑧) and
𝜓left(𝑧) near the right and left boundaries of the interval grow,
since the round-off errors also increase and lead to the instabil-
ity of the algorithm under the motion toward the exponential
damping.

In order to solve the system of equations (7), (9), and (16)
self-consistently with a relatively small number of iteration
steps, the Poisson equation (9) should be modified, in par-
ticular, by introducing a perturbation [51].

Equation (9) is solved by the Lagrange method in the form

𝜑(𝑗)
′′ − 𝑞2𝜑(𝑗−1) = −

4𝜋

𝑓(𝑧)

[︁
𝑛(𝑗) − 𝜌

]︁
− 𝑞2𝜑(𝑗−1) (A1)

with the boundary conditions

𝜑
(𝑗)
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2

)︁
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)︁
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𝐿
2

)︁
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′(︁
𝐿
2

)︁
.

(A2)

The term 𝑞2𝜑 was introduced as a small perturbation; 𝜑out(𝑧)
and 𝜑in(𝑧) are the potentials outside and inside the film, re-
spectively. In Eq. (A1), at each step of the iteration 𝑗 =

= 1, 2, 3, ..., the electrostatic potential profile depends not
only on the electronic concentration profile, but also on its
own profile at the previous iteration. It is convenient to take
𝑞 equal to the electron wave number at the Fermi sphere
𝑘F = (3𝜋2�̄�)1/3 of a homogeneous electron liquid.

In view of the multimolecular thicknesses of dielectric coat-
ings on the metal film surfaces and the rapid fall of the electron
distribution outside a film (approximately at a distance of 10–
15 𝑎0), we formally neglected the effect of the thickness of the
coatings, whose minimum thicknesses must be much greater
than that of a monatomic (molecular) layer of a dielectric. The
solution of Eq. (A1) for ℒ → ∞ has the simple form

𝜑(𝑗)(𝑧) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︃
𝑧∫︀

−∞

𝑒−𝑞𝑧′

2𝑞
𝑓1𝑑𝑧′ +𝐴1

)︃
𝑒𝑞𝑧+

+

(︃
−

𝑧∫︀
−∞

𝑒𝑞𝑧
′

2𝑞
𝑓1𝑑𝑧′ +𝐵1

)︃
𝑒−𝑞𝑧 , 𝑧 < −𝐿/2,

(︃
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−𝐿/2

𝑒−𝑞𝑧′

2𝑞
𝑓2𝑑𝑧′ +𝐴2

)︃
𝑒𝑞𝑧+

+

(︃
−

𝑧∫︀
−𝐿/2

𝑒𝑞𝑧
′

2𝑞
𝑓2𝑑𝑧′ +𝐵2

)︃
𝑒−𝑞𝑧 , |𝑧| ≤ 𝐿/2,
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−

∞∫︀
𝑧

𝑒−𝑞𝑧′

2𝑞
𝑓3𝑑𝑧′ +𝐴3

)︂
𝑒𝑞𝑧+

+

(︂∞∫︀
𝑧

𝑒𝑞𝑧
′

2𝑞
𝑓3𝑑𝑧′ +𝐵3

)︂
𝑒−𝑞𝑧 , 𝑧 > 𝐿/2,

(A3)

where 𝑓𝑚(𝑧′) = −4𝜋[𝑛(𝑧′) − 𝜌(𝑧′)]𝐷𝑚 − 𝑞2𝜑(𝑗−1)(𝑧′) and
𝐷𝑚 = 𝜖−1

l , 1, 𝜖−1
r for 𝑚 = 1, 2, 3, respectively. The choice

of values 𝐵1 = 0 and 𝐴3 = 0 immediately follows from the
condition of finiteness of the potentials far away from the film.

The values of coefficients 𝐴 and 𝐵 are found from the solu-
tion of the system of equations (A2):

𝐴1 =
2𝐴2

1 + 𝜖l
+

1− 𝜖l

1 + 𝜖l

−𝐿/2∫︁
−∞

𝑒𝑞(𝑧
′+𝐿)

2𝑞
𝑓1𝑑𝑧

′ −
−𝐿/2∫︁
−∞

𝑒−𝑞𝑧′

2𝑞
𝑓1𝑑𝑧

′,

𝐵3 =
2𝐵2

1 + 𝜖r
−

1

1 + 𝜖r

𝐿/2∫︁
−𝐿/2

𝑒𝑞𝑧
′

𝑞
𝑓2𝑑𝑧

′+
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+
1− 𝜖r

1 + 𝜖r

∞∫︁
𝐿/2

𝑒−𝑞(𝑧′−𝐿)

2𝑞
𝑓3𝑑𝑧

′ −
∞∫︁

𝐿/2

𝑒𝑞𝑧
′

2𝑞
𝑓3𝑑𝑧

′.

Let us introduce the notation

𝐽(±) = 𝑌0

[︃
𝑌12𝜖l(1∓ 𝜖r)

−𝐿/2∫︁
−∞

𝑑𝑧′𝑒𝑞𝑧
′
𝑓1+

+ 𝑌2(1± 𝜖l)(1 + 𝜖r)

𝐿/2∫︁
−𝐿/2

𝑑𝑧′𝑒−𝑞𝑧′𝑓2 +

+ 𝑌3(1± 𝜖l)(1− 𝜖r)

𝐿/2∫︁
−𝐿/2

𝑑𝑧′𝑒𝑞𝑧
′
𝑓2 +

+𝑌42𝜖r(1± 𝜖l)

∞∫︁
𝐿/2

𝑑𝑧′𝑒−𝑞𝑧′𝑓3

]︃
,

where 𝑌0 = {2𝑞[(1− 𝜖l)(1− 𝜖r)𝑒−𝑞𝐿 − (1 + 𝜖l)(1 + 𝜖r)𝑒𝑞𝐿]}−1.
Then 𝐴2 = 𝐽(+) for 𝑌1,3 = 1, 𝑌2,4 = 𝑒𝑞𝐿 and 𝐵2 = 𝐽(−) for
𝑌2,4 = 1, 𝑌1 = 𝑒𝑞𝐿 = 𝑌 −1

3 .
In the case of the symmetric sandwich 𝜖l = 𝜖r, the accuracy

of calculations is verified by the examination of the stationarity
conditions 𝑛′(𝑧) = 0 and 𝜑(𝑖)in

′
(𝑧) = 0 at the center of the slab

(𝑧 = 0).
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А.В. Бабiч

ПРО РОБОТУ ВИХОДУ I ВИСОТУ
БАР’ЄРА ШОТТКI МЕТАЛЕВИХ НАНОПЛIВОК
В ДIЕЛЕКТРИЧНОМУ КОНФАЙНМЕНТI

Р е з ю м е

Запропоновано метод самоузгоджених обчислень характе-
ристик металевої плiвки в дiелектриках. У межах моди-

фiкованого методу Кона–Шема i моделi стабiльного же-
ле розглянуто найцiкавiший випадок асиметричних метал-
дiелектричних сандвiчiв, для яких дiелектрики рiзнi по
обидвi сторони плiвки. Для полi- i монокристалiчних плi-
вок Na, Al i Pb, помiщених у пасивнi iзолятори, обчисле-
но спектр, роботу виходу електронiв i поверхневу енергiю.
Дiелектричне оточення в цiлому приводить до зменшен-
ня як роботи виходу електронiв, так i поверхневої енергiї.
Виявлено, що змiна роботи виходу визначається середньо-
арифметичним значенням дiелектричних констант по оби-
двi сторони плiвки. У самоузгодженiй процедурi як пара-
метр було введено положення зони провiдностi дiелектри-
ка. З урахуванням сил зображення було виконано обчисле-
ння для наноплiвок алюмiнiю з iдеальними iнтерфейсами
вакуум/Al(111) /SiO2, вакуум/Al(111) /Al2O3 i сандвiча
SiO2/Al(111)/Al2O3. В результатi було розраховано профi-
лi ефективних потенцiалiв i висоти бар’єрiв Шоттки.
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