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INFLUENCE OF A DEFORMATION OF NH3 MOLECULE
ON A DEVIATION OF THE CHEMICAL BOND N–HPACS 31.10.+z, 33.15.Fm

Additional information about the force matrix of an ammonia molecule within the framework of
studying the influence of molecule’s deformation on the chemical bond deviation is obtained.
The elastic constants of the central forces between chemically unbound atoms of hydrogen,
which are usually neglected in the valence force field model, are calculated. The deformation
forces the deviation curve to become non-symmetric, changes the deviation angles, and shifts
the equilibrium positions of other atoms. It is found that if the geometry of a molecule is
unchanged, molecule’s rotation leads to such change in the force matrix that its eigenvalues
remain constant.
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1. Introduction

The idea that the directions of the chemical bond
between the atoms of nitrogen and hydrogen in an
ammonia molecule do not coincide with the segments
connecting the nuclei of molecule’s atoms has been
proposed, to our best knowledge, in [1]. This phe-
nomenon was referred to as chemical bond deviation,
and the corresponding angle is called the chemical
bond deviation angle.

Such result was obtained by solving the inverse
problem of vibrational spectroscopy using a relatively
new method [2] of 3𝑁 -matrices. The distinctive char-
acteristic of this method, reflected in its name, is
that it operates matrices of order 3𝑁 , where 𝑁 is
the number of atoms in the molecule. This method is
unique for the following reasons. First, it does not use
any presuppositions about the character of molecule’s
force field. Second, it can be used both in case of free
molecules and in that of condensed state molecules.
The influence of the environment is taken into ac-
count by, among other things, using the frequencies of
translational and librational (rotational) non-natural
vibrations of the molecule.
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A similar approach taking the non-natural normal
vibrations into account was used in solving the inverse
spectral problem for water in the liquid state [3–8].
The obtained value of deviation angle correlated well
with the experimental neutronographic data on the
hydrogen bond bending in water in the condensed
state. Since the chemical bond deviation phenomenon
is present in both free molecules and in molecules in
the condensed state, it allows one to interpret the
bending of hydrogen bonds in water as a special case
of a more fundamental phenomenon of chemical bond
deviation.

The research shows that the deviation phenomenon
is present in a number of other molecules such as H2S
[9], NO−

2 [10], H2Se, H2Te [11, 12], ClCH3, ICH3 [13],
and SO2 [14].

The deviation phenomenon points toward the no-
tion that the valence-force field model, first intro-
duced by Niels Bjerrum [15], corresponds to the true
force field of a molecule only to a certain extent.
The existence of a non-zero deviation angle can be
thought of as an “addition” of a central-force field
to the valence-force field. Another direct support
for this claim can be found in A.S. Davydov’s words
about ammonia molecules: “a somewhat higher value
of the theoretically predicted angle of 90∘ can be eas-
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Fig. 1. Location of hydrogen atoms H1, H2, and H3 in the xy
plane relative to the coordinate axes. Four consecutive defor-
mations of the ammonia molecule due to displacements of H2
and H3 atoms are numbered and labeled “o”

ily explained by the mutual repulsion of hydrogen
atoms” [16].

We thus believe that such terms as “N–H bond
length”, “angle between N–H bonds,” or “N–H bond
direction” should be viewed as approximations, since
their use intrinsically implies the absence of a devia-
tion. Hence, the current paper operates such terms
as “edge N–H” or “face N–H1–H2,” etc.

The further research of the deviation phenomenon
and the factors that influence its magnitude such as,
for instance, a deformation of the molecule, is deemed
desirable for the following reasons. The very exis-
tence of the chemical bond deviation phenomenon
contributes to the development of ideas about the
peculiarities of the chemical bonds in polyatomic
molecules. Such peculiarities cannot be adequately
discussed in the valence-force field discourse. In ad-
dition, as shown in [17], the study of the effect of a
deformation of the molecule on the deviation of the
chemical bond provides additional information about
the force field of this molecule.

The chemical bond deviation is an experimentally
supported fact since it has been determined as a re-
sult of the processing of experimental data. In [18],
the existence of the chemical bond deviation was con-
firmed by ab initio calculations.

When comparing the results of computation with
experimental data, most authors confine themselves

to comparing the calculated values of normal vibra-
tions with experimental values. Such comparison has
a limited value as the same set of normal vibrations
corresponds to a one-parameter set of force matrices.
The direct comparison of the elements of these ma-
trices can hardly be an effective method of identify-
ing the true matrix. We believe that the comparison
of the values of normal vibrations should be accom-
panied by the comparison of the theoretical and ex-
perimental values of chemical a bond deviation. It
is also worth noting that the results of the compu-
tations should be compared with only such experi-
mental data, whose processing is not based on the
presuppositions of the force field character.

Such criterion is met by the 3𝑁 matrices method,
even though certain approximations are used in this
method as well. In particular, the zero frequencies of
normal vibrations that have been obtained through
the use of certain force field models were used in [1].
As this could influence the results of calculations, the
further research was adjusted to tackle this problem
in [19–21]. According to [21], a deviation angle for the
N–H chemical bond constitutes 2.09∘ in the harmonic
approximation.

2. Method

The present paper utilizes the force matrix found in
[21]. Elements of the ammonia molecule force matrix
⌢

𝑉 are shown in Table 1 (top rows). The orientation of
the coordinate system and the numbering of hydrogen
atoms in the molecule are shown in Fig. 1.

It is taken that the “direction of a chemical bond”
is the direction corresponding to the maximum of the
gradient of the potential energy describing a displace-
ment of the hydrogen atom from its equilibrium posi-
tion. In order to determine the direction of the chem-
ical bond, the potential energy of the molecule as a
function of (for instance) the H1 atom displacement
in the yz plane should be calculated in accordance
with

𝑉0(𝜙) =
1

2
�̃�0(𝜙)

⌢

𝑉 𝜐0(𝜙), (1a)

where 𝑉𝑖,𝑗 are force matrix elements
⌢

𝑉 = ‖𝑉𝑖,𝑗‖, in-
dices have range 1 ≤ 𝑖, 𝑗 ≤ 12, values of 𝑥1, 𝑥2, 𝑥3
correspond to displacements 𝑥, 𝑦, 𝑧 from the equilib-
rium positions of the nitrogen atom, 𝑥4, 𝑥5, 𝑥6 corre-
spond to analogous displacements of the H1 hydrogen
atom, etc.
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Table 1. Force matrix
⌢

𝑉 × 10−6 of NH3 molecule (top rows) and
⌢

𝑉 𝑟 × 10−6 (bottom rows, in bold font)

17.75 0 0 –5.91 3.80 0 –9.21 –1.90 4.16 –2.62 –1.90 –4.16
17.75 0 0 –5.91 3.78 0/37 –9.21 –2.30 3.95 –2.62 –1.47 –4.33

0 17.75 0 3.80 –5.91 4.81 –1.90 –2.62 –2.40 –1.90 –9.21 –2.40
0 17.63 1.19 3.78 –6.65 4.33 –2.15 –2.23 –2.43 –1.63 –8.75 –3.09

0 0 5.68 0 2.98 –1.89 2.58 –1.49 –1.89 –2.58 –1.49 –1.89
0 1.19 5.80 0.37 2.50 –1.15 2.38 –1.52 –2.28 –2.7 –2.1 –2.3

–5.91 3.80 0 4.17 –2.53 1.03 1.97 1.27 –1.90 –0.22 –2.54 0.87
–5.91 3.78 0.37 4.17 –2.62 0.77 1.97 1.45 –1.76 –0.22 –2.61 0.61

3.80 –5.91 2.98 –2.53 8.07 –2.59 0.83 –2.17 0.69 –2.10 0.02 –1.08
3.78 –6.65 2.50 –2.62 8.52 –1.93 0.96 –2.20 0.48 –2.12 0.328 –1.05

0 4.81 –1.89 1.03 –2.59 1.93 –1.37 –0.21 –0.02 0.34 –1.99 –0.02
0.37 4.33 –11.15 0.77 –1.93 1.47 –1.28 –0.43 0.01 0.13 –1.96 –0.32

–9.21 –1.90 2.58 1.97 0.83 –1.37 9.29 –0.41 –2.76 –2.05 1.48 1.55
–9.21 –2.15 2.38 1.97 0.96 –1.28 9.29 –0.14 –2.79 –2.05 1.32 1.69

–1.90 –2.62 –1.49 1.27 –2.17 –0.21 –0.41 2.95 0.40 1.04 1.84 1.29
–2.30 –2.23 –1.52 1.45 –2.20 –0.43 –0.14 2.86 0.49 0.99 1.57 1.45

4.16 –2.40 –1.89 –1.90 0.69 –0.02 –2.76 0.40 1.93 0.50 1.29 -0.02
3.95 –2.43 –2.28 –1.76 0.48 0.001 –2.79 0.49 2.025 0.60 1.45 0.25

–2.62 –1.90 –2.58 –0.22 –2.10 0.34 –2.05 1.04 0.50 4.90 2.95 1.73
–2.62 –1.63 –2.76 –0.22 –2.12 0.13 –2.05 0.99 0.60 4.90 2.76 2.02

–1.90 –9.21 –1.49 –2.54 0.02 –1.99 1.48 1.84 1.29 2.95 7.34 2.19
–1.47 –8.75 –2.18 –2.61 0.32 –1.96 1.32 1.57 1.45 2.76 6.85 2.68

–4.16 –2.40 –1.89 0.87 –1.08 –0.02 1.55 1.29 -0.02 1.73 2.19 1.93
–4.33 –3.09 –2.35 0.61 –1.05 –0.32 1.69 1.45 0.25 2.02 2.68 2.42

In order to compute the above-mentioned 𝑉 (𝜑) ,
we assume that, among displacements 𝑥𝑖, only two
are non-zero. They are 𝑥5 = 𝑦 (𝜑) = 𝑑0 cos(𝜑) and
𝑥6 = 𝑧 (𝜑) = 𝑑0 sin(𝜑), where 𝜑 is an angle between
the H1 atom displacement direction and the 𝑦 axis,
and 𝑑0 is the magnitude of this displacement.

If the traditional matrix-vector approach is used,
formula (1a) can be written as

𝑉0(𝜑) =
1

2
�̃�0(𝜑)

⌢

𝑉 𝜐0(𝜑). (1b)

In (1b), symbol 𝜐0 (𝜑) corresponds to the 12-
component displacement vector. With regard for the

H1 atom displacements from equilibrium, this vector
can be written as

�̃�0(𝜑) = [0 0 0 0 𝑦(𝜑) 𝑧(𝜑) 0 0 0 0 0 0], (2)

where the tilde designates the transposition
operation.

The polar graph of (1), referred to as a deviation
loop, is shown in Fig. 2. In the harmonic approxima-
tion, as suggested by (1), the deviation loop is a sym-
metric curve. The maximum of the loop for a smaller
magnitude of the angle 𝜑 corresponds to a compres-
sion of the edge N–H. The direction of the maximum
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Fig. 2. Deviation loops of an undeformed ammonia molecule
(dotted line) and a deformed molecule (solid line) for deforma-
tion “2”

Fig. 3. Contours of constant values of the atom H1 energy
in the plane of symmetry of a deformed ammonia molecule.
Signs “+” and “o” mark the equilibrium positions of the atom
H1 in undeformed and deformed molecules, respectively. The
deformation corresponds to position “2” of atoms H2 and H3
in Fig. 1

thus gives the direction of the chemical bond, which
does not correspond to the segment connecting N and
H. The second maximum corresponds to a stretching
of the N–H edge. Due to the symmetry of the loop,
the deviation angles are the same for compression and
stretching.

As mentioned above, the non-zero magnitude of a
deviation angle can be explained by the central repul-
sive forces between hydrogen atoms. In an attempt
to illustrate the action of these forces better, the cal-
culation of the deviation loop of the molecule in a

deformed molecule is carried out. The deformation is
carried out by means of displacements of H2 and H3
atoms in such way that the molecule remains sym-
metric with respect to the plane yz. The four dis-
placements, whose effect was studied, are shown in
Fig. 1. The deformations labeled “1” and “3” corre-
spond to the compression and the stretching of edges
H1–H2 and H1–H3, the angle between which remains
unchanged. The deformations labeled “2” and “4” cor-
respond to an increase and a decrease of the angle be-
tween edges H1–H2 and H2–H3, the length between
them being unchanged.

The displacement vector of atoms H2 and H3 from
their equilibrium positions in case of a deformation is
given by

�̃�𝑖(𝜓𝑖) = [0 0 0 0 0 0 𝑥(𝜓𝑖) 𝑦(𝜓𝑖) 0 − 𝑥(𝜓𝑖) 𝑦(𝜓𝑖) 0]

Deformations 1 through 4 can be described by an-
gles 𝜓𝑖 = 120∘, 30∘,−60∘,−150∘ such that 𝑥 (𝜓𝑖) =
= 𝑑 cos𝜓𝑖, 𝑦 (𝜓𝑖) = 𝑑 sin𝜓𝑖, where 𝑑 is the magnitude
of deformational displacement.

The deviation loop of the deformed molecule is
given by

𝑉0𝑖(𝜙,𝜓𝑖) =
1

2
�̃�0𝑖(𝜙,𝜓𝑖)

⌢

𝑉 𝜐0𝑖(𝜙,𝜓𝑖)− 𝑉𝑖(𝜓𝑖), (3)

where

𝑉𝑖(𝜓𝑖) =
1

2
�̃�𝑖(𝜓𝑖)

⌢

𝑉 𝜐𝑖(𝜓𝑖),

�̃�0𝑖(𝜙,𝜓𝑖) = �̃�0(𝜙) + �̃�𝑖(𝜓𝑖).
(4)

The expression 𝑉𝑖(𝜓𝑖) =
1
2 �̃�𝑖(𝜓𝑖)

⌢

𝑉 𝜐𝑖(𝜓𝑖) corresponds
to the energy due to molecule’s deformation given by
vector (3). The energy 𝑉𝑖(𝜓𝑖) contained in (4) does
not influence the position of the deviation loop max-
imum, since it maintains a constant value for each
type of the deformation. The inclusion of this physi-
cal quantity into (4) is equivalent to a change in the
origin for the energy 𝑉0𝑖(𝜑, 𝜓𝑖).

Figure 2 shows the deviation loop of the deformed
molecule in case of deformation “2”. The loop is visi-
bly non-symmetric. The domineering maximum cor-
responds to an increase of the distance between the
hydrogen and nitrogen atoms, the deviation angles
for compression and stretching being different. Simi-
lar changes occur for all other deformations. Table 2
summarizes the changes noticed.

It is important that the differences between de-
viation loop graphs are not just cosmetic. In case
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Table 2. Chemical bond deviation angles of bond N–H1 for compression and stretching in case
of four different deformations. Displacement of H2 and H3 atoms constitutes 30% of the N–H edge length

Undeformed
Deformation type

“1” “2” “3” “4”

Compression 2.09 4.95 5.02 –1.19 –0.52
Stretching 2.09 –1.19 –0.52 4.95 5.02
Δ𝑦 0 0.010 0.004 –0.010 –0.004
Δ𝑍 0 0.019 0.019 –0.019 –0.019
Dominating maximum none smaller 𝜙 larger 𝜙 larger 𝜙 smaller 𝜙

of an undeformed molecule, the maximum of the
loop points, indeed, in the direction of the chemi-
cal bond. In case of a deformed molecule, however,
such statement is not quite true. Due to the defor-
mation, the equilibrium position of atom H1 changes.
The above-mentioned displacement is shown in Fig.
3. The center of the square corresponds to the ini-
tial equilibrium position of H1 in case of an unde-
formed molecule. The new equilibrium position of
H1 atom after the deformation is denoted by “o”
in the figure.

With the help of Fig. 3, the domineering maximum
of the deviation loop in Fig. 2 can be explained. To
plot it, (4) uses vector (5), which takes displacement
(2) (that depends on 𝜑) of atom H1 into account, as
well as the constant displacements of atoms H2 and
H3. The displacements of atom H1 correspond to the
displacements from the center of the square (Fig. 3).
The direction from the center of the square to the
closest point on the ellipse determines the direction
of the domineering maximum in the deviation loop
in Fig. 2. Similar conclusions are justified for other
types of deformation. Table 2 shows the new equi-
librium positions of atom H1 for four types of de-
formation.

Summarizing the data shown in Table 2, the follow-
ing conclusion can be made. Approaching edge H2–
H3 toward the molecule’s symmetry axis by means of
a parallel transposition in the plane xy leads to the
upward shift in the equilibrium position of H1 (Δ𝑧 >
> 0). One can conceive it as atom H1 moving along
a “trough” due to the repulsion from edge H2–H3.
The change in the 𝑧 coordinate is accompanied by a
change in the 𝑦 coordinate. The recession of edge H2–
H3 from molecule’s symmetry axis is accompanied by
a shift of H1 atom in the opposite direction.

Apart from the four cases of deformation discussed
earlier, the fifth type was considered as well. It was a
deformation, with respect to which the new position
of atom H1 could be predicted without calculations.
Such deformation is shown in Fig. 4. It corresponds
to the rotation of face N–H2–H3 by the angle 𝜙 = 0.1
rad around an axis parallel to the axis 𝑥 and passing
though molecule’s center of mass. The new equilib-
rium position of atom H1 must shift in the same way
as an atom in an undeformed molecule that has been
rotated by such angle.

The displacement vector for the atoms of face N–
H2–H3 in this case can be given as

�̃�𝑑 = [0 𝑦0 0 0 0 0 0 𝑦2 𝑧2 0 𝑦3 𝑧3],

where 𝑦0 = 𝑙0𝜑, 𝑙0 is the distance to the axis of rota-
tion passing through the center of mass to the atom
N, 𝑦2 = 𝑦3 = 𝑙𝜑 sin 𝜃, 𝑧2 = 𝑧3 = 𝑙𝜑 cos 𝜃𝑙 is the dis-
tance between the center of mass to atom H1, and 𝜃
is the angle between the axis 𝑧 and the H1 atom shift
direction.

Thus, the new equilibrium positions of atoms in an
ammonia molecule can be given by the vector

�̃�𝑟 = [0 𝑦0 0 0 𝑦1 𝑧10 𝑦2 𝑧2 0 𝑦3 𝑧3], (5)

which corresponds to a rotation of the undeformed
molecule by the angle 𝜙.

After such rotation operation applied to the
molecule, the deviation loop was calculated for atom
H1, by using

𝑉0𝑟(𝜙) =
1

2
�̃�0𝑟(𝜙)

⌢

𝑉 𝜐0𝑟(𝜙), (6)

where

�̃�0𝑟 (𝜙) = �̃�0 (𝜙) + �̃�𝑟. (7)
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Fig. 4. Deformation of a molecule is given by the displace-
ment vectors of H2 and H3 atoms parallel to the plane yz.
Displacements of H2 and H3 correspond to the rotation of face
N–H1–H2 around the 𝑥 axis by 0.1 rad. The calculated vector
of H1 atom displacement into a new equilibrium position cor-
responds to the rotation of the molecule by 0.1 rad around the
𝑥 axis

The rotation considered did not change the position
of atoms with respect to each other; the shift in equi-
librium positions was taken into account by means of
vector (5). It would appear that the deviation loop
would have to rotate with the molecule by an angle 𝜙.
However, the deviation loop plotted with the help of
(6) is the same as one found with (1), as seen in Fig. 5
(left). This result, at first glance, seems unexpected.

Such result is due to the following. Vector (5) corre-
sponds to one of the forms of non-natural vibrations.
For a free molecule, displacement (5) does not lead to
a change in the potential energy. Hence, vector (7)
gives the same magnitudes of energy as vector (2),
and the deviation loop (6) traces along loop (1).

The operation of rotation by a given angle is known
to be equivalent to the rotation of the coordinate sys-
tem by the same angle in the opposite direction. The
matrices given in the initial system of coordinates are
transformed by the similarity transformation.

Elements of the force matrix
⌢

𝑉 are determined in
the system of coordinates corresponding to Fig. 1. In
this case, the axis 𝑧 is directed along the third de-
gree axis of symmetry. The rotation of the system of
coordinates around the axis 𝑥 violates this condition.
Hence, the matrix

⌢

𝑉 does not correspond to the new
orientation of the system of coordinates. The new
system of coordinates requires the matrix

⌢

𝑉 𝑟 such
that the following similarity transformation is true:

⌢

𝑉 𝑟 =
⌢

𝐶𝑟

⌢

𝑉
⌢

𝐶
−1

𝑟 , (8)

where

⌢

𝐶𝑟 =

⎡⎢⎢⎢⎣
⌢
𝑐𝜑

⌢

0
⌢

0
⌢

0
⌢

0
⌢
𝑐𝜑

⌢

0
⌢

0
⌢

0
⌢

0
⌢
𝑐𝜑

⌢

0
⌢

0
⌢

0
⌢

0
⌢
𝑐𝜑

⎤⎥⎥⎥⎦,

⌢
𝑐𝜑 =

⎡⎣ 1 0 0

0 cos𝜑 sin𝜑

0 − sin𝜑 cos𝜑

⎤⎦,
and

⌢

0 is a 3× 3 zero matrix.
Elements of

⌢

𝑉 𝑟 found using (8) are shown in Ta-
ble 1 (bottom rows). One can see that the matrices
⌢

𝑉 and
⌢

𝑉 𝑟 are different, despite both of them describe
the undeformed molecule of ammonia.

The deviation loop calculated with the matrix
⌢

𝑉 𝑟

using

𝑉𝑟(𝜙) =
1

2
�̃�0(𝜙)

⌢

𝑉 𝑟𝜐0(𝜙),

is shown in Fig. 5 (right). The shape of the loop is
visibly unchanged. Compared to the original devia-
tion loop, its axis of symmetry is rotated by an angle
𝜑, as foreseen.

3. Results and Their Discussion

According to the data shown in Table 2, approach-
ing edge H2–H3 to the axis of symmetry pushes atom
H1 out of its previous equilibrium position. This fact,
along with the non-zero magnitude of deviation angle,
points to the existence of the central forces of repul-
sion between hydrogen atoms. Keeping that in mind,
the elastic constants, corresponding to the forces act-
ing between N–H and H–H pairs, can be estimated.

To do so, the following approximation is used. Con-
sider an expression for the ammonia molecule energy
in case of a small decrease of length N–H1 due to a
displacement of H1 along edge N–H1

𝑉1 =
1

2

(︀
𝑘1𝑙

2
01 + 𝑘2𝑙

2
12 + 𝑘2𝑙

2
13

)︀
(9)

and an expression corresponding to the equal contrac-
tion of the lengths of three edges N–H1, N–H2, and
N–H3

𝑉3 =
1

2

(︀
3𝑘1𝑙

2
01 + 𝑘2𝑙

2
12 + 𝑘2𝑙

2
13 + 𝑘2𝑙

2
23

)︀
. (10)

In these expressions, 𝑘1 and 𝑘2 are the elastic con-
stants which, according to this model, characterize
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Fig. 5. Left: Deviation loop for atom H1 in case of an undeformed atom (solid line) and in case of a molecule rotated by 0.1 rad
around the 𝑥 axis (labeled as “o”) both plotted using the matrix

⌢

𝑉 . Right: deviation loop for atom H1 in case of an undeformed
atom (dotted line, graph plotted using the matrix

⌢

𝑉 ) and in case of a molecule rotated by 0.1 rad around the 𝑥 axis (solid line,
graph plotted using the matrix

⌢

𝑉 𝑟)

the forces acting, accordingly, between atoms N–H
and H–H, whereas 𝑙𝑖𝑘 is a change in distances be-
tween atoms. Index “0” corresponds to the atom of
nitrogen.

Evidently, for 𝑘2 = 0, the ratio 𝑉3/𝑉1 = 3. The
force matrix used to evaluate such ratio gives 𝑉3/𝑉1 =
= 4.12. With respect to the latter, the ratio of elastic
constants was found to be 𝑘2/𝑘1 = 0.46.

Depending on the model used and the accepted ini-
tial values, the calculated constants were found to
be different. In particular, if 𝑘2 = 0, then (9) gives
𝑘1 = 5.3 dyn/Å, whereas (10) gives 𝑘1 = 7.3 dyn/Å.
The mean value is close to 𝑘1 = 6.5 dyn/Å found in
[15, p. 165]. If the ratio is taken as 𝑘2/𝑘1 = 0.46, then
(9) and (10) give 𝑘1 = 3.3 dyn/Å and 𝑘2 = 1.5 dyn/Å.

Although the obtained value of 𝑘2/𝑘1 = 0.46 for the
ratio of constants is, probably, too high, an estimate
dictated by the choice of the model and a non-zero
deviation angle point to the necessity to consider the
central forces acting between hydrogen atoms. A rel-
atively small magnitude of deviation angle suggests
that the domineering model in this case is, indeed,
the valence-force field one.

The obtained ratio of elastic constants 𝑘2/𝑘1 de-
pends on the chosen model, which, of course, uses
approximations. Nevertheless, this result and the
non-zero value for deviation angle indicate a signif-
icant role of the central forces acting between hydro-
gen atoms in an ammonia molecule.

Interestingly, the matrices
⌢

𝑉 and
⌢

𝑉 𝑟 (table 1) dif-
fer significantly from each other. The difference be-
tween matrices is due to the difference in the reference
frame orientations used. Consequently, the following
inequality stands: 𝜕𝑉

𝜕𝜙 ̸= 0. As the matrix
⌢

𝑉 is con-
tained in expression (1) for the potential energy 𝑉 ,
it implies that the Lagrangian 𝐿 = 𝑇 − 𝑉 depends
on the parameter 𝜙 or the angle of reference frame
rotation. Formally, this can be expressed as 𝜕𝐿

𝜕𝜙 ̸= 0.
This circumstance affects one of the fundamental

tenets, on which the law of conservation of angular
momentum is based. One of the provisions for the
conservation law stipulates that the Lagrangian func-
tion in the isotropic space must be invariant to the
small rotation of the reference frame.

However, another provision stipulates that the La-
grange function that corresponds to normal vibra-
tions of a molecule is not invariant with respect to
operations, which do not belong to molecule’s sym-
metry group [22]. The direct calculations carried out
in this paper support the second provision. The con-
tradiction between the first and second provisions can
be resolved in view of the comment on the vibrational
angular momentum, according to which “this momen-
tum ... does not conserve” [22]. Indeed, for the La-
grange function corresponding to the vibrations of a
polyatomic molecule, the inequality 𝜕𝐿

𝜕𝜙 ̸= 0 holds,
which results in that the vibrational angular momen-
tum is not conserved.
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П.М.Комишан,
Б.А.Охрiменко, К.С.Яблочкова

ВПЛИВ ДЕФОРМАЦIЇ МОЛЕКУЛИ NH3

НА ДЕВIАЦIЮ ХIМIЧНОГО ЗВ’ЯЗКУ N–H

Р е з ю м е

Отримана додаткова iнформацiя про силову матрицi моле-
кули амiаку пiд час дослiдження впливу деформацiї мо-
лекули на девiацiю хiмiчного зв’язку. Оцiнено констан-
ти пружностi центральних сил, що дiють мiж хiмiчно
незв’язаними атомами водню, якими зазвичай нехтують в
моделi валентно-силового поля. Деформацiя молекули су-
проводжується появою асиметричностi в петлi девiацiї, змi-
ною кутiв девiацiї та змiщенням положення рiвноваги iн-
ших атомiв. Встановлено, що поворот молекули при збере-
женнi її геометричних параметрiв приводить до змiни си-
лової матрицi. Шпур силової матрицi i її власнi значення
при цьому не змiнюються.
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