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We solve the Dirac equation for the energy-dependent Yukawa potential including a tensor
interaction term within the framework of the pseudospin and spin symmetry limits with ar-
bitrary spin-orbit quantum number κ. We obtained explicitly the energy eigenvalues and the
corresponding wave function using the Nikiforov–Uvarov method. The limiting cases of this
model are reduced to the energy-dependent Yukawa and Coulomb potentials, respectively.
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1. Introduction

The concept of relativistic symmetries of the Dirac
Hamiltonian discovered many years ago were recog-
nized empirically in nuclear and hadronic spectro-
scopies [1]. The relativistic Dirac equation, which
describes the motion of a spin- 1

2 particle, has been
used successfully in solving many physical problems
of nuclear and high-energy physics [2–4]. Within the
framework of the Dirac equation, the pseudospin sym-
metry was used to feature deformed nuclei, super-
deformation, and to establish an effective shell model
[5]. The pseudospin concept was firstly introduced
in nuclear physics and has been associated with the
Dirac equation, as suggested by J.N. Ginocchio some
decade ago [6]. It was shown that the exact pseu-
dospin symmetry occurs in the Dirac equation when
dΣ(r)
dr = 0, where Σ(r) = V (r) + S(r) = cps = const

[7] and V (r), S(r) are repulsive and attractive scalar
potentials, respectively. On the other hand, the ex-
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act spin symmetry occurs in the Dirac equation when
dΔ(r)
dr = 0, where Δ(r) = V (r) − S(r) = cs = const

[8]. The detailed recent review of spin and pseudospin
symmetries is given in Ref. [9]. Consequently, the
concepts of spin and pseudospin symmetries of solu-
tions of the Dirac equation for some potential models
have been investigated by many authors using vari-
ous methods such as the asymptotic iteration method
(AIM) [10], Nikiforov–Uvarov (NU) method [11], su-
persymmetric quantum mechanics (SUSSYQM) [12],
shape invariance (SI) [13], and exact quantization
rule method [14]. The pseudospin symmetry is usu-
ally referred to as a quasidegeneracy of single nu-
cleon doublets with non-relativistic quantum number(
n, l, j = l + 1

2

)
and

(
n− 1, l + 2, j = l + 3

2

)
, where

n, l and j are single-nucleon radial, orbital, and to-
tal angular quantum numbers, respectively. The to-
tal angular momentum is j = l̃ + s̃, where l̃ = l + 1
is a pseudoangular momentum, and s̃ is a pseudospin
angular momentum [15]. Similarly, the tensor inter-
action term was introduced into the Dirac equation
with the replacement p → p − iMωβ · r̂U(r), and
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a spin-orbit coupling is added to the Dirac Hamil-
tonian [16]. Wave equations with energy-dependent
potentials occur in relativistic quantum mechanics,
firstly in the Pauli– Schrödinger equation [17] and re-
cently in the Hamiltonian formulation of the relativis-
tic many-body system [18]. The energy-dependent
potentials have been used as a source in a nonlin-
ear Hamiltonian equation [19] and in the problem of
soliton propagation [20]. The energy-dependent po-
tentials were also involved in the relativistic treat-
ment of a point charge in an external Coulomb field
described by the Klein–Gordon equation [21]. In re-
cent times, the bound state solutions with energy-
dependent potentials have been investigated in [22,
24, 35]. The main aim of the present paper is to ob-
tain approximate solutions of the Dirac equation with
energy-dependent Yukawa (EDY) potential includ-
ing a Coulomb-like potential under the pseudospin
symmetric limit. The paper is organized as follows.
In Section 2, we give a brief introduction to the
Nikiforov–Uvarov (NU) method. In Section 3, the
Dirac equation for spin and pseudospin including the
Coulomb interaction term is briefly introduced. We
solve the Dirac equation under the pseudospin and
spin symmetries in Section 4. Remarks and the dis-
cussion are given in Section 5. Finally, the conclusion
is presented in Section 6.

2. The NU Method

The method is used to obtain a solution of the second-
order differential equations having the form [11]

ψ′′(s) +
τ̃(s)
σ(s)

ψ′(s) +
σ̃(s)
σ2(s)

ψ(s) = 0, (1)

where σ (s) and σ̃ (s) are polynomials at most of the
second degree, and τ̃ (s) is a first-degree polynomial.
To make the application of the NU method simpler
and direct without any need to check the validity of a
solution, we present a shortcut for the method. Using
the transformation

ψ(s) = W (s)Φ(s), (2)

Eq. (A.1) is reduced to the well-known
hypergeometric-type equation

σ(s)Φ′′(s) + τ(s)Φ′(s) + λΦ(s) = 0, (3)

and

τ(s) = τ̃(s) + 2π(s), τ̃(s) < 0. (4)

Here, Eq. (A.1) has a particular solution with degree
n when the following relation is satisfied:

λ = λn = −n τ ′(s)− n(n− 1)
2

σ′′(s), n = 0, 1, 2, ... .

(5)

In order to obtain the equation for energy eigenvalues,
the following definitions given below are required in
the NU method:

π(s) =
σ′(s)− τ̃(s)

2
±

±

√(
σ′(s)− τ̃(s)

2

)2

− σ̃(s) + kσ(s), (6)

λ = k + π′(s), (7)

where λ is a constant. Here, the expression under
the square root in the polynomial in π(s) must be
the square of a polynomial of the first degree, since
π(s) is the first-degree polynomial. Then, one can
obtain the k values by considering that discriminant
of the square root has to be zero in Eq. (6). Con-
sequently, the equation for energy eigenvalues is ob-
tained by comparing Eq. (7) with Eq. (5). The func-
tion Φ(s) given in Eq. (3) is a hypergeometric-type
function, and its solution can be written in terms of
polynomials, which are given by the Rodrigues rela-
tion

Φn(s) =
Cn
ρ(s)

dn

dsn
[σn(s)ρ(s)], (8)

where Cn is the normalization constant, and the
weight function ρ(s) should satisfy the condition

[σ(s)ρ(s)]′ = τ(s)ρ(s). (9)

On the other hand, the other factor W (s) satisfies the
logarithmic equation

d

ds
lnW (s) =

σ(s)
π(s)

. (10)

2.1. Parametric generalization
of the NU method

We consider the second-order differential equation,
whose form represents a general Schrödinger-type
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equation, to obtain a parametric generalization of the
NU method [25]:

ψ′′n(s) +
(
c1 − c2s
s(1− c3s)

)
ψ′n(s) +

+
(
−ξ1s2 + ξ2s− ξ3
s2(1− c3s)2

)
ψn(s) = 0. (11)

Here, we give only the basic ingredients of the gener-
alized NU method [11]. By comparing Eq. (11) with
Eq. (1), one can obtain

τ̃(s) = c1 − c2s, (12a)

σ(s) = s(1− c3s), (12b)

σ̃(s) = −ξ1s2 + ξ2s− ξ3. (12c)

Inserting the above equations into Eq. (6) leads to

π(s) = c4+c5s±
√

(c6 − kc3)s2 + (c7 + k)s+ c8, (13)

where

c4 =
1
2
(1− c1), (14)

c5 =
1
2
(c2 − 2c3), (15)

c6 = c25 + ξ1, (16)

c7 = 2c4c5 − ξ2, (17)

c8 = c24 + ξ3. (18)

Considering that the discriminant of the square root
has to be zero in Eq. (6), we obtain

k1,2 = −(c7 + 2c3c8)± 2
√
c8c9 (19)

with

c9 = c3c7 + c23c8 + c6. (20)

From Eq. (13), one can easily see that different k
values lead to different π(s). If we take

k = −(c7 + 2c3c8)− 2
√
c8c9, (21)

π(s) becomes

π(s) = c4 + c5s− [(
√
c9 + c3

√
c8)s−

√
c8), (22)

and then we find

τ(s) = c1 +2c4−(c2−2c5)s− [(
√
c9 +c3

√
c8)s−

√
c8].

(23)

The energy eigenvalue equation can be readily ob-
tained by using Eqs. (5) and (6) with the above re-
sults as follows:

c2n− (2n+ 1)c5 + (2n+ 1)(
√
c9 + c3

√
c8) +

+n(n− 1)c3 + c7 + 2c3c8 + 2
√
c8c9 = 0. (24)

In order to obtain the wave functions, one can use the
relations

ρ(s) = sα10−1(1− c3s)(c11/c3)−c10−1, (25a)

Φn(s) = P (c10−1,(c11/c3)−c10−1)
n (1− 2c3s), (25b)

W (s) = sc12(1− c3s)−c12−(c13/c3), (25c)

Ψn(s) = sc12(1− c3s)−c12−(c13/c3)×

×P (c10−1,(c11/c3)−c10−1)
n (1− 2c3s), (25d)

where P
(c10−1,(c11/c3)−c10−1)
n (1 − 2c3s) is a Jacobi

polynomial and

c10 = c1 + 2c4 + 2
√
c8, (26)

c11 = c2 − 2c5 + 2(
√
c9 + c3

√
c8), (27a)

c12 = c4 +
√
c8, (27b)

c13 = c5 − (
√
c9 + c3

√
c8), (27c)

where c12 > 0, c13 > 0 and s ∈ [0, 1/c3], c3 6= 0. This
method has been used extensively to solve various
second-order differential equations in quantum me-
chanics such as the Schrödinger equation, Klein–
Gordon equation, Duffin–Kemmer–Petiau equa-
tion, spinless Salpeter equation, and the Dirac
equation [26].
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3. Dirac Equation with a Tensor Coupling

The Dirac equation for spin- 1
2 particles moving in an

attractive scalar potential S(r), a repulsive vector po-
tential V (r), and a tensor potential U(r) in the rela-
tivistic units (~ = c = 1) is [27]

[α · p + β(M + S(r)− iβα · r̂U(r)]ψ(r) =

= [E − V (r)]ψ(r), (28)

where E is the relativistic energy of the system,
p = −i∇ is the three-dimensional momentum opera-
tor, and M is the mass of a fermionic particle, α and
β are the 4× 4 Dirac matrices given as

α =
( 0 σi

σi 0
)
, β =

(
I 0
0 −I

)
. (29)

where I is a 2×2 unitary matrix, and σi are the Pauli
three-vector matrices,

σ1 =
(0 1

1 0
)
, σ2 =

(0 −i
i 0

)
, σ3 =

(1 0
0 −1

)
. (30)

The eigenvalues of the spin-orbit coupling operator
are κ =

(
j + 1

2

)
> 0, κ = −

(
j + 1

2

)
< 0 for the un-

aligned j = l− 1
2 and aligned j = l+ 1

2 spins, respec-
tively. The set

(
H,K, J2, Jz

)
forms a complete set of

conserved quantities. Thus, we can write the spinors
as [28]

ψnκ(r) =
1
r

(
Fnκ(r)Y ljm(θ, φ)
iGnκ(r)Y l̃jm(θ, φ)

)
, (31)

where Fnκ(r), Gnκ(r) represent the upper and lower
components of the Dirac spinors, Y ljm(θ, ϕ), Y l̃jm(θ, ϕ)
are the spin and pseudospin spherical harmonics, and
m is the projection on the z-axis. With other known
identities [29],

(σ ·A) ((σ ·B)) = A ·B + iσ · (A×B),

σ · p = σ · r̂
(̂
r · p + i

σ · L
r

)
,

(32)

as well as

(σ · L)Y l̃jm(θ, ϕ) = (κ− 1)Y l̃jm(θ, ϕ),

(σ · L)Y ljm(θ, ϕ) = −(κ− 1)Y ljm(θ, ϕ),

(σ · r̂)Y ljm(θ, ϕ) = −Y l̃jm(θ, ϕ),

(σ · r̂)Y l̃jm(θ, ϕ) = −Y ljm(θ, ϕ),

(33)

we have two coupled first-order Dirac equations [29](
d

dr
+
κ

r
−U(r)

)
Fnκ(r) = (M+Enκ−Δ(r))Gnκ(r),

(34)(
d

dr
− κ
r

+ U(r)
)
Gnκ(r) = (M−Enκ+Σ(r))Fnκ(r),

(35)

where

Δ(r) = V (r)− S(r), (36)

Σ(r) = V (r) + S(r). (37)

Eliminating Fnκ(r) and Gnκ(r) in Eqs. (23) and
(24), we obtain the second-order Schrödinger-like
equation as{

d2

dr2
− κ(κ+ 1)

r2
+

2κU(r)
r

− dU(r)
dr

− U2(r)−

− (M + Enκ −Δ(r)) (M − Enκ + Σ(r)) +

+
dΔ(r)
dr

(
d
dr + κ

r − U(r)
)

(M + Enκ −Δ(r))

}
Fnκ(r) = 0,

(38){
d2

dr2
− κ(κ− 1)

r2
+

2κU(r)
r

+
dU(r)
dr

− U2(r)−

− (M + Enκ −Δ(r)) (M − Enκ + Σ(r)) +

+
dΣ(r)
dr

(
d
dr −

κ
r + U(r)

)
(M + Enκ − Σ(r))

}
Gnκ(r) = 0,

,

(39)

where κ(κ−1) = l̃(l̃+1), κ(κ+1) = l(l+1). The radial
wave functions are required to satisfy the necessary
conditions, i.e., Fnκ(r) = Gnκ(r) = 0 and Fnκ(r) =
= Gnκ(r) → 0 at infinity. At this stage, Δ(r) or
Σ(r) takes the form of an energy-dependent Yukawa
(EDY) potential. However, Eqs. (38) and (39) can be
solved exactly for κ = 0,−1 and κ = 0, 1, respectively.

4. Solution of the Dirac
equation with Energy-Dependent
Yukawa and Tensor Potentials

In this section, we are going to solve the Dirac equa-
tion with the EDY potential and a tensor potential
by using the Nikiforov–Uvarov method.
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4.1. Pseudospin symmetry

The exact pseudospin symmetry was proved in [30].
It occurs in the Dirac equation when dΣ(r)

dr = 0 or
Σ(r) = Cps = const [7]. In this limit, we take Δ(r) as
the EDY potential and a Coulomb-like potential [31]
for the tensor potential added,

Δ(r, E) = cv(1 + ηEpsnκ)
e−αr

r
, (40)

U(r) = −H
r
, H =

zazbe
2

4πε0
, r ≥ Re, (41)

where cv and η are constant coefficients, Re = 7.78 fm
is the Coulomb radius, za and zb denote the charges
of the projectile a and target b nuclei, respectively
[31]. Substituting Eqs. (40)–(41) into Eq. (39), we
obtain{
d2

dr2
− κ(κ− 1)

r2
− 2κH

r2
+
H

r2
− H2

r2
−

−
(
M + Epsnκ − cv(1 + ηEpsnκ)

e−αr

r

)
×

× (M − Epsnκ + Cps)

}
Gpsnκ(r) = 0. (42)

Simplifying Eq.(42) yields{
d2

dr2
− Λκ(Λκ − 1)

r2
+ γ̃

(
cv(1 + ηEpsnκ)

e−αr

r

)
− ε2

}
×

×Gpsnκ(r) = 0, (43)

where

γ̃ = (M − Epsnκ + Cps) ,

ε2 = (M + Epsnκ) (M − Epsnκ + Cps) , Λκ = κ+A.

(44)

Since the Dirac equation with the EDY potential has
no exact solution, we use an approximation for the
centrifugal term as [30]

1
r2

= lim
α→0

[
4α2 e−2αr

(1− e−2αr)2

]
, (45)

1
r

= lim
α→0

[
2α

e−αr

(1− e−2αr)

]
. (46)

We have plotted the centrifugation term and its ap-
proximation in Fig. 1. Substituting Eqs. (45)–(46)

Fig. 1. 1
r2

and its approximation for α = 0.05

into Eq. (43) and using the change of the variable
s = e−2αr, we obtain

d2Gpsnκ
dr2

+
(1− s)
s (1− s)

dGpsnκ
dr

+
1

s2 (1− s)2
×

×
[
−Apss2 +Bpss− Cps

]
Gpsnκ = 0, (47)

where

Aps =
ε

4α2
+
γ̃cv(1 + ηEpsnκ)

2α
,

Bps =
2ε
4α2

+
γ̃cv(1 + ηEpsnκ)

2α
− Λκ(Λκ − 1),

Cps =
ε

4α2
.

(48)

By comparing Eq. (47) with Eq. (11), we obtain the
parameters

c1 = 1, ξ1 = Aps, c2 = 1, ξ2 = Bps,

c3 = 1, ξ3 = Cps.
(49)

Equation (11) determines the other coefficients as

c4 = 0, c5 = −1
2
, c6 =

1
4

+
ε

4α2
+
γ̃cv(1 + ηEpsnκ)

2α
,

c7 = − 2ε
4α2
− γ̃cv(1 + ηEpsnκ)

2α
+ Λκ(Λκ − 1),

c8 =
ε

4α2
, c9 = Λκ(Λκ − 1) +

1
4
, c10 = 1 + 2

√
ε

4α2
,

ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 10 919
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c11 =2+2

(√
Λκ(Λκ−1)+

1
4

+
√

ε

4α2

)
, c12 =

√
ε

4α2
,

c13 = −1
2
−

(√
Λκ(Λκ − 1) +

1
4

+
√

ε

4α2

)
. (50)

With the aid of Eqs. (10) and (50), we obtain the
energy eigenvalues for the EDY potential model with
the pseudospin symmetry concept for any spin-orbit
quantum number κ = ±1,±2... in the Dirac theory
as

n+
(2n+ 1)

2
+(2n+ 1)

(√
Λκ(Λκ − 1)+

1
4

+
√

ε

4α2

)
+

+n (n− 1)− γ̃cv(1 + ηEpsnκ)
2α

+ Λκ(Λκ − 1) +

+ 2

√
ε

4α2

(
Λκ(Λκ − 1) +

1
4

)
= 0. (51)

In what follows, we find the lower component of the
wave function as

Gpsnκ=Nnκ
(
e−2αr

)√ ε
4α2
(
1− e−2αr

) 1
2+
√

Λκ(Λκ−1)+ 1
4×

× 2F1

(
−n, n+ 2

√
ε

4α2
+

+ 2

√
Λκ(Λκ − 1) +

1
4

+ 1; 1 + 2
√

ε

4α2
; e−2αr

)
, (52)

where Nnκ is the normalization constant. The up-
per spinor component of the Dirac equation can be
calculated as

F psnκ(r) =
1

M − Epsnκ + Cps

(
d

dr
− κ

r
− H

r

)
Gpsnκ(r),

(53)

where Enκ 6= M + Cps. When Cps = 0 (exact psu-
dospin symmetry), this means that only negative en-
ergy solutions are possible.

4.2. Spin symmetry

In the spin symmetry limit, dΔ(r)
dr = 0 or Δ(r) = Cs =

= const. Like the previous section, we consider

Σ(r, E) = cv(1 + ηEsnκ)
e−αr

r
. (54)

The substitution of this relation in Eq. (38) gives{
d2

dr2
− λκ(λκ − 1)

r2
+

+ γ

(
cv(1 + ηEsnκ)

e−αr

r

)
− µ2

}
F snκ(r) = 0, (55)

where

γ = (−M − Esnκ + Cs) ,

µ = (M − Esnκ) (−M − Esnκ + Cs) ,

λκ = κ+H + 1,

(56)

and κ = ` and κ = −` − 1 for κ < 0 and κ > 0,
respectively. We now introduce the NU method to
proceed. In this limit, we have to deal with

d2F snκ(s)
ds2

+
(1− s)
s(1− s)

dF snκ(s)
ds

+

+
1

(s(1− s))2
(−Ass2 +Bss− Cs)F snκ(z) = 0, (57)

where

As = − µ

4α2
+
γcv(1 + ηEsnκ)

2α
,

Bs = − 2µ
4α2

+
γcv(1 + ηEsnκ)

2α
− λκ(λκ − 1),

Cs = − µ

4α2
. (58)

By comparing Eq. (14)–(27c) with Eq. (57), we find
the correspondence

c1 = 1, c2 = 1, c3 = 1, ξ1 = As, ξ2 = Bs, ξ3 = Cs,

c4 = 0, c5 = −1
2
, c6 =

1
4
− µ

4α2
+
γcv(1 + ηEsnκ)

2α
,

c7 =
2µ
4α2
− γcv(1 + ηEsnκ)

2α
+λκ(λκ−1), c8 = − µ

4α2
,

c9 = λκ(λκ − 1) +
1
4
, c10 = 1 + 2

√
− µ

4α2
, (59)

c11 =2+2

(√
λκ(λκ − 1) +

1
4

+
√
− µ

4α2

)
,

c12 =
√
− µ

4α2
,

c13 = −1
2
−

(√
λκ(λκ − 1) +

1
4

+
√
− µ

4α2

)
.
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Table 1. Energies in the Pseudospin Symmetry Limit for α = 0.05, M = 5 fm−1, Cps = −5, Cv = 0.5, η = −0.4

˜̀ n, κ < 0 (`, j)
Epsnκ (fm−1)

(H = 0.5)

Epsnκ (fm−1)

(H = 0)
n− 1, κ > 0 (`+ 2, j + 1)

Epsnκ (fm−1)

(H = 0.5)

Epsnκ (fm−1)

(H = 0)

1 1, –1 1S 1
2

−4.785875896 −4.682066333 0.2 0d 3
2

−4.785875896 −4.853025137

2 1, –2 1P 3
2

−4.898252803 −4.853025137 0.3 0f 5
2

−4.898252803 −4.929649176

3 1, –3 1d 5
2

−4.951904203 −4.929649176 0.4 0g 7
2

−4.951904203 −4.967867988

4 1, –4 1f 7
2

−4.979344475 −4.967867988 0.5 0h 9
2

−4.979344475 −4.98751631

1 2, –1 2S 1
2

−4.898252803 −4.853025137 1.2 1d 3
2

−4.898252803 −4.929649176

2 2, –2 2P 3
2

−4.951904203 −4.929649176 1.3 1f 5
2

−4.951904203 −4.967867988

3 2, –3 2d 5
2

−4.979344475 −4.967867988 1.4 1g 7
2

−4.979344475 −4.98751631

4 2, –4 2f 7
2

−4.993182832 −4.98751631 1.5 1h 9
2

−4.993182832 −4.99689886

Table 2. Energies in the Spin Symmetry Limit for α = 0.05, M = 5 fm−1, Cs = 5, Cv = −0.5, η = 0.4

` n, κ < 0 (`, j)
Esnκ (fm−1)

(H = 0)

Esnκ (fm−1)

(H = 0.5)
n, κ > 0 (`, j)

Esnκ (fm−1)

(H = 0)

Esnκ (fm−1)

(H = 0.5)

1 0, –2 0P 3
2

4.513012873 4.219234736 0.1 0P 1
2

4.513012873 4.682066333

2 0, –3 0d 5
2

4.785875896 4.682066333 0.2 0d 3
2

4.785875896 4.853025137

3 0, –4 0f 7
2

4.898252803 4.853025137 0.3 0f 5
2

4.898252803 4.929649176

4 0, –5 0g 9
2

4.951904203 4.929649176 0.4 0g 7
2

4.951904203 4.967867988

1 1, –2 1P 3
2

4.785875896 4.682066333 1.1 1P 1
2

4.785875896 4.853025137

2 1, –3 1d 5
2

4.898252803 4.853025137 1.2 1d 3
2

4.898252803 4.929649176

3 1, –4 1f 7
2

4.951904203 4.929649176 1.3 1f 5
2

4.951904203 4.967867988

4 1, –5 1g 9
2

4.979344475 4.967867988 1.4 1g 7
2

4.979344475 4.98751631

Substituting Eq. (59) in Eq. (24) immediately gives

n+
(2n+1)

2
+(2n+1)

(√
λκ(λκ − 1)+

1
4

+
√
− µ

4α2

)
+

+n(n− 1) +
2µ
4α2
− γcv(1 + ηEsnκ)

2α
+ λκ(λκ − 1)−

− 2µ
4α2

+ 2

√
− µ

4α2

(
λκ(λκ − 1) +

1
4

)
= 0. (60)

The upper and lower components of the wave function
are

F snκ(r) = (e−2αr)
√
− µ

4α2 (1− e−2αr)
1
2+
√
λκ(λκ−1)+ 1

4 ×

×P
(2
√
− µ

4α2 ,2
√
λκ(λκ−1)+ 1

4 )
n (1− 2e−2αr)×

× 2F1

(
−n, n+2

√
− µ

4α2
+2

√
λκ(λκ − 1) +

1
4

+1; 1 +

+ 2
√
− µ

4α2
; e−2αr

)
, (61)

and

Gsnκ(r) =
1

M + Esnκ− Cs

(
d

dr
+
k

r
+
H

r

)
F snκ(r). (62)

We have obtained the energy eigenvalues in the ab-
sence (H = 0) and presence (H = 0.5) of the
Coulomb tensor potential for various values of the
quantum numbers n and κ. The results are reported
in Tables 1 and 2 under the condition of the pseu-
dospin and spin symmetries. We can clearly see that
there is the degeneracy between the bound states. In
the presence of the tensor interaction, these degenera-
cies are changed. Our numerical data reveal that in
the pseudospin and spin symmetry limits. We show
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Fig. 2. PSS: Energy vs. CV for the pseudospin symmetry limit for H = 0.5, α = 0.05, M = 5 fm−1, Cps = −5, η = −0.4.
SS: Energy vs. CV for the spin symmetry limit for H = 0.5, α = 0.05, M = 5 fm−1, Cs = 5, η = 0.4

Fig. 3. PSS: Wave function for the pseudospin symmetry limit for α = 0.05, M = 5 fm−1, Cps = −5, Cv = 0.5, η = −0.4.
SS: Wave function for the spin symmetry limit for α = 0.05, M = 5 fm−1, Cs = 5, Cv = −0.5, η = 0.4
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the effects of the CV -parameter on the bound states
under the condition of the pseudospin and spin sym-
metry limit for H = 0.5 in Fig. 2. In Fig. 3, the com-
ponents of wave functions are plotted for the pseu-
dospin and spin symmetry limits with and without
a tensor interaction. It is seen in Fig. 3 that the
tensor interaction affects only the shape of the wave
functions and does not change the node structures of
the radial upper and lower components of the Dirac
spinors.

5. Few Special Cases

In this section, we will consider some special cases of
interest of the energy-dependent Yukawa potential as
follows.

5.1. Energy-dependent Coulomb Potential

When we set α → 0, the potential reduces into the
energy-dependent Coulomb potential studied in [22]
and [35], i.e,

V (r) =
cv(1 + ηE)

r
. (63)

Hamzavi and Ikhdair [23] studied the exact spin and
pseudospin symmetry of the bound-state solutions of
the Dirac equation with this potential for any spin-
orbit κ, by using the asymptotic iteration method
(AIM). Under this condition, we obtain the energy
eigenvalues and the corresponding wave function for
the energy-dependent Coulomb potential from Eqs.
(43) and (44) as

(M + Enκ) (M − Enκ + Cps) =

=
1
4

[
− (M − Enκ + Cps) cv(1 + ηE)

n+ σ

]2
, (64)

Gnκ(r) = Nnκr
β+ 1

2 e−εnκrL2β
n (2εnκr), (65)

where β =
√

1
4 + Λκ(Λκ − 1). In addition, when

Cps = 0, this result reduces to that in [22].

5.2. Yukawa Potential

Maghsoodi et al. [33] have obtained the approximate
solutions of the Dirac equation in the presence of a
Yukawa potential plus a tensor interaction term using

the SUSSQM formalism. If we set η = 0 and cv =
= −V0, we obtain the Yukawa potential [34]

V (r) = −V0

(
e−αr

r

)
. (66)

Substituting these parameters, we obtained the en-
ergy eigenvalues and wave functions for the Yukawa
potential as

(M + Enκ) (M − Enκ + Cps) =

=
α2

4

[
(M−Enκ+Cps)V0

α

n+ σ
+ (n+ σ)

]2

, (67)

Gnκ(r) = Nnκ
(
e−2αr

)√ ε2

4α2 ×

×
(
1− e−2αr

)(√ 1
4+Λκ(Λκ−1)+ 1

2

)
×

× 2F1

(
−n, 2

(
1 +

√
ε2

4α2
+

√
1
4

+ Λκ(Λκ − 1)

)
+

+n; 2

(
1 +

√
ε2

4α2

)
; e−2αr

)
. (68)

This result is consistent with the one obtained by
Maghsoodi et al. [31] and that of Hamzavi and
Ikhdair [35] S0 = 0. In addition, if we set η = 0,
Cps = 0, Enκ +M → 2µ

~2 , κ = l+ 1, and Enκ −M →
→ Enκ [33], we obtain the energy spectrum in the
non-relativistic limit of the Yukawa problem as [23]

Enl=
~2

8µ

[
2µV0

~2(
n+A+ l − 1

2

)+α
(
n+A+ l − 1

2

)]2

.

(69)

5.3. Coulomb Potential

Finally, when η = 0, Cps = 0 and α → 0, Eq. (40)
yields the energy formula for the Coulomb-like poten-
tial as [36]

Enκ = −M 4 (n+ κ)2 − c2v
4 (n+ κ)2 + c2v

. (70)

Furthermore, as n→∞, one easily obtains E = −M
(continuum states). This shows that, as n goes to
infinity, the energy spectrum of Eq. (40) becomes in-
finite for the exact pseudospin symmetry case, as re-
ported in Ref. [36].
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6. Conclusions

In this paper, we have obtained the approximate solu-
tions of the Dirac equation for the EDY potential in-
cluding the tensor interaction term within the frame-
work of psudospin and spin symmetry limits, by using
the NU method. We have obtained the energy eigen-
values and the corresponding lower and upper wave
functions in terms of the Jacobi polynomials. More-
over, the results obtained in this work have been com-
pared with the previous works of other authors given
in the literature. Finally, this work can be extended
to other models [37], which will have many applica-
tions to physics and related fields [37].

We wish to express our sincere gratitude to
the referee for his/her technical comments on the
manuscript.
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РЕЛЯТИВIСТСЬКI ПСЕВДОСПIНОВА
I СПIНОВА СИМЕТРIЇ ПОТЕНЦIАЛУ ЮКАВИ,
ЗАЛЕЖНОГО ВIД ЕНЕРГIЇ, З КУЛОНОВОПОДIБНОЮ
ТЕНЗОРНОЮ ВЗАЄМОДIЄЮ

Р е з ю м е

Вирiшено рiвняння Дiрака для потенцiалу Юкави, зале-
жного вiд енергiї, з тензорною взаємодiєю для грани-
чних псевдоспiнової i спiнової симетрiй з довiльним спiн-
орбiтальним квантовим числом κ. Методом Никифорова–
Уварова отримано точно власнi значення енергiї i вiдпо-
вiдна хвильова функцiя. У граничних випадках ця модель
зводиться до моделей iз залежними вiд енергiї потенцiала-
ми Кулона i Юкави.
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