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GENERATION OF THE LEPTONIC ASYMMETRY
IN THE STERILE NEUTRINO HADRONIC DECAYSPACS 98.80.Cq

We consider the leptonic asymmetry generation in the νMSM via hadronic decays of sterile
neutrinos at T � TEW , when the masses of two heavier sterile neutrinos are between mπ and
2 GeV. The choice of the upper mass bound is motivated by the absence of direct experimental
searches for singlet fermions with greater mass. We carried out computations at zero temper-
ature and ignored the background effects. Combining constraints of a sufficient value of the
leptonic asymmetry for the production of dark matter particles, the condition for sterile neu-
trino to be out of thermal equilibrium, and existing experimental data, we conclude that it can
be satisfied only for the mass of a heavier sterile neutrino in the range 1.4 GeV . M < 2 GeV
and only for the case of a normal hierarchy for the active neutrino mass.
K e yw o r d s: leptonic asymmetry, sterile neutrino, hadronic decays.

1. Introduction

The Standard Model (SM) is a minimal relativis-
tic field theory, which is able to explain almost all
experimental data in particle physics [1]. However,
there are several observable facts that cannot be ex-
plained in the SM frame. First, the neutrinos of SM
are strictly massless, which contradicts the experi-
mental fact of the neutrinos oscillations [2, 3]. The
second problem is the impossibility to explain the
baryon asymmetry of the Universe (BAU) within the
SM. Finally, the SM does not provide the dark mat-
ter (DM) candidate. The SM cannot also solve the
strong CP problem in particle physics, the problem
of primordial perturbations, the horizon problem in
cosmology, etc.

The solutions of the above-mentioned problems of
the SM require some new physics between the elec-
troweak and the Planck scales. An important chal-
lenge for the theoretical physics is to see if it is pos-
sible to solve them using only the extensions of the
SM below the electroweak scale [4].
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The Neutrino Minimal Standard Model (νMSM)
is an extension of the SM by three massive right-
handed neutrinos (sterile neutrinos), which do not
take part in the gauge interactions of the SM1.
The model was suggested by M. Shaposhnikov and
T. Asaka [5, 6]. The masses of sterile neutrinos are
predicted to be smaller than those on the electroweak
scale, and, thus, there is no new energy scale intro-
duced in the theory. The parameters of the νMSM
can be chosen in order to explain simultaneously
the masses of active neutrinos, the nature of DM,
and BAU.

The lightest sterile neutrino (the mass is expected
to be in the keV range [4]) can be intensively produced
in the early Universe and have a cosmologically long
life-time. So, it might be a viable DM candidate. The
sufficient amount of these neutrinos can be generated
through an efficient resonant mechanism proposed by
Shi and Fuller [7].

In the νMSM, the required amount of leptonic
asymmetry (in accordance with the Shi–Fuller mech-

1 This is why these neutrinos are called sterile neutrinos. The
left-handed neutrinos of the SM are called active neutrinos.
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anism) can be created due to decays of the two heav-
ier sterile neutrinos. These particles are generated
at temperatures T > TEW , and their masses are ex-
pected to be in the range mπ < MI < TEW [8],
where mπ is the pion mass, and MI is the mass of
an I-sterile neutrino. The leptonic asymmetry at the
temperature of the sphaleron freeze-out (T ∼ TEW )
is related to the baryon asymmetry of the Universe.
At temperatures T < TEW , the leptonic asymmetry
from decays of heavier sterile neutrinos cannot con-
vert into the baryon asymmetry and is accumulated.
As was shown in [4,9], the required amount of the lep-
tonic asymmetry Δ = ΔL/L = (nL−nL̄)/(nL+nL̄),

10−3 < Δ < 2/11, (1)

has to already exist in the Universe at the moment of
the beginning of the production of DM particles (it
takes place at a temperature around 0.1 GeV).

We consider here the leptonic asymmetry genera-
tion at T � TEW , when the masses of two heav-
ier sterile neutrinos are between mπ and 2 GeV. The
motivation is following. The mass of a heavier sterile
neutrino cannot be less than mπ (the constraint is
coming from accelerator experiments combined with
Big-Bang Nucleosynthesis (BBN) bounds [10, 11]),
and there is no direct experimental searches for sin-
glet fermions with mass more than 2 Gev [10].

Since the masses of active neutrinos in the νMSM
are produced by the “see-saw” mechanism [12],
some constraints on the parameters of the νMSM
come from active neutrino parameters that can be
found from the experiments on neutrino oscillations.
Namely, these are the mass squared differences of ac-
tive neutrinos and the mixing angles. Till recently,
the mixing angle θ13 was supposed to have a value
close to zero. But the new observations indicate its
essential difference from zero [13].

The aim of this work is to obtain constraints on the
parameters of the νMSM from the required amount
of the leptonic asymmetry and cosmology conditions.
We want also to investigate the influence of a non-zero
mixing angle θ13 on also space of allowed parameters
of the νMSM . We do it following [14] with the use
of a simple model: we ignore the background effects
and do computations at zero temperature.

The paper is organized as follows. In Section 2,
we present the Lagrangian of the νMSM , make its
convenient parametrization, and present the Yukawa

couplings in terms of parameters of the mass matrix
of active neutrinos. In Section 3, we derive the ex-
pression for the leptonic asymmetry. The limitations
on the νMSM parameters are imposed in Section 4.
Section 5 is devoted to the analysis and conclusions.

2. Basic Formalism of the νMSM

In the νMSM [5, 6], the following terms are added to
the Lagrangian of the SM (without taking the kinetic
terms into account):

Lad = −FαI L̄αΦ̃νIR −
MIJ

2
ν̄cIRνJR + h.c. (2)

Here, the index α = e, µ, τ corresponds to the active
neutrino flavors, indices I, J run from 1 to 3, Lα is for
the lepton doublet of left-handed particles, νIR is for
the field functions of sterile right-handed neutrinos,
the superscript “c” means the charge conjugation, FαI
is for the new (neutrino) matrix of the Yukawa con-
stants, MIJ is for the Majorana mass matrix of the
right-handed neutrinos, Φ is for the field of the Higgs
doublet, Φ̃ = iσ2Φ∗.

After the spontaneous symmetry breaking, the field
of a Higgs doublet in the unitary gauge is

Φ =
(

0
v+h√

2

)
,

where h is the neutral Higgs field, and the parameter
v determines the minimum of the Higgs field potential
(v ∼= 247 GeV). In this case, Lagrangian (2) acquires
the Dirac–Majorana neutrino mass terms:

LDM = − v√
2
FαI ν̄ανIR −

MIJ

2
ν̄cIRνJR + h.c., (3)

or, in the conventional form [15],

LDM = −
(
(NL)c

MDM

2
NL + h.c.

)
, (4)

where

NL=
(
νL
νcR

)
; N c

L=
(
νcL
νR

)
; MDM =

(
ML MD

T

MD MR

)
(5)

and

ML = 0, MD = F+ v√
2
, MR = M∗, (6)

where M,F are square matrices of the third order
with elements FαI and MIJ .
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In the zero approximation, the νMSM Lagrangian
is assumed to be invariant under U(1)e × U(1)µ×
×U(1)τ transformations, that provides the preserva-
tion of the e, µ, τ lepton numbers separately. It is
also assumed that two heavier sterile neutrinos inter-
act with the active neutrinos, but the third (lightest)
sterile neutrino does not interact 2. This assumption
can be realized by the following matrix MDM [16]:

M
(0)
R =

(
0 0 0
0 0 M
0 M 0

)
, M

(0)+
D =

v√
2

(
0 h12 0
0 h22 0
0 h32 0

)
,

M
(0)
L = 0. (7)

In this approximation, we have two massive sterile
neutrinos with equal mass M , the third neutrino is
massless, and all active neutrinos have zero mass. It
contradicts the observable data [2,3]. To adjust it, the
next small terms are added to the matrix MDM [16]:

M
(1)
R = ΔM =

(
m11e

−iα m12 m13

m12 m22e
−iβ 0

m13 0 m33e
−iγ

)
,

M
(1)+
D =

v√
2

(
h11 0 h13
h21 0 h23
h31 0 h33

)
, M

(1)
L = 0. (8)

This correction violates the U(1)e×U(1)µ×U(1)τ
symmetry, leads to the appearance of the mass of the
third sterile neutrino, and takes off the mass degener-
acy for two heavier sterile neutrinos. It also leads to
the appearance of the extra small masses of the active
neutrinos and nonzero mixing angles among them.

In terms of the introduced corrections, Lagrangian
(2) takes the form

Lad=−hαI L̄αÑIΦ̃−M ¯̃
N c

2Ñ3−
ΔMIJ

2
¯̃
N c
I ÑJ+h.c.,(9)

where ÑI are right-handed neutrinos in the
gauge basis.

In order to find the masses of the active neutrino,
one has to make diagonalization of the matrix MDM.
The diagonalization is realized in two steps. First,
MDM matrix is reduced to the block-diagonal form
via the unitary transformation [17] in the “see-saw”
approach:

Mblock = WTMDMW =

=
(
−(MD)T (MR)−1MD 0

0 MR

)
=
(
Mlight 0

0 Mheavy

)
,

(10)
where

W =
(

1− 1
2ε

+ε ε+

−ε 1− 1
2εε

+

)
, ε=M−1

R MD�1 (11)

and Mlight = −(MD)T (MR)−1MD and Mheavy = MR

are the mass matrices of the active and sterile neutri-
nos, respectively. Each block of the matrix MDM can
be diagonalized now independently by the matrix

U =
(
U1 0
0 U2

)
. (12)

The mass matrix of the active and sterile neutrinos
is diagonalized by the unitary transformation U1(2):

UT1 MlightU1 = diag(m1,m2,m3),

UT2 MheavyU2 = diag(M1,M2,M3). (13)

There is a standard parametrization [2] for U1(2):

U1(2) =

(
c12c13 c13s12 s13e

−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

)(
eiα1/2 0 0

0 eiα2/2 0
0 0 1

)
, (14)

where cij = cos θij , sij = sin θij , θ12, θ13, and θ23 are
the three mixing angles; δ is the Dirac phase, and

2 Therefore, the lightest sterile neutrino in the νMSM is a
candidate for the DM particle.

α1 and α2 are the Majorana phases. The angles θij
can be in the region 0 ≤ θij ≤ π/2, and the phases
δ, α1, α2 vary from 0 to 2π. Each of the matrices
U1 and U2 contains its own independent angles and
phases.
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Then the elements of Mlight can be defined by
masses and elements of the mixing matrix U of the
active neutrinos:

[Mlight]αβ = m1U
∗
α1U

∗
β1 +m2U

∗
α2U

∗
β2 +m3U

∗
α3U

∗
β3.

(15)

The data that come from the neutrino oscillation ex-
periments are presented in Table 1.

On the other hand, the “see-saw” formula (in the
approximation where the elements of the first col-
umn of the Yukawa matrix are neglected and M �
� mij) immediately implies that the mass of the
lightest sterile neutrino is zero, and the mass matrix
of the active neutrinos has the form [16]

[Mlight]αβ = − v2

2M
(hα2hβ3 + hα3hβ2). (16)

Its eigenvalues are

ma = 0, m(
b

c

) =
v2(F2F3 ∓ |h+h|23)

2M
, (17)

where F 2
I = (h+h)II , ma is the mass of the lightest

active neutrino, and mc is the mass of the heaviest
active neutrino. The sum over the neutrino masses is
given by

v2F2F3

M
=

3∑
i=1

mi. (18)

System (16) has the infinite number of solutions.
Indeed, the replacement hα2 → zhα2, hα3 → hα3/z
(z is an any complex number) does not change the
system. Then one can define the real quantity ε

ε = F3/F2, ε = |z| (19)

as an independent parameter of the model.

Table 1. Experimental constraints
on the parameters of active neutrinos [3]

Central value Confidence interval

Δm2
21 = (7.58± 0.21)× 10−5 eV2 (7.1–8.1) ×10−5 eV2

|Δm2
23| = (2.40± 0.15)× 10−3 eV2 (2.1–2.8) ×10−3 eV2

tan2θ12 = 0.484± 0.048 310 < θ12 < 390

sin22θ23 = 1.02± 0.04 370 < θ23 < 530

∗sin2 2θ13 = 0.11 (θ13 = 100)

∗Results of T2K Collaboration [13]: 0.03 < sin2 2θ13 < 0.28 in
the case of the normal hierarchy and 0.04 < sin2 2θ13 < 0.34

in the case of the inverted hierarchy.

As was shown in [18], system (16) has good solu-
tions for the ratios of elements of the second column
of the Yukawa matrix:

A12 =
M12

M22

(
1±

√
1− M11M22

M12
2

)
,

A13 =
M13

M33

(
1±

√
1− M11M33

M13
2

)
,

A23 =
M23

M33

(
1±

√
1− M22M33

M23
2

)
,

(20)

where A12 = h12/h22, A13 = h12/h32, A23 = h22/h32,
and MIJ are elements of the Mlight matrix. The ra-
tios of the third-column elements of the Yukawa ma-
trix are expressed through the Aij elements:

h23

h13
= A12

M22

M11
;

h33

h13
= A13

M33

M11
. (21)

Though, formally, there are eight different choices
for solutions (20), only four ones are independent. For
example, if we fix the sign before the square roots in
the expressions for A12 and A13, then A23 is unam-
biguously determined by the relation

A23 = A13/A12. (22)

Solutions (20) allow one to find the ratios of elements
of the Yukawa matrix [18]:

(h12;h22;h32)
F2

=

=
eiarg(h12)√

1 + |A12|−2 + |A13|−2

(
1;A−1

12 ;A−1
13

)
(23)

(h13;h23;h33)
F3

=
eiarg(h13)√

1 + |A12
M22
M11
|2 + |A13

M33
M11
|2
×

×
(
1;A12

M22

M11
;A13

M33

M11

)
, (24)

where the phases of h12 and h13 are connected by the
condition

arg(h12) + arg(h13) = arg(M11). (25)

This is the exact solution of (16) that definitely ex-
presses the ratio of elements of the Yukawa matrix via
parameters of the active neutrino mass matrix. For

814 ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 9
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the fixed values of active neutrino parameters, there
are only two choices for the placing of the signs in the
expressions for A12, A13, and A23 (20) which are not
inconsistent with condition (22). These two variants
are distinguished from each other by the simultaneous
replacement of the sign in front of the square roots
in the expressions for A12, A13, and A23. It can be
shown that such replacement of the signs leads to in-
terchanging and conjugating the ratios of elements of
the second and third columns of the Yukawa matrix,
notably h22/h12 ↔ h∗23/h

∗
13, h32/h12 ↔ h∗33/h

∗
13 [18].

As was announced in Introduction, only the two
heavier sterile neutrinos take part in the production
of the leptonic asymmetry. Therefore, we will ex-
clude the lightest sterile neutrino from consideration,
so hereinafter the indices I, J take the value 2 or 3 re-
ferring to the two heavy sterile neutrinos. In this case,
there are 11 additional parameters in the νMSM as
compared with SM. Seven of them will be identified
with elements of the active neutrino mass matrix (m2,
m3, θ12, θ13, θ23, δ, and α2). The remaining four pa-
rameters will be defined as follows: the average mass
of two heavier sterile neutrinos M = M2+M3

2 , their
mass splitting ΔM = M3−M2

2 , the parameter ε, and
the phase ξ = arg(h12).

Thus, we can parametrize Lagrangian (9) in the
following way:

L=
(
M
∑
mνi

v2

)1/2[ 1
F2
√
ε
hα2L̄αÑα+

√
ε

F3
hα3L̄αÑ3

]
Φ̃−

−M ¯̃N c
2Ñ3 −

1
2
ΔM

( ¯̃
N c

2Ñ2 + ¯̃
N c

3Ñ3

)
+ h.c., (26)

where aαI = hαI/FI are defined by Eqs. (23) and
(24).

Lagrangian (2) can be written in another basis,
namely if the mass matrix of sterile right-handed neu-
trinos is diagonal. In this case, the Lagrangian reads

Lad = −gαI L̄αN ′IΦ̃−
MI

2
N̄ ′cIN

′
I + h.c., (27)

where N ′I are right-handed neutrinos, and gαI are el-
ements of the Yukawa matrix in this basis.

The transition from the presentation of Lagrangian
(2) in the gauge and mass bases can be made with a
unitary transformation that transfers the mass matrix
of a right-handed neutrino to the diagonal form [14,
16]:

V ∗
(

ΔM M

M ΔM

)
V =

(
M −ΔM 0

0 M + ΔM

)
;

V =
1√
2

(
−i i

1 1

)
. (28)

So, the transition can be made by

ÑI = VIJN
′
J , gαI = hαJVJI . (29)

With help of these relations, we can express La-
grangian (26) in terms of the right-handed neutrino
functions of Lagrangian (27):

Lad = −
(
M
∑
mνi

2v2

)1/2[(
iaα2√
ε
− i
√
εaα3

)
L̄αN

′
2 +

+
(
aα2√
ε

+
√
εaα3

)
L̄αN

′
3

]
Φ̃−

−1
2

(M −ΔM) N̄ ′c2N
′
2 −

1
2
(M + ΔM)N̄ ′c3N

′
3. (30)

By comparing (30) and (27), one can express the
Yukawa couplings in different forms

gα2 =
(
M
∑
imνi

2v2

)1/2(
iaα2√
ε
− i
√
εaα3

)
, (31)

gα3 =
(
M
∑
imνi

2v2

)1/2(
aα2√
ε

+
√
εaα3

)
. (32)

The mass eigenstates of neutrinos for the Lagrangian
with the mass matrix MDM (5) can be easily ex-
pressed through the neutrino states of Lagrangian
(27), particularly:

N c =
(
1− 1

2
εε+
)
N ′c + ενL ' N ′c + ενL. (33)

Here, N are the mass eigenstates of the right-handed
neutrinos in which they are produced and decay, νL
are the active neutrinos of the SM in the flavor basis,
and
εαI ≡ ΘαI =

v√
2
gαI
MI

(34)

is the mixing angle (εαI � 1).

3. The Computation
of the Leptonic Asymmetry

As was indicated in Section 1, the leptonic asymme-
try in the νMSM is generated due to decays of the
heavier sterile neutrinos into SM particles. At tem-
peratures T � TEW , the interaction of sterile neutri-
nos with SM particles via the neutral Higgs field can
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Fig. 1. Decay of a sterile neutrino via a Z-boson (a) and a
W+-boson (b) (the cross on the line of a sterile neutrino means
an oscillation of a sterile neutrino to an active one)
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Fig. 2. Effective low-energy decay of a sterile neutrino into a
π0 meson and an active neutrino

be neglected. The only possible way for the interac-
tion of a sterile neutrino with matter is through the
mixing with active neutrinos (33).

For a sterile neutrino with mass mπ < MI <
< 2 GeV, the channels for the decay into a two-body
final state are as follows:

NI → π0να, π
+e−α , π

−e+α ,K
+e−α ,K

−e+α , ηνα,

η′να, ρ
0να, ρ

+e−α , ρ
−e+α . (35)

The decay channel N2,3 → N1 + ... is strongly sup-
pressed because of the small Yukawa coupling con-
stants of N1. The decay of a sterile neutrino into
the K0 state is forbidden, because the composition of
K0 (ds̄) cannot be obtained through the decay of a
Z-boson.

The three-body final state, as well as a many-
hadron final state, can be safely neglected [10]. These
last decay channels contribute less than 10% forMI <
< 2 GeV. For mπ < MI < 2 GeV, the decays into a
D-meson can also be neglected because its mass is not
much smaller than 2 GeV.

Let us consider the decay of a sterile neutrino in
the νMSM . A sterile neutrino oscillates into an ac-
tive neutrino that decays into a Z-boson and an ac-
tive neutrino (or a W±-boson and a charged lepton)
in accordance with the SM. The Z-boson (or W±-
boson) decays hereafter into a quark-antiquark pair,
see Fig. 1. Since the kinetic energy of these quarks
are small enough, the quark pair will form a bound
state. Since MI < 2 GeV � � MZ(W ), we can use
the low-energy Fermi theory, shrink the heavy boson
propagator into an effective vertex, and use a meson
for the final state (see Fig. 2).

The decay of a sterile neutrino into a charged lep-
ton and a charged meson through a W±-boson is de-
scribed by the charged current interaction

LC =
GF√

2

(
jCCν

)+
jν CC , (36)

where jCCν = jl CCν + jhCCν is the sum of charged
lepton and hadron currents:

jl CCν =
∑
α

ēαγν(1− γ5)να,

jhCCν =
∑
n,m

V ∗n,md̄mγν(1− γ5)un. (37)

The indices m,n run over the quark generation,
α = e, µ, τ and V is Cabbibo–Kobayashi–Maskawa
(CKM) matrix. Similarly, the decay of a sterile neu-
trino into an active neutrino and a neutral meson
through the Z-boson is described by the neutral cur-
rent interaction

LN =
√

2GF

(
jNCν

)+
jν NC , (38)

where jNCν = jl NCν + jhNCν is the sum of active neu-
trino and hadron currents:

jl NCν =
∑
α

ν̄αγν
1− γ5

2
να,

jhNCν =
∑
f

f̄γν

(
tf3 (1− γ5)− 2qf sin2 θW

)
f, (39)
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where the sum over f means the sum over all quarks,
tf3 is the weak isospin of a quark, qf is the electric
charge of a quark in proton charge units, notably tf3 =
= 1/2, qf = +2/3 for u, c, t and tf3 = −1/2, qf =
= −1/3 for d, s, b quarks.

The matrix element corresponding to the Feynman
diagram of the sterile neutrino decay (see, e.g., Figs. 1
and 2) can be obtained from the interactive effec-
tive Lagrangian [14]. For example, the effective La-
grangian of the decay of an I sterile neutrino into the
π±, π0 final states is

Lπeff =
GF

2
MIfπΘαI ν̄α(1+γ5)NIπ0+

[
GF√

2
MIfπVud×

×ΘαI ēα

(
(1+γ5)−

mα

MI
(1−γ5)

)
NIπ

− + h.c.
]
. (40)

Here, GF is the Fermi coupling constant, MI is the
mass of an I-sterile neutrino, mα is the mass of a
charged lepton of the α generation, and fπ is the π-
meson decay constant that is defined as

〈π+|ū(1 + γ5)γνd|0〉 = −fπ(pπ)µ, (41)

where pπ is the pion 4-momentum.
The leptonic asymmetry ε can be defined as

ε =
ΓN→l − ΓN→l̄
ΓN→l + ΓN→l̄

, (42)

where ΓN→l is the total decay rate of sterile neutri-
nos into leptons, and ΓN→l̄ is the total decay rate of
sterile neutrinos into antileptons.

At the tree level, the decay rates of sterile neutrinos
into leptons and antileptons are equal. Therefore, we
must compute the one-loop diagrams (see Fig. 3). In
the case of nearly degenerated sterile neutrinos, the
contribution from the diagrams presented in Fig. 3, b)
can be neglected as compared with the diagrams pre-
sented in Fig. 3, a). Indeed, the propagator of a ster-
ile neutrino in diagrams a) is proportional to 1/ΔM
in the center-of-mass frame. The leading order con-
tribution to the leptonic asymmetry comes from the
interference between one-loop diagrams and tree-level
diagrams [19]. In this case, ΓN→l − ΓN→l̄ ∼ Θ4 and
ΓN→l + ΓN→l̄ ∼ Θ2, and the leptonic asymmetry is
suppressed.

In our case where the mass splitting between two
heavier sterile neutrinos is very small, and it is of the

Fig. 3. Example of one-loop diagrams of the decay
NI → ναπ0

Fig. 4. Contributions to the effective Hamiltonian

same order as their decay rate (we will see it below),
the oscillations between NI and NJ are of importance
(see Fig. 4). So, the corresponding mass eigenfunc-
tions are no longer the NI states, but are their mix-
ture, namely ψI [14, 20]. It is these physical eigen-
states that evolve in time with a definite frequency.
The subsequent decay of these fields will produce the
desired lepton asymmetry

Δ =
Γψ→l − Γψ→l̄
Γψ→l + Γψ→l̄

, (43)

where Γψ→l and Γψ→l̄ are the total decay rates
of sterile neutrinos with eigenfunctions ψI into lep-
tons and antileptons, respectively. In this case, the
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leading-order contribution to the leptonic asymmetry
comes from tree-level diagrams.

In the general case, the correct description of the
processes can be made in the frame of the density
matrix formalism (see, e.g., [5]). We will follow a
simpler way by considering a non-Hermitian Hamil-
tonian. The effective Hamiltonian in the basis of
{N2, N3} is H = H0 + ΔH, where H0 is the diag-
onal Hamiltonian of equal-mass particles

H0 =
(
M 0
0 M

)
. (44)

The corrections to this Hamiltonian are given by the
one-loop diagrams (see Fig. 4):

ΔH =

(
−ΔM − i

2Γ2 − i
2Γ23

− i
2Γ23 ΔM − i

2Γ3

)
. (45)

The dispersive part of these diagrams can be absorbed
in the mass renormalization of the fields [20], and this
causes the appearance of the mass splitting ΔM . The
absorptive part of the diagrams will define the total
decay rates of a sterile neutrino ΓI and the rate of
oscillations between sterile neutrinos Γ23.

The total decay rates of I-sterile neutrinos into
charged mesons and leptons of the α-generation are

Γαπ±

I = Γ(NI → π± + l∓α ) =

=
G2

Ff
2
π |Vud|2M3

8π
|ΘαI |2S(M,mα,mπ)×

×

[(
1− m2

α

M2

)2

− m2
π

M2

(
1 +

m2
α

M2

)]
, (46)

ΓαK
I = Γ(NI → K± + l∓α ) =

=
G2

Ff
2
K |Vus|2M3

8π
|ΘαI |2S(M,mα,mK)×

×

[(
1− m2

α

M2

)2

− m2
K

M2

(
1 +

m2
α

M2

)]
, (47)

Γαρ±

I = Γ(NI → ρ± + l∓α ) =

=
G2

Fg
2
ρ|Vud|2M3

4πm2
ρ

|ΘαI |2S(M,mα,mρ)×

×

[(
1− m2

α

M2

)2

+
m2
ρ

M2

(
1 +

m2
α − 2m2

ρ

M2

)]
, (48)

where

S(MI ,mα,m) =

=

√(
1− (m−mα)2

M2
I

)(
1− (m+mα)2

M2
I

)
, (49)

and the values of decay constants and elements of the
CKM matrix are given in [2]: fπ = 0.131 GeV, fK =
0.16 GeV, gρ = 0.102 GeV2, |Vud| = 0.97, |Vus| =
0.23.

The total decay rates of I-sterile neutrinos into neu-
tral mesons and active neutrinos are

Γαπ0

I = Γ(NI → π0 + να) =

G2
Ff

2
πM

3

16π
|ΘαI |2

(
1− m2

π

M2

)2

, (50)

Γαρ0

I = Γ(NI → ρ0 + να) =

=
G2

Fg
2
ρM

3

8πm2
ρ

|ΘαI |2
(
1 + 2

m2
ρ

M2

)(
1−

m2
ρ

M2

)2

, (51)

Γαη
I = Γ(NI → η + να) =

=
G2

Ff
2
ηM

3

16π
|ΘαI |2

(
1−

m2
η

M2

)2

, (52)

Γαη′

I = Γ(NI → η′ + να) =

=
G2

Ff
2
η′M

3

16π
|ΘαI |2

(
1−

m2
η′

M2

)2

, (53)

where fη = 0.156 GeV, f ′η = −0.058 GeV [2].
As one can see, the decay rates into ρ±, ρ0 mesons

are slightly different, because they are vector mesons.
The adduced decay rates (50) – (53) were obtained
in [10, 21]. The total rate of the decay of a sterile
neutrino into mesons and leptons is sum of the rates
over all decay channels Λ (35) and over leptonic gen-
erations,

ΓI =
∑
α,Λ

ΓαΛ
I Θ(yαΛ), (54)

where yΛ is the difference of the I sterile neutrino
mass and the total mass of all final particles of the
decay channel Λ; and Θ(x) is the usual Heaviside
function. The rate of oscillations between I and J
sterile neutrinos (ΓIJ) can be expressed through the
decay rates

ΓIJ =
∑
α,Λ

Re(ΘαIΘ∗αJ)
|ΘαI |2

ΓαΛ
I Θ(yαΛ). (55)
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The eigenvalues and the corresponding eigenfunc-
tions of the non-Hermitian Hamiltonian H = H0 +
ΔH are given by

ω2 =M − i

4
(Γ2+Γ3)−

1
4
c, ψ2 =

1√
N

(
B

1

)
, (56)

ω3 =M − i

4
(Γ2+Γ3)+

1
4
c, ψ3 =

1√
N

(
1
−B

)
, (57)

where N is a normalization factor, and

c =
√

(4ΔM − i(Γ3 − Γ2)2 − 4(Γ23)2,

B = (4iΔM + (Γ3 − Γ2) + ic)/(2Γ23).

It should be noted that the sterile neutrinos are not
initially in the states ψ2 and ψ3, but in the state N2

and N3. The fact is that the sterile neutrino were in
a thermal equilibrium, before they propagated freely.
The equilibrium was maintained by the weak interac-
tion between the sterile neutrinos and particles in the
background. The weak interaction eigenstates are N2

and N3; therefore, the sterile neutrinos are initially in
the state N2 or N3. In general, the initial state of a
sterile neutrino is a superposition of N2 and N3 states
and can be described by the density matrix

ρ̂initial = ρ̂(t = 0) =
∑
I=2,3

αI |NI(0)〉〈NI(0)|, (58)

where α2 + α3 = 1. It was shown in [14] that the
leptonic asymmetry dependence on the parameter αI
can be neglected. We confirm this statement, and,
hereafter, we will consider the symmetric initial state
α2 = α3 = 1/2.

The time evolution of the density matrix can be
obtain in a simple way. Since

|ψI〉 = UIJ |NJ〉, (59)

where

U =
1√
N

(
B 1
1 −B

)
, (60)

the time evolution of the |NI〉 state is known:

|NI(t)〉 = U−1
IKe

−iωKt|ψK(0)〉 =

= U−1
IKe

−iωKtUKJ |NJ(0)〉 = RIJ |NJ(0)〉. (61)

Thus,

ρ̂(t) =
1
2

3∑
I,J,K=2

RIK(t)∗RIJ(t)|NJ(0)〉〈NK(0)| =

=
1
2

3∑
J,K=2

(R†R)KJ |NJ(0)〉〈NK(0)|. (62)

The average production rate of leptons is given by

Γ=

∞∫
0

dt

∫
dΠ2

∑
l

Tr [|l〉〈l|ρ̂(t)]= 1
2

∞∫
0

dt

∫
dΠ2 Tr×

×

∑
l,K,J

(R†R)KJ〈l|NJ(0)〉〈NK(0)|l〉

 =

=
1
2

∞∫
0

dt

∫
dΠ2

∑
l,J,K

(R†R)KJAJlA∗Kl, (63)

where the sum over l means the sum over all lepton
generations and include charged leptons and active
neutrinos, 〈l|NJ(0)〉 = AJl is the transition ampli-
tude of the decay of an I sterile neutrino into a lep-
ton at the tree level that includes all possible channels
of the reaction, and dΠ2 is the differential two-body
phase space

dΠ2 =
d3q

(2π)32Eq
d3k

(2π)32Ek
(2π)4δ4(p− q − k),

where p, q, k are the 4-momenta of initial and final
particles in the decay.

Similarly, the production rate of antileptons is

Γ̄ =
1
2

∞∫
0

dt

∫
dΠ2

∑
l,J,K

(R†R)KJA∗JlAKJ . (64)

The measure of the leptonic asymmetry is given by

Δ=
Γ−Γ̄
Γ+Γ̄

=
[∫

dt

∫
dΠ2Im((R†R)32)Im(A∗2lA3l)

]
/

/

[ ∫
dt

∫
dΠ2((R†R)22|A2l|2 + (R†R)33|A3l|2+

+ 2Re(A∗2lA3l)Re(R†R)23)
]
. (65)
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The integration over dΠ2 gives [14]

Δ =
[ ∫

dtIm((R†R)32)
∑
α

Im(Θ∗α2Θα3)Vα

]
/

/

[ ∫
dt
∑
α

((R†R)22|Θα2|2 + (R†R)33|Θα3|2+

+ 2Re(Θ∗α2Θα3)Re(R†R)23)Vα

]
, (66)

where Vα is defined via the sum over all possible chan-
nels of the decay of a sterile neutrino into leptons of
the generation α:

Vα =
∑
Λ

ΓαΛ
I

|ΘαI |2
Θ(yαΛ). (67)

4. Restrictions on the Parameters
of the νMSM

As was pointed in Section 1, the leptonic asymmetry
of the Universe has to be constrained by condition (1)
at the moment of the beginning of the production of
DM particles. It allows us to constrain the parame-
ters of the νMSM . To do it, we can construct the
leptonic asymmetry (66) as a function of only three
parameters of νMSM : M , ΔM , and ε.

We do it in the following way. The leptonic asym-
metry function (66) is maximized over the phases δ,
α2, and ξ (and α1 in case of the inverted hierarchy)
and is taken at the central values of active neutrino
mass matrix parameters3 (see Table 1). This func-
tion contains the dependence on the ratios of the
Yukawa matrix elements with a mixing angle ΘαI

(34) that can be expressed through solutions (20)
with two possible choices of the sign consistent with
condition (22). So far as the relation for leptonic
asymmetry (66) has no symmetry for interchanging
and conjugating the ratios of elements of the second
and third columns of the Yukawa matrix, we have to
consider two variants of the solutions. For fixed val-
ues of mixing angles and phases, we will designate
the allowed solution of (20) with two or more signs

3 In case of the normal hierarchy, we have m1 = 0, m2 =

=
√

Δm2
21 = 0.009 eV, m3 =

√
|Δm2

23|+Δm2
21 = 0.05 eV.

In case of the inverted hierarchy, we have m1 =

=
√
|Δm2

23|−Δm2
21 =0.048 eV, m2 =

√
|Δm2

23| = 0.049 eV,
m3 = 0

Fig. 5. Grey areas are the regions of parameters, where Δ >

> 10−3 in the case of the normal hierarchy. The areas cor-
respond to M = 0.3 GeV (bottom), M = 1 GeV (middle),
M = 2 GeV (top)

(+) as a solution of A type. Vice versa, the solution
with two or more signs (−) will be designated as a
solution of B type. It should be noted that our re-
sults (23), (24) for B type of a solution coincide with
results of [8], where the ratios of elements were ob-
tained in the particular case θ13 → 0, θ23 → π/4.
We separately consider the cases where θ13 = 0 and
θ13 = 10◦.

Thereby, we construct the allowed regions
(Δ > 10−3) in the plane of parameters ΔM and ε
at fixed values of M .

In the case of the normal hierarchy, the difference
between the case of θ13 = 0 or θ13 = 10◦ and the case
of a solution of A or B types is not essential, so we
illustrate the allowed regions in Fig. 5. In the case
of the inverted hierarchy, the difference between the
case of a solution of A or B types is not essential, but
the cases of θ13 = 0 and θ13 = 10o are substantially
different. So, we illustrate the allowed regions in two
parts of Fig. 6.

It should be noted that we have investigated the
forms of allowed regions not only for the central value
of θ13 angle, but for a range given by data of [13]. We
conclude that, in case of the normal hierarchy, the
regions are almost not sensitive to the value of θ13 in
the range 0 < < θ13 < 16◦. In case of the inverted
hierarchy, it is true for the regions b and θ13 < 18◦

in Fig. 6. But, for θ13 = 0, the allowed regions are
appreciably different.

We also illustrate the regions, where the maximum
of Δ can be more than 2/11 in Fig. 7 (white inner
figures) for the both hierarchies. We do it only for
the mass M = 1 GeV, because these regions are at
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Fig. 6. Grey areas are the regions of parameters, where Δ > 10−3 in the case of the inverted hierarchy. The areas correspond
to M = 0.3 GeV (bottom), M = 1 GeV (middle), M = 2 GeV (top). Parts a) and b) represent the case of θ13 = 0◦ and 10◦,

respectively

Fig. 7. Grey areas represent the regions of parameters, where 10−3 < Δ < 2/11 for M = 1 GeV in case of the normal (a) and
inverted hierarchies (b)

small values of ε, and it will not intersect with other
subsequent constrains. Moreover, at some values of
phases, the leptonic asymmetry in this region can be
less than 2/11, and we cannot exclude this region ul-
timately.

By examples, we present the possible values of I
sterile neutrino decay rate ΓI (54) and the rate of os-
cillations between I and J sterile neutrinos ΓIJ (55)
for M = 1 GeV and θ13 = 10◦ in Fig. 8. As one can
see, the values of ΓI and ΓIJ are really of the same
order as ΔM . This confirms the previous assump-
tion about the necessity to consider the oscillations
between sterile neutrinos.

In order to create the leptonic asymmetry, the ster-
ile neutrinos should be out of a thermal equilibrium.
This means that

Γ2 . H, (68)

where H is the Hubble parameter that determines
the expansion rate of the Universe. In the radiation-

dominated epoch, the Hubble parameter is given by

H =
T 2

M∗PL

, (69)

where M∗PL =
√

90
8π3g∗(T )MPL, MPL = 1.22×1019 GeV

is the Planck mass, and g∗(T ) is the internal degree
of freedom [22]. At temperatures T ∼ 1 GeV, we can
take g∗ ' 65.

So, we get the condition√
M∗PLΓ2 . T. (70)

The out-of-equilibrium condition means that the ster-
ile neutrinos should decay at a temperature smaller
than their mass (T . M). Moreover, the sterile neu-
trinos should decay before the creation of DM so that
the leptonic asymmetry enhances the DM production.
DM is created at T ∼ 0.1 GeV. Therefore,

0.1 .

√
MPL∗Γ2

1GeV
.

M

1GeV
. (71)
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Fig. 8. Values of rates Log10(ΓI/1 GeV), Log10(Γ23/1 GeV), and Log10(ΔM/1 GeV) for the leptonic asymmetry Δ > 10−3 in
the case of M = 1 GeV and θ13 = 10o are on the ordinate axis: a) is the case of the normal hierarchy (A type of a solution),
and b) is the case of inverted hierarchy (B type of a solution)

Fig. 9. Case of the normal hierarchy. The points on grey
and red regions satisfy constraint (71). The region on the right
from the vertical red line satisfies also condition (1)

In Fig. 9, we show the region of values of M and
ε, where condition (71) is satisfied in the case of the
normal hierarchy. On the scale of the parameters
presented in Fig. 9, the differences between the case
of θ13 = 0 and θ13 = 10◦ and between the cases of
a solution of A and B types are small, so we present
only one figure. It is not true for the case of the
inverted hierarchy, see Fig. 10.

It should be noted that the region in Fig. 9 is al-
most not sensitive to the value of θ13 in the interval
0 < θ13 < 16◦. In case of the inverted hierarchy, it is
true for the regions in Fig. 10, b) and θ13 < 18◦. But,
in the case where θ13 = 0, the regions are appreciably
different.

As one can see, there are regions in Fig. 9 (red)
and Fig. 10, a) (red and blue), where conditions (1)
and (71) are satisfied simultaneously. This region of
parameters is suitable for the DM production in the

νMSM . For the case of the inverted hierarchy and
the nonzero value of θ13, we have no region that is
suitable for the DM production. So, in ν MSM for
physical nonzero values of θ13 and the mass of a sterile
neutrino mπ < M < 2 GeV, the DM production can
be realized only in case of the normal mass hierarchy
of active neutrinos.

The region suitable for the DM production (case of
the normal hierarchy and nonzero θ13) can be used
to obtain constraints for the mass splitting of a ster-
ile neutrino. Fixing the mass of a sterile neutrino,
one obtains possible values of ε (see Fig. 9). By us-
ing Fig. 5, one can obtain the possible values of mass
splitting for the sterile neutrino with mass M . If the
mass of a sterile neutrino is on the lower boundary
of the allowed mass range (M ' 1.4 GeV), then the
value of ΔM is exactly known (ΔM ≈ 510−21 GeV).
If the mass of a sterile neutrino is on the upper
bound of the allowed mass range (M = 2 GeV),
then ΔM can possess the values from the range
10−21 . ΔM/1GeV . 10−20.

Some existing experimental data restrict the area of
parameters of νMSM . For M < 0.45 GeV, the best
constraints come from the CERN PS191 experiment.
For 0.45 < M < 2 GeV, the constraints come from
the NuTeV, CHARM, and BEBC experiments. The
range of parameters admitted by these experimental
data is summarized in [23]. These parameters are
the mixing angle (Θ+Θ)22 (it defines the range of
reactions with sterile neutrino) and the mass of the
heavier sterile neutrino M .

To compare the constraints obtained in the present
paper on the νMSM parameters (see Figs. 9 and
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Fig. 10. Case of the inverted hierarchy: a) θ13 = 0, b) θ13 = 10◦. The pink, grey, and red regions correspond to the A type of
solutions. The grey, red, sky blue, and blue regions correspond to the B type of solutions. The points on these regions satisfy
constraint (71). The region on the right from the red line satisfies also condition (1)

Fig. 11. Imposition of our constraints and summarized constraints from [23]: a) the case of the normal hierarchy, b) the case
of the inverted hierarchy

10) with constraints summarized in [23], one has to
rebuild the allowed regions in the space of parameters
M and θ2νN2

= (Θ+Θ)22.
In the general case, the relation between (Θ+Θ)22

and ε is quite difficult to be obtained. Really, in ac-
cordance with (29) and (34), we have

(Θ+Θ)22 =
ν2

2M2
(V +h+hV )22 =

=
ν2

2M2
(F 2

2 + F 2
3 − 2|h+h|23 sinχ), (72)

where χ = arg[(h+h)23]. Using (17)–(19), we get

F 2
2 =

M

ν2ε
(mc +mb), F3 = εF2,

|h+h|23 =
M

ν2
(mc −mb) (73)

and

(Θ+Θ)22 =
mc +mb

2Mε

(
1+ε2−2

mc −mb

mc +mb
ε sinχ

)
. (74)

The problem consists in the parameter χ that is a
complicated function of many parameters. But, in
our case (see Figs. 9 and 10, ε < 0.16), we can use
the approximate relation

(Θ+Θ)22 =
mc +mb

2Mε
. (75)

The imposition of our constraints presented in
Figs. 9 and 10 for a nonzero value of θ13 and the
summarized constraints from [23] is given in Fig. 11.
Above the line marked “BAU”, the baryogenesis is
not possible: here, sterile neutrinos come to the ther-
mal equilibrium above the TEW temperature. Be-
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Fig. 12. Red region “DM” from Fig. 10 in the scaled-up form: a) θ13 = 00 type A (dark) and type B (light); b) type A: θ13 = 00

(white) and θ13 = 100 (black); c) type B: θ13 = 00 (white) and θ13 = 100 (black). The variable M/1 GeV is along the abscissa
axis, and the variable Log10(Θ+Θ)22 is along the ordinate axis

low the line marked “See-saw”, the data on the neu-
trino masses and the mixing cannot be explained
by the “see-saw” mechanism. The region noted as
“BBN” is disfavored by the considerations of the
Big Bang nucleosynthesis. The region marked “Ex-
periment” shows a part of the parameter space ex-
cluded by direct searches for singlet fermions. The
regions marked “Cos” “Δ,” and “DM” are built in
this paper. The grey and blue region “Cos” shows the
parametric space allowed by the cosmological con-
straint (71) (grey region corresponds to A and B
types of a solution, blue region corresponds to B
type of a solution), the dashed region marked “Δ”
shows the parametric space allowed by constraint
(1), the red region marked “DM” shows the para-
metric space, where constraints (1) and (71) are
noncontradictory. The last region is preferred for
the DM production according to calculations of the
present paper.

The red region marked “DM” is shown in Fig. 12 in
the scaled-up form. The differences between the cases
of θ13 = 0◦ and θ13 = 10◦ and between types of A and
B of solutions are illustrated. As is seen, the choice
of solutions of A or B type makes a greater change
in the allowed region than the choice of θ13 = 0◦ or
θ13 = 10◦.

5. Conclusion

In the present paper, we consider the leptonic asym-
metry generation at T � TEW , when the masses
of two heavier sterile neutrinos are between mπ

and 2 GeV.
We conclude that the oscillations and the decays

of sterile neutrinos can produce a leptonic asymme-
try that is large enough to enhance the DM pro-
duction sufficiently to explain the observed DM in
the Universe, but only in the case of the normal

hierarchy of the active neutrino mass. The al-
lowed range of parameters is narrow, and it is pre-
sented in Figs. 11 and 12. It should be noted
that the allowed mass range for a heavier ster-
ile neutrino is 1.42(1.55) . M < 2 GeV for B
(A) type of solutions, and the mixing angle be-
tween active and sterile neutrinos is −7.91(−7.98) .
. Log10(Θ+Θ)22 . −8.41(−8.35) for B (A) type
of solutions. If the sterile neutrino mass is on the
lower boundary of the allowed mass range, then
the value of ΔM is exactly known (ΔM ≈ 5×
×10−21 GeV). If the sterile neutrino mass is on
the upper bound of the allowed mass range, then
ΔM can possess the values from the range 10−21 .
. ΔM/1 GeV . 10−20. In the case of the in-
verted hierarchy, there is no region suitable for the
DM production.

The big range of parameters of the νMSM is
not forbidden by the existing experimental data (see
Fig. 11). Combining this range with our constraints
(red region “DM” in Fig. 11) leads to the conclu-
sion that the improvement of previous experiments,
as NuTeV or CHARM, by one or two orders of mag-
nitude can exclude the νMSM with M < 2 GeV or
allow one to detect the right-handed neutrinos.

It should be noted that our constraints are quite
rough and can be used only for estimations. Re-
ally, the form of red region “DM” is very sensitive
to cosmological constraints. The applied condition
0.1 GeV <

√
MPL∗Γ2 < M is very approximate. The

correct description of the processes can be made in
the frame of the density matrix formalism or Boltz-
mann equations. Our computation is not valid for
M > 2 GeV. However, the extrapolation of our results
(see Fig. 11) suggests that the range of admitted pa-
rameters in the case of the normal hierarchy becomes
bigger for masses above 2 GeV. We expect that, for
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masses above 2 GeV, the DM production can be re-
alized in the case of the inverted hierarchy as well.

During computations, we used two types (A or
B) of solutions (20). This is due to the fact that
the ratios of the Yukawa matrix elements (they en-
ter into the expression for the mixing angle ΘαI) can
be expressed through solutions (20) with two possible
choices of the sign consistent with condition (22). It is
closely related to the symmetry of (16) under replac-
ing the elements of the second column of the Yukawa
matrix by elements of the third column. These two
variants are equal in rights.

The computation of the leptonic asymmetry in the
applied simple model allows us to make some con-
clusions that, seemingly, will be correct also under a
more rigorous consideration. Namely, the initial state
of the right-handed neutrino in form (58) is not im-
portant for the lepton asymmetry generation (the fi-
nal results are not sensitive to the values of constants
αI). In the case of the normal hierarchy, a deviation
of the mixing angle θ13 from its zero value (up to the
value 16◦) almost does not change the region suitable
for the DM production. In the case of the inverted
hierarchy, the results are different for θ13 = 0 and
θ13 6= 0. Our calculations indicate that the case of
θ13 = 0 leads to the existence of a region suitable for
the DM production. But, at nonzero values of θ13,
this region does not exist. Values of θ13 in the range
θ13 < 18◦ (θ13 6= 0) almost do not change the region
suitable for the DM production.

It is essential to note that, during computations, we
have used functions maximized over unknown param-
eters of the model (phases δ, ξ, α2, α1). If the maxi-
mization procedure was not performed, the final func-
tions are sensitive to the values of mentioned phases.
So, the obtained results are very optimistic. But if the
proposed region of parameters “DM” in Fig. 11 will
be forbidden by experimental data, it will mean that
the mass of heavier sterile neutrinos must be larger
than 2 GeV.

An essential assumption we have made is that the
background effects are negligible. We do not have
justify that it can be neglected in the thermal bath of
the Universe. For simplicity, the computations were
made at zero temperature. A rigorous justification of
this assumptions is needed.

It should be noted that the region suitable for in
Fig. 11 DM production in νMSM was recently cal-
culated in the frame of a more general formalism in

[24] (all details of calculations are presented in [25]).
Certainly, the results of [24, 25] somewhat differ from
our simple calculations.
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В.М. Горкавенко, I.В. Руденок, С.Й. Вiльчинський

ГЕНЕРАЦIЯ ЛЕПТОННОЇ
АСИМЕТРIЇ В АДРОННИХ РОЗПАДАХ
СТЕРИЛЬНИХ НЕЙТРИНО

Р е з ю м е

Розглянуто утворення лептонної асиметрiї при адрон-
них розпадах стерильних нейтрино в моделi νMSM при

T � TEW за умови, що маси двох найважчих стерильних
нейтрино знаходяться в межах вiд mπ до 2 ГеВ. Верхня ме-
жа по масi зумовлена вiдсутнiстю прямих експериментiв по
виявленню стерильних нейтрино з бiльшими масами. Роз-
рахунки були проведенi при нульовiй температурi без вра-
хування впливу середовища. Вимога необхiдного значення
лептонної асиметрiї для утворення частинок темної матерiї,
умова не перебування стерильних нейтрино в станi тепло-
вої рiвноваги та наявнi експериментальнi обмеження є не-
суперечливими лише в областi мас найважчих стерильних
нейтрино 1,4 ГеВ . M < 2 ГеВ та при нормальнiй iєрархiї
мас активних нейтрино.
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