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In addition to the well-known Fermi properties of the Dirac equation, the hidden bosonic
properties of this equation are found. The bosonic symmetries, solutions, and the conservation
laws are under consideration. Such new features of the Dirac equation with nonzero mass
are found with the help of the 64-dimensional extended real Clifford–Dirac algebra and 29-
dimensional proper extended real Clifford–Dirac algebra. In this case, the start from the Foldy–
Wouthuysen representation is of importance. It is shown that the Dirac equation can describe
not only the fermionic but also the bosonic states.
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1. Introduction

It is well-known that the Dirac equation is invari-
ant with respect to the transformations, which are
determined by the spin s = 1

2 representation of the
Poincaré group. On the basis of this fact, the conclu-
sion that the Dirac equation describes the spin s = 1

2
fields and particles (fermions) is formulated. The
representations of the proper orthochronous Poincaré
group (inhomogeneous Lorentz group) have the prin-
cipal importance.

Below, we are able to demonstrate another hidden
half of the Dirac equation possibilities. We will con-
sider the bosonic symmetries, solutions, and conser-
vation laws for the Dirac equation with nonzero mass.

Note that the Dirac equation itself (as well as ev-
ery other field equation) does not carry the complete
information about which field (particle) is described
by this equation. The complete information is given
only by the pair of conceptions: the equation and the
transformation law of the field function. Therefore,
the transformations, which are determined not by the
1/2 eigenvalues of the particle spin operator, have a
special importance and the physical meaning among
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the additional transformations, with respect to which
the Dirac equation is invariant.

Thus, in addition to the well-known fermionic spin
s = 1/2 characteristics of the Dirac equation with
nonzero mass, we consider the bosonic spin s = (1, 0)
symmetries [1–3], solutions, and conservation laws for
this equation. Such hidden property of the Dirac
equation has been called by us as the Fermi–Bose
duality of this equation. We referred also to the steps
of other authors [4–13] in this direction, which were
published before our investigations [14–17]. The au-
thors of works [18–25] continued our researches and
referred to our papers. In another approach [26–
29], the quadratic relations between the fermionic and
bosonic amplitudes were found and used. In our pa-
pers [1–3, 14–17] and here, we discuss linear relations
between fermionic and bosonic amplitudes.

For the most simple case of the massless Dirac
equation (as well as for the slightly generalized orig-
inal Maxwell equations), the bosonic symmetries,
solutions, and conservation laws were found by us
more than 10 years ago (see, e.g., [14–17] and ref-
erences therein). Only the consideration of the 64-
dimensional extended real Clifford–Dirac (ERCD) al-
gebra A64 (our generalization [1–3] of the standard
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16-dimensional Clifford–Dirac (CD) algebra) enabled
us to extend the results to the general case where
the mass in the Dirac equation is nonzero. Note that
here 7 gamma-matrices obey the anticommutation re-
lations of the CD algebra.

Hence, now we start from the 29-dimensional
proper extended real CD algebra (proper ERCD al-
gebra), which is a subalgebra of A64 and is generated
by 7 (not 5) gamma-matrices. Such proper ERCD
algebra realizes a representation of the algebra of
SO(8) group.

To use the additional possibilities (additional orts)
of the extended CD algebra is the first principal idea,
which is the basis of our consideration. Another im-
portant idea is our start from the Foldy–Wouthuysen
(FW) [30–32] representation of the Dirac equation.
Note that the FW representation has important ad-
vantages in comparison with the standard so-called
local representation of this equation. The quantum-
mechanical operators of coordinate, velocity and spin
are well defined in the FW representation and have
there the simplest forms. Moreover, the standard spin
operator in the FW representation commutes with
the Hamiltonian of the FW equation (in the Dirac
representation, the spin operator, which commutes
with the Dirac Hamiltonian, is non-local, and the cor-
responding well-defined operators of coordinate and
velocity are non-local too). One more advantage of
the FW representation is as follows. The proof of
the pure matrix symmetry properties is much eas-
ier and more convenient here in comparison with the
standard Pauli–Dirac (PD) representation. The sym-
metries in the PD representation, i.e. for the Dirac
equation, follow from the symmetries of the FW equa-
tion on the basis of the FW transformation.

The additional elements of the proper extended real
CD algebra lead to the additional possibilities. The
application of this new mathematical object enabled
us to prove the hidden bosonic properties (symme-
tries, solutions, and conservation laws) of the Dirac
equation with nonzero mass in both standard and
FW [30] representations. It is the basis for our dual
Fermi–Bose consideration of the spinor field.

The concept of the Fermi–Bose (FB) duality of a
spinor field has been mentioned first by L. Foldy [31].
The extended consideration has been given in [33,
34]. P. Garbaczewski proved [33, 34] that the Fock
space HF(H3,M) over the quantum mechanical space
L2(R3) ⊗ C⊗M of the particle, which is described by

the field φ : M(1,N) → C⊗N, allows one to fulfill
the dual FB quantization of the field φ in HF. Both
the canonical commutation relations (CCR) and an-
ticommutation relations (CAR) were used to real-
ize the above-mentioned quantization. Moreover, for
the both types of quantization, the uniqueness of the
vacuum in HF was proved. The dual FB quantiza-
tion was illustrated for different examples and in the
spaces M(1,N) of arbitrary dimensions. The massless
spinor field was considered in details in [34].

In our publications, the consideration of the FB du-
ality concept of the spinor field was extended by ap-
plying the group-theoretic approach to the problem.
We have found the bosonic symmetries, solutions, and
conservation laws as a consequence.

The corresponding results are given below in Sec-
tions 2–12.

2. Notations and Definitions

The system of units ~ = c = 1 and the metric gµν =
= gµν = gµν , (gµν ) = diag (1,−1,−1,−1), aµ = gµνaν ,
are taken. The Greek indices vary in the region
0, 1, 2, 3 ≡ 0, 3, Latin – 1, 3, the summation over the
twice repeated index is implied. The Dirac γµ matri-
ces in the standard (PD) representation are used. Our
consideration is fulfilled in the rigged Hilbert space
S3,4 ⊂ H3,4 ⊂ S3,4∗ where H3,4 is given by

H3,4 = L2(R3)⊗ C⊗4 =

=
{
φ = (φµ) : R3 → C⊗4;

∫
d3x|φ(t,x)|2 <∞}

}
,

(1)

and the symbol “*” in S3,4∗ means that the space of
the Schwartz generalized functions S3,4∗ is conjugated
to the Schwartz test function space S3,4 by the corre-
sponding topology (for more details, see [2]).

We consider the ordinary CD algebra of 4×4 Dirac
matrices in the standard PD representation in terms
of the standard 2× 2 Pauli matrices:

γ0 =
∣∣∣1 0
0 −1

∣∣∣, γk =
∣∣∣∣ 0 σk

−σk 0

∣∣∣∣;
σ1 =

∣∣∣0 1
1 0

∣∣∣, σ2 =
∣∣∣0 −ii 0

∣∣∣, σ3 =
∣∣∣1 0
0 −1

∣∣∣; k = 1, 2, 3.

(2)
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The γµ matrices (2) together with γ4 ≡ γ0γ1γ2γ3 sat-
isfy the anticommutation relations of the CD algebra

γµ̄γν̄ + γν̄γµ̄ = 2gµ̄ν̄ , µ̄, ν̄ = 0, 4, (3)

and
(
gµ̄ν̄
)

= diag (1,−1,−1,−1,−1). Here and in our
publications, we use the γ4 ≡ γ0γ1γ2γ3 matrix in-
stead of the γ5 matrix of other authors. Our γ4 is
equal to iγ5

standard. Below, we use the notation γ5 for
a completely different matrix γ5 ≡ γ1γ3Ĉ.

The group P is the universal covering P ⊃ L =
= SL(2,C) of the proper orthochronous Poincaré
group P↑+ = T(4)×)L↑+ ⊃ L↑+ = SO(1,3). The group
L = SL(2,C) is the universal covering of the proper
orthochronous Lorentz group L↑+ ⊃ L↑+ = SO(1,3).

For the purposes related to physics, it is useful
to consider the corresponding groups and algebras
with real parameters (e.g., the parameters a = (aµ),
ω = (ωµν) of the translations and rotations for the
group P↑+). Therefore, the corresponding generators
are anti-Hermitian. The mathematical correctness of
such choice of generators was verified in [35, 36].

3. Extended Real Clifford–Dirac Algebra

The ERCD algebra has been found in [1–3] as a
complete set of operators of a standard CD alge-
bra together with the operators of a Pauli–Gürsey–
Ibragimov algebra [37, 38]:

{γ2Ĉ, iγ2Ĉ, γ2γ4Ĉ, iγ2γ4Ĉ, γ4, iγ4, i, I}. (4)

Hence, such generalization of the real CD algebra is
constructed with the help of an imaginary unit i =
=
√
−1 together with the operator Ĉ of complex con-

jugation, i.e., the operators i =
√
−1 and Ĉ are the

nontrivial orts of the algebra; Ĉ is the involution op-
erator in the space H3,4.

It is known from [1–3] that 16 orts of the standard
CD algebra can be written in the form

{ind CD} ≡ {I, αµ̃ν̃ = 2sµ̃ν̃}, µ̃, ν̃ = 0, 5, (5)

where

sµ̄ν̄ ≡ 1
4
[
γµ̄, γν̄

]
, sµ̄5 = −s5µ̄ ≡ 1

2
γµ̄;

γ4 ≡ γ0γ1γ2γ3,

(6)

and µ̄, ν̄ = 0, 4. Matrices (6) satisfy the commuta-
tion relations of nontrivial generators of the SO(1,5)

algebra in the form[
sµ̃ν̃ , sρ̃σ̃

]
= −gµ̃ρ̃sν̃σ̃−gρ̃ν̃sσ̃µ̃−gν̃σ̃sµ̃ρ̃−gσ̃µ̃sρ̃ν̃ , (7)

where (gµ̃ν̃ ) = diag(+1,−1,−1,−1,−1,−1).
In formulae (6) and (7), we rewrite the result in

[39, 40], where the 16 orts of the standard CD al-
gebra are presented in a form of the SO(3,3) alge-
bra. We give this result in the form, which is use-
ful for our purposes, i.e. as the SO(1,5) algebra
(similarly to the algebra of the proper orthochronous
Lorentz group L↑+ = SO(1,3) in the Minkowski space
M(1,3)⊂M(1,5)).

Thus, in the terms of (5), a complete set of 64 orts
of the ERCD algebra (the complete set of operators
(4) and (5)) has the form

{ERCD} =
{

(ind CD), i · (ind CD),
Ĉ · (ind CD), iĈ · (ind CD)

}
. (8)

The ERCD algebra (8) has only some partial features
of the CD algebra. The direct generalization of the
standard CD algebra is the proper ERCD algebra,
which is a subalgebra of (8) (see the next section 4).
Nevertheless, the ERCD algebra has another impor-
tant subalgebra – the 32-dimensional algebra A32 =
= SO(6)⊕ iγ0 ·SO(6)⊕ iγ0. The last one is the max-
imal set of pure matrix operators, which left the FW
equation invariant (the details are given in [1–3]).

4. Proper Extended Real
Clifford–Dirac Algebra

Here, the subalgebras of the ERCD algebra are con-
sidered briefly. The most important are the represen-
tations in C⊗4 ⊂ H3,4 of the 29-dimensional proper
ERCD algebra SO(8) spanned over the 7 orts

γ1, γ2, γ3, γ4 = γ0γ1γ2γ3,

γ5 = γ1γ3Ĉ, γ6 = iγ1γ3Ĉ, γ7 = iγ0,
(9)

where the γµ matrices are given in (2). Generators
(9) satisfy the anticommutation relations [1–3]

γAγB + γBγA = −2δAB, A,B = 1, 7, (10)

and the generators of the proper ERCD algebra
αÃB̃ = 2sÃB̃ (together with the unit element, 4× 4
matrix I4, we have 29 independent orts I4, αÃB̃ =
= 2sÃB̃)

sÃB̃ =
{
sAB =

1
4
[γA, γB], sA8 = −s8A =

1
2
γA

}
,
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Ã, B̃ = 1, 8, (11)

satisfy the commutation relations of the SO(8)
algebra

[sÃB̃, sC̃D̃] = δÃC̃sB̃D̃+

+ δC̃B̃sD̃Ã + δB̃D̃sÃC̃ + δD̃ÃsC̃B̃. (12)

Namely the proper ERCD algebra SO(8) given by
29 orts (11) is our [1–3] direct generalization of the
standard 16-dimensional CD algebra. It is also the
basis for our dual FB consideration of a spinor field,
which enabled us to prove the additional bosonic
properties of this field.

5. Foldy–Wouthuysen Representation

For the physical applications, we consider the re-
alizations of the proper ERCD algebra in the field
space S∗(M(1, 3))⊗ C⊗4 ≡ S4,4∗ of Schwartz general-
ized functions and in the quantum mechanical Hilbert
space H3,4 (1). These realizations are found with the
help of the transformations V +SO(8)V −, vSO(8)v,
where the operators of transformations have the form

V ± ≡ ±iγ∇+ ω̂ +m√
2ω̂(ω̂ +m)

, v =
∣∣∣∣ I2 0
0 ĈI2

∣∣∣∣, (13)

where ω̂ ≡
√
−Δ +m2, ∇ ≡ (∂`), I2 =

∣∣∣1 0
0 1

∣∣∣. In Sec-
tion 6, the realizations of the proper ERCD algebra
for bosonic fields will be presented.

We now consider the ERCD algebra (64 orts) and
the proper ERCD algebra (29 orts) in the FW rep-
resentation of the spinor field [30] (the advantages in
comparison with the standard Dirac equation in defi-
nitions of coordinate, velocity, and spin operators are
well known from [30]; see also the brief discussion in
Introduction). In this representation, the equation
for the spinor field (the FW equation) has a form

(∂0 + iγ0ω̂)φ(x) = 0, x ∈ M(1, 3), φ ∈ H3,4. (14)

It is linked with the Dirac equation

(∂0 + iH)ψ(x) = 0, H ≡ α · p + βm, (15)

by the FW transformation V ±:

φ(x) = V −ψ(x), ψ(x) = V +φ(x), (16)

and

V +γ0ω̂V − = α · p + βm. (17)

Below, the ERCD algebra and the proper ERCD alge-
bra (11) are essentially used in our proofs of bosonic
properties of the Dirac and FW equations. The
proper ERCD algebra has 29 independent orts given
in (11). In comparison with 16 independent orts of
the standard CD algebra, we can operate now with
additional elements. These additional generators of
the SO(8) algebra enabled us to prove the additional
bosonic symmetries of the FW and Dirac equations
[1–3] and to construct the additional bosonic solu-
tions of these equations (see Sections 7, 8). In calcu-
lations, we used the anticommutation relations (10).

6. Representations of the Proper
Extended Real Clifford–Dirac Algebra

In the fundamental FW representation, 29 orts
of the proper ERCD algebra SO(8) are given by for-
mulae (11), where 7 generating operators have the
form (9).

In a standard Pauli–Dirac representation, the
so-called local representation, the corresponding
29 orts are the consequences of the FW transforma-
tion V ± (13), (17) and are given by the elements
(αÃB̃ = 2s̃ÃB̃, I), where

s̃ÃB̃ =
{̃
sAB =

1
4
[γ̃A, γ̃B], s̃A8 = −s̃ 8A =

1
2
γ̃A

}
, (18)

Ã, B̃ = 1, 8, A,B = 1, 7. Here, 7 generating oper-
ators γ̃A = V +γAV − together with operators γ̃0 =
= V +γ0V − and C̃ = V +ĈV − are non-local and have
the form:

γ̃ = γ
−γ · ∇+m

ω̂
+ p
−γ · ∇+ ω̂ +m

ω̂(ω̂ +m)
, (19)

γ̃4 = γ4−γ · ∇+m

ω̂
, (20)

γ̃5 = γ̃1γ̃3C̃, γ̃6 = iγ̃1γ̃3C̃, γ̃7 = iγ̃0, (21)

γ̃0 = γ0−γ · ∇+m

ω̂
, C̃ =

(
I + 2

iγ1∂1 + iγ2∂2√
2ω̂(ω̂ +m)

)
Ĉ,

(22)

where ω̂ ≡
√
−4+m2. In bosonic representa-

tion, where the proof of the bosonic properties of

526 ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 6



Bosonic Symmetries, Solutions, and Conservation Laws

the FW and Dirac equations is most convenient, the
corresponding 29 orts of the proper ERCD algebra
(SO(8) algebra) are given by the elements (αÃB̃ =
= 2s̆ÃB̃, I):

s̆ÃB̃ =
{̆
sAB =

1
4
[γ̆A, γ̆B], s̆A8 = −s̆8A =

1
2
γ̆A

}
, (23)

where Ã, B̃ = 1, 8, A,B = 1, 7. In formulae (23), 7
generating operators γ̆A (together with operators γ̆0,
i, and C̆) have the form

γ̆0 =
∣∣∣∣σ3 0

0 σ1

∣∣∣∣, γ̆1 =
1√
2

∣∣∣∣∣∣
0 0 1 −1
0 0 i i
−1 i 0 0
1 i 0 0

∣∣∣∣∣∣, (24)

γ̆2 =
1√
2

∣∣∣∣∣∣
0 0 −i i
0 0 −1 −1
−i 1 0 0
i 1 0 0

∣∣∣∣∣∣, γ̆3 = −
∣∣∣∣σ2 0

0 iσ2

∣∣∣∣ Ĉ, (25)

γ̆4 =
∣∣∣∣ iσ2 0

0 −σ2

∣∣∣∣ Ĉ, γ̆5 =
1√
2

∣∣∣∣∣∣
0 0 −1 −1
0 0 i −i
1 i 0 0
1 −i 0 0

∣∣∣∣∣∣, (26)

γ̆6 =
1√
2

∣∣∣∣∣∣
0 0 −i −i
0 0 1 −1
−i −1 0 0
−i 1 0 0

∣∣∣∣∣∣, γ̆7 = γ7 = iγ0, (27)

ĭ =
∣∣∣∣ iσ3 0

0 −iσ1

∣∣∣∣, C̆ =
∣∣∣∣σ3 0

0 I2

∣∣∣∣ Ĉ. (28)

The transition from the fundamental representa-
tion of the proper ERCD algebra to the bosonic rep-
resentation is fulfilled by the transformation γ̆A =
WγAW−1 with the help of the operator W :

W =
1√
2

∣∣∣∣∣∣∣∣
√

2 0 0 0
0 0 i

√
2Ĉ 0

0 −Ĉ 0 1
0 −Ĉ 0 −1

∣∣∣∣∣∣∣∣,

W−1 =

∣∣∣∣∣∣∣
√

2 0 0 0
0 0 −Ĉ −Ĉ
0 i
√

2Ĉ 0 0
0 0 1 −1

∣∣∣∣∣∣∣, (29)

WW−1 = W−1W = I4.

In the relativistic canonical quantum me-
chanics [31, 32] (axiomatic foundations are given
briefly in [41]), 7 generating γ̄A matrices are given
by γ̄A = vγAv (operator v is known from (13)) and
have the explicit form:

γ̄1 = γ1Ĉ, γ̄2 = γ0γ2Ĉ, γ̄3 = γ3Ĉ, γ̄4 = γ0γ4Ĉ, (30)

γ̄5 = γ1γ3Ĉ, γ̄6 = −iγ2γ4Ĉ, γ̄7 = i. (31)

Thus, the representation of the proper ERCD alge-
bra SO(8) in relativistic canonical quantum mechan-
ics is given similarly to the form (18), (23) with 7
generating operators (30), (31).

7. Bosonic Spin s = (1, 0) Symmetry of the
Foldy–Wouthuysen and Dirac Equations

We now consider an example of the construction of
the important bosonic symmetry of the FW and Dirac
equations. The fundamental assertion is that the
subalgebra SO(6) of the proper ERCD algebra (11),
which is determined by the operators

{I, αĀB̄ = 2sĀB̄}, Ā, B̄ = 1, 6, (32)

{sĀB̄} =
{
sĀB̄ ≡ 1

4
[γĀ, γB̄]

}
(33)

is the algebra of invariance of the Dirac equation in
the FW representation (14) (in (33), six matrices
{γĀ} = {γ1, γ2, γ3, γ4, γ5, and γ6} are known from
(2), (9)). The algebra SO(6) contains two different
realizations of the SU(2) algebra for the spin s = 1/2
doublet. By taking the sum of two independent sets
of SU(2) generators from (33), one can obtain the
SU(2) generators of the spin s = (1, 0) multiplet,
which generate the transformation of invariance of
the FW equation (14). These operators can be pre-
sented in the form

s̆ ≡ (s̆j) = (s̆mn) =

=
1
2
(γ̆2γ̆3 − γ̆0γ̆2C̆, γ̆3γ̆1 + ĭγ̆0γ̆2C̆, γ̆1γ̆2 − ĭ), (34)

where the corresponding orts of the ERCD algebra in
the bosonic representation are given in (24)–(28).

The spin operators (34) of the SU(2) algebra, which
commute with the operator ∂0+iγ0ω̂ of the FW equa-
tion (14), can be presented in the explicit form

s̆1 =
1√
2

∣∣∣∣∣∣∣
0 0 iĈ 0
0 0 −Ĉ 0
−iĈ Ĉ 0 0

0 0 0 0

∣∣∣∣∣∣∣,

s̆2 =
1√
2

∣∣∣∣∣∣∣
0 0 Ĉ 0
0 0 −iĈ 0
−Ĉ iĈ 0 0
0 0 0 0

∣∣∣∣∣∣∣, s̆3 =

∣∣∣∣∣∣
−i 0 0 0
0 i 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣. (35)
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The calculation of the Casimir operator for the SU(2)
generators (35) gives the result s̆2 = −1(1+1)

∣∣∣ I3 0
0 0

∣∣∣.
On the basis of the spin operators (34) and (35),

the bosonic spin (1,0) representation of the Poincaré
group P can be constructed. It is easy to show (after
our consideration in [1–3] and above) that the gener-
ators

p0 = −iγ0ω̂, pn = ∂n, jln = xl∂n − xn∂l + s̆ln,

j0k = x0∂k + iγ0

{
xkω̂ +

∂k
2ω̂

+
(s̆× ∂)k
ω̂ +m

}
,

(36)

of the group P commute with the operator of the
FW equation (14) and satisfy the commutation rela-
tions of the Lie algebra of the group P for the anti-
Hermitian generators in a manifestly covariant form:

[pµ, pν ] = 0, [pµ, jρσ] = gµρpσ − gµσpρ,

[jµν , jρσ] = − (gµρjνσ + gρνjσµ + gνσjµρ + gσµjρν).
(37)

In the space H3,4, operators (36) generate a uni-
tary P representation, which is different from the
fermionic PF-generators D-64–D-67 of [31], i.e., the
bosonic PB representation of the group P, with re-
spect to which the FW equation (14) is invariant. For
generators (36), the Casimir operators have the form:

pµpµ = m2,

WB = wµwµ = m2s̆2 = −1(1 + 1)m2
∣∣∣ I3 0
0 0

∣∣∣. (38)

Hence, according to the Bargmann–Wigner classifica-
tion, we consider the spin s = (1, 0) representation of
the group P.

The corresponding bosonic spin s = (1, 0) symme-
tries of the Dirac equation (15) can be found from
generators (36) with the help of the FW operator
(13), i.e., as V + (pµ, jµν)V −.

Some other details of the consideration of the
bosonic symmetries of the FW and Dirac equations
were given in [1–3].

8. Bosonic Spin s = (1, 0) Multiplet
Solution of the Foldy–Wouthuysen
and Dirac Equations

As the next step in the FB duality investigation, we
consider the bosonic solution of the Dirac (FW) equa-
tion. A bosonic solution of the FW equation (14) is

found completely similarly to the procedure of con-
struction of the standard fermionic solution. Thus,
the bosonic solution is determined by some stationary
diagonal complete set of operators of bosonic physi-
cal quantities for the spin s = (1, 0)-multiplet in the
FW representation, e.g., by the set “momentum-spin
projection s̆3”:

(p = −∇, s̆3), (39)

where the spin operators s̆ and s̆3 for the spin s =
= (1, 0)-multiplet are given in (34), (35). The funda-
mental solutions of Eq. (14), which are the common
eigensolutions of the bosonic complete set (39), have
the form

ϕ−kr(t,x) =
1

(2π)3/2
e−ikxdr,

ϕ+
kŕ(t,x) =

1
(2π)3/2

eikxdŕ,

(40)

where kx = ωt− kx and dα = (δβα) are the Cartesian
orts in the space C⊗4 ⊂ H3,4, numbers r = (1, 2),
ŕ = (3, 4) mark the eigenvalues (+1,−1, 0, 0) of the
operator s̆3 from (34), (35).

The bosonic solutions of Eq. (14) are the gener-
alized states belonging to the space S3,4∗; they form
a complete orthonormalized system of bosonic states.
Therefore, any bosonic physical state of the FW field
φ from the manifold S3,4 dense in H3,4 (the general
bosonic solution of Eq. (14)) is uniquely presented in
the form

φ(1,0)(x) =

=
1

(2π)3/2

∫
d3k[ξr(k)dre

−ikx + ξ∗ŕ(k)dŕe
ikx], (41)

where ξ(k) are the coefficients of the expansion of
the bosonic solution of the FW equation (14) with
respect to the Cartesian basis dα = (δβα) (40). The re-
lationships of the amplitudes ξ(k) with the quantum-
mechanical bosonic amplitudes b(k) of probability
distribution according to the eigenvalues of the sta-
tionary diagonal complete set of operators of the
quantum-mechanical bosonic s = (1, 0)-multiplet are
given by

ξ1 = b1, ξ2 = − 1√
2
(b3 + b4), ξ3 = −ib2,
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ξ4 =
1√
2
(b3 − b4), (42)

where 4 amplitudes b1,2,3,4(k) ≡ b+,−,0,0(k) are
the quantum-mechanical momentum-spin amplitudes
with the eigenvalues (+1,-1,0,0) of the quantum-
mechanical (1,0) multiplet s̆3 operator projections,
respectively (last eigenvalue 0 is related to the proper
zero spin). If φ(1,0)(x) ∈ S3,4, then the bosonic am-
plitudes ξ(k) belong to the Schwartz complex-valued
test function space too.

Moreover, the set {φ(1,0)(x)} of solutions (41) is in-
variant just with respect to the unitary bosonic rep-
resentation of the group P, which is determined by
generators (36) and Casimir operators (38). There-
fore, the Bargmann–Wigner analysis of the Poincaré
symmetry of the set {φ(1,0)(x)} of solutions (41) com-
pletes the demonstration that it is the set of Bose-
states φ(1,0) of the field φ, i.e. the s = (1, 0)-multiplet
states. Hence, the existence of bosonic solutions of
the FW equation is proved.

In the terms of the quantum-mechanical momen-
tum-spin amplitudes bα(k) from (42), the bosonic
spin (1,0)-multiplet solution ψ = V +φ of the Dirac
equation (15) is given by

ψ(1,0)(x) =
1

(2π)3/2

∫
d3k{e−ikx[b1v−1 (k)−

− 1√
2
(b3 + b4)v−2 (k)] +

+ eikx[ib∗2v+
1 (k) +

1√
2
(b∗3 − b∗4)v+

2 (k)]}, (43)

where the 4-component spinors are the same as in the
Dirac theory of a fermionic doublet

v−r (k) = N

∣∣∣∣ (ω̂ +m)dr
(σ · k)dr

∣∣∣∣,
v+
r (k) = N

∣∣∣∣ (σ · k)dr
(ω̂ +m)dr

∣∣∣∣,
(44)

and N ≡ 1√
2ω̂(ω̂+m)

, d1 =
∣∣∣10 ∣∣∣, d2 =

∣∣∣01 ∣∣∣.
The well-known (standard) Fermi solution of the

Dirac equation for the spin s = 1/2 doublet has the
form

ψ(x) =
1

(2π)3/2

∫
d3k[e−ikxa−r (k)v−r (k)+

+eikxa+
r (k)v+

r (k)], (45)

where the physical meaning of the amplitudes
a−r (k), a+

r (k) is explained in [42].
All the above-given assertions about the FB duality

of the spinor field are valid both in the FW and PD
representations, i.e., for the FW and Dirac equations
[(14) and (15), respectively]. The transition between
the FW and PD representations is fulfilled by the FW
transformation V ± (13).

9. Lagrangian
for the Foldy–Wouthuysen Equation

Before the Noether analysis of conservation laws, we
must consider the Lagrange approach (L-approach)
for the spinor field φ(x) in the FW representation.
The L-approach in this representation was formulated
first in [43], [44]. The representation of the opera-
tor ω̂ ≡

√
−4+m2 in the form of a series in the

Laplace operator 4 powers was used. W. Krech ap-
plied a nonstandard formulation of the least action
principle in the terms of infinite-order derivatives of
the field functions. The mathematical correctness was
not considered.

Therefore, we present below briefly a well-defined
L-approach for the spinor field in the FW represen-
tation, which is based on the standard formulation of
the least action principle. The quantum-mechanical
rigged Hilbert space (both in the coordinate and
momentum realizations of this space) is used, but
the start is well-defined from the momentum realiza-
tion. In such realization, the rigged Hilbert space is
given by

S̃3,4 ⊂ H̃3,4 ⊂ S̃3,4∗; H̃3,4 = L2(R3
k)⊗ C⊗4 =

= {φ̃ = (φ̃µ) : R3
k → C⊗4;

∫
d3k|φ̃(t,k)|2 <∞}}.

(46)

Here R3
k is the momentum operator p spectrum,

which is canonically conjugated to the coordinate x,
([xj , pl] = iδjl). The corresponding x-realization is
connected with (46) by a 3-dimensional Fourier trans-
formation. The alternative use of both realizations is
based on the principle of heredity with classical and
non-relativistic quantum mechanics of a single mass
point and with the mechanics of continuous media.
The Lagrange function and the action (in alternative
x or k-realizations) are constructed in the complete
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analogy with their consideration in the classical me-
chanics of a system with finite number of freedom
degrees q = (q1, q2, ...). The difference is only in the
fact that here the continuous variable k ∈ R3

k is the
carrier of freedom degrees.

In the k-realization, where this analogy is maxi-
mally clear, the Lagrange function has the form

L = L(φ̃, φ̃†, φ̃,0 , φ̃†,0 ) =

=
i

2
[φ̃†(φ̃,0 +iγ0ω̃φ̃)− (φ̃†,0−iω̃φ̃†γ0)φ̃]. (47)

In the x-realization, this function can be found from
(47) by the Fourier transformation. The Euler–
Lagrange equations coincide with the FW equation in
both realizations. For example, in the k-realization,
the Euler–Lagrange equations

δW

δφ̃†
≡ ∂L

∂φ̃†
− ∂

∂t

∂L

∂φ̃†,0
= 0,

δW

δφ̃
≡ ∂L

∂φ̃
− ∂

∂t

∂L

∂φ̃,0
= 0,

(48)

coincide with the FW equation for the vectors
φ̃ ∈ H̃3,4:

(i∂0 − γ0ω̃)φ̃(t,k) = 0;

ω̃ ≡
√

k2 +m2, k ∈ R3
k,

(49)

and with conjugated equation for φ̃†.
The well-defined L-approach for the FW field be-

comes the essentially actual problem after the con-
struction of the quantum electrodynamics in the FW
representation in [45].

10. Fermi–Bose Conservation
Laws for a Spinor Field

Note briefly the FB conservation laws (CLs) for the
spinor field. It is preferable to calculate them in the
FW (not local PD) representation too. In FW rep-
resentation, the Fermi spin s12 from (33) (together
with the “boost spin”) is the independent symmetry
operator for the FW equation. The orbital angular
momentum and the pure Lorentz angular momentum
(the carriers of external statistical degrees of freedom)
are the independent symmetry operators in this rep-
resentation too (one can find the corresponding in-
dependent spin and angular momentum symmetries

in the PD representation for the Dirac equation too,
but the corresponding operators are essentially non-
local). Hence, one obtains 10 Poincaré and 12 addi-
tional (3 spin, 3 pure Lorentz spin, 3 angular momen-
tum, 3 pure angular momentum) CLs.

Therefore, in the FW representation, one can find
very easily 22 fermionic and 22 bosonic CLs. The
separation into bosonic and fermionic sets is caused
by the existence of the FB symmetries and solutions.
Indeed, if the substitution of the bosonic P generators
q (36) and the bosonic solutions (41) into the Noether
formula

Q =
∫
d3xφ†(x)qφ(x) (50)

is made, then automatically the bosonic CLs for s =
= (1, 0)-multiplet are obtained. The standard sub-
stitution of the corresponding well-known fermionic
generators and solutions gives fermionic CLs.

We illustrate briefly the difference in fermionic and
bosonic CLs on the example of the corresponding spin
conservation. For the fermionic spin

s = (s23, s31, s12) ≡ (s`) =
1
2

∣∣∣σ 0
0 σ

∣∣∣, (51)

sz ≡ s3 =
1
2

∣∣∣∣∣∣
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

∣∣∣∣∣∣, (52)

and bosonic spin (34), (35), the CLs are given by

SF
mn =

∫
d3xφ†(x)smnφ(x) =

=
∫
d3kA†(k)smnA(k)), (53)

SB
mn =

∫
d3xφ†(x)s̆mnφ(x) =

=
∫
d3kB†(k)s̆mnB(k)), (54)

where

A(k) = column(a−+, a
−
−, a

∗+
− , a∗++ ), (55)

B(k) = column(b1, b2, b∗3, b∗4). (56)

We present these CLs in terms of quantum-
mechanical Fermi and Bose amplitudes. Such explicit
quantum-statistical form is inherent in all integral
conserved quantities.
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11. Links between the Fermionic and Bosonic
Amplitudes and Some Interpretation

Here, we continue the consideration of bosonic solu-
tions of the Dirac equation. A comparison with the
standard fermionic solutions is given.

The adequate statistical quantum-mechanical sense
of the coefficients a−r (k), a+

r (k) in expansion (45)
in the basis solutions (44) of the Dirac equation is
found identically only with the help of the transition
φ(x) = V −ψ(x) (13), (16) to the FW representation
[30]. Indeed, the statistical sense of the FW field
φ(x) is evidently related to the statistical sense of
the particle-antiparticle doublet in relativistic canon-
ical quantum mechanics [31, 32], [41]. It is shown
in [31] that

φ =
∣∣∣φ−0 ∣∣∣+ ∣∣∣ 0

φ∗+

∣∣∣, (57)

where φ∓(x) are the relativistic quantum-mechanical
wave functions of a particle-antiparticle doublet.

The solution of the FW equation (14) expanded in
the eigenvectors of the quantum-mechanical fermionic
stationary diagonal complete set of operators (mo-
mentum p, projection s3 of the spin squant.−mech., and
sign of the charge g = −γ0) has the form

φ(x) =
1

(2π)3/2

∫
d3k{e−ikx[a−+(k)d1 + a−−(k)d2] +

+ eikx[a∗+− (k)d3 + a∗++ (k)d4]}, (58)

where the coefficients of the expansion a−+(k), a−−(k),
a+
−(k), a+

+(k) have the meaning of the statistical
quantum-mechanical amplitudes of probability distri-
bution over the eigenvalues of the above-mentioned
fermionic stationary complete set of operators. The
4-columns dα = (δβα) are the Cartesian orts in the
space C⊗4 ⊂ H3,4. In order to obtain the most ade-
quate and obvious statistical quantum-mechanical in-
terpretation of the amplitudes and the solutions, the
spin projection operator in the complete set (momen-
tum p, projection s3 of the spin squant.−mech., and
sign of the charge g = −γ0) is taken in the quantum-
mechanical form [41]

squant.−mech. =
1
2

∣∣∣σ 0
0− CσC

∣∣∣, (59)

squant.−mech.
z ≡ s3 =

1
2

∣∣∣∣∣∣
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

∣∣∣∣∣∣, (60)

rather than in the canonical field theory form (51),
(52). The statistical sense of the amplitudes is con-
served in the solution (ψ(x) = V +φ(x) (9), (6))

ψ(x)=
1

(2π)3/2

∫
d3k{e−ikx[a−+(k)v−1 (k)+a−−(k)v−2 (k)]+

+ eikx[a∗+− (k)v+
1 (k) + a∗++ (k)v+

2 (k)]}, (61)

of the Dirac equation (15) in its standard local rep-
resentation. The amplitudes a−+(k), a−−(k), a+

−(k),
a+
+(k) in the fermionic solutions (58) and (61) of the

FW and Dirac equations are the same. Thus, a−+(k),
a−−(k) are the quantum-mechanical momentum-spin
amplitudes of a particle with charge -e and the spin
projection eigenvalues +1/2 and –1/2; a+

−(k), a+
+(k)

are the quantum-mechanical momentum-spin ampli-
tudes of an antiparticle with charge +e and the spin
projection eigenvalues –1/2 and +1/2, respectively.

The statistical quantum mechanical sense of the
bosonic amplitudes bα(k) of the bosonic solution (43)
of the Dirac equation (15) is found similarly and is
explained in Section 5 in the course of construction
of this solution.

The relationship between the fermionic a−+(k),
a−−(k), a+

−(k), a+
+(k) and bosonic b1,2,3,4(k) ≡

≡ b+,−,0,0(k) amplitudes in the same (arbitrarily
fixed) physical state of a FB dual field ψ is given
by the unitary operator U in the form:∣∣∣∣∣∣∣∣
a−+
a−−
a+
−
a+
+

∣∣∣∣∣∣∣∣ =
1√
2

∣∣∣∣∣∣∣
√

2 0 0 0
0 0 −1 −1
0 −i

√
2 0 0

0 0 1 −1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
b+

b−

b0

b0

∣∣∣∣∣∣∣, (62)

∣∣∣∣∣∣∣
b+

b−

b0

b0

∣∣∣∣∣∣∣ =
1√
2

∣∣∣∣∣∣∣
√

2 0 0 0
0 0 i

√
2 0

0 −1 0 1
0 −1 0 −1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
a−+
a−−
a+
−
a+
+

∣∣∣∣∣∣∣∣. (63)

Relations (62) and (63) follow directly from the com-
parison of solutions (43) and (61).

Note that the set of fermionic solutions {ψF}
(61) of the Dirac equation is invariant with respect
to the well-known induced fermionic PF represen-
tation of the Poincaré group P [46] (see also for-
mula (19) in work [2]). The set of bosonic solu-
tions {ψB} (43) of the Dirac equation is invariant
with respect to the induced bosonic PB represen-
tation of the Poincaré group P (formula (21) in
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work [3]). However, the relations (62) and (63) be-
tween the fermionic a−+(k), a−−(k), a+

−(k), a+
+(k) and

bosonic b1,2,3,4(k) ≡ b+,−,0,0(k) amplitudes are not
changed in any inertial frame of references.

12. Conclusions

The property of the Fermi–Bose duality of the Dirac
equation is proved on three levels: bosonic symme-
tries, bosonic solutions, and the corresponding con-
servation laws. The role of the proper ERCD algebra
SO(8) in the proof of this assertions is demonstrated.
Thus, the property of the Fermi–Bose duality of the
Dirac equation (both in the Foldy–Wouthuysen and
the Pauli–Dirac representations), whose proof was
started in [1–3], where the bosonic symmetries of this
equation were found, is demonstrated on the next
step, where the spin (1,0) bosonic solutions of this
equation and the corresponding bosonic conservation
laws exist.

The 64-dimensional ERCD and 29-dimensional
proper ERCD algebras considered in [1–3] are the
useful generalizations of the standard 16-dimensional
CD algebra. Their application enabled us to prove the
existence of additional bosonic symmetries, solutions,
and conservation laws for the spinor field and for the
Foldy–Wouthuysen and Dirac equations. It is evident
that these new algebras can be used in all problems
of theoretical and mathematical physics, where the
standard CD algebra was used. New interesting re-
sults will follow from the wide-range application of
the proper ERCD algebra instead of the standard CD
algebra. Our experience [14–17] can guarantee new
results at least in such problems as the deep analysis
of the Maxwell [47] and complex Dirac–Kähler [48]
equations.

The investigation of the spinor field in the Foldy–
Wouthuysen representation has the independent
meaning and purpose. This representation itself is of
interest in connection with the recent result [45] of V.
Neznamov, who developed the formalism of quantum
electrodynamics in the Foldy–Wouthuysen represen-
tation (see also the results in [49]). Therefore, the
new Lagrangian for the Foldy–Wouthuysen equation,
which is put here in consideration in Section 9, has
the independent meaning.

We do not consider here the Pauli principle. Our
results are not related to this concept. In any case,
we do not change the main well-known postulates

and theory of the Fermi–Dirac and Bose–Einstein
statistics. Our results have another new fundamental
meaning. In our approach, the Fermi–Bose duality of
a spinor field found on the level of amplitude relations
in [33, 34] is proved in another way by the examples
of the existence of the bosonic symmetries (Section 7)
and solutions (Sections 8 and 11) of the Dirac equa-
tion with nonzero mass together with obtaining the
bosonic conservation laws (Section 10) for the spinor
field. It opens new possibilities for the application
of the Dirac equation to the description of bosonic
states. Thus, the property of the Fermi–Bose dual-
ity of the Dirac equation proven in our publications
[1–3] and here does not break the Fermi statistics
for fermions (with the Pauli principle) and the Bose
statistics for bosons (with the Bose condensation).
We also never mixed the Fermi and Bose statistics
between each other. Our assertion is the following
one. One can apply both the Fermi and Bose statis-
tics for the same Dirac equation and the same spinor
field with equal success, i.e., the Dirac equation can
describe both fermionic and bosonic states.
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В.М. Симулик, I.Ю. Кривський, I.Л. Ламер

БОЗОННI СИМЕТРIЇ, РОЗВ’ЯЗКИ
ТА ЗАКОНИ ЗБЕРЕЖЕННЯ ДЛЯ РIВНЯННЯ
ДIРАКА З НЕНУЛЬОВОЮ МАСОЮ

Р е з ю м е

У доповнення до добре вiдомих Фермi властивостей рiвня-
ння Дiрака знайдено прихованi бозоннi властивостi цього
рiвняння. Розглянуто бозоннi симетрiї, розв’язки та закони
збереження. Такi новi характеристики рiвняння Дiрака з
ненульовою масою знайдено за допомогою 64-вимiрної роз-
ширеної дiйсної алгебри Клiффорда–Дiрака та 29-вимiрної
власної розширеної дiйсної алгебри Клiффорда–Дiрака.
При цьому важливим є старт з представлення Фолдi–
Вотхойзена для спiнорного поля. Показано, що рiвняння Дi-
рака може описувати не лише фермiоннi, а й бозоннi стани.
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