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On the basis of a system of four qubits, the influence of white and colored noises in the
states of initially prepared entangled qubit pairs on the final state obtained as a result of the
entanglement swapping has been considered. The corresponding density matrices are obtained,
and the redistribution of fractions for the pure state and white and colored noises is analyzed.
Conditions for the entanglement preservation and destruction in the course of the transition
from the initial to the final state are determined. A comparison between the von Neumann
entropy for the initial and final states of qubits is carried out.
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1. Introduction

After von Neumann completed the development of his
concept of quantum-mechanical description of pro-
cesses in nature in 1932, Einstein, Podolsky, and
Rosen (EPR) [1], as well as Schrödinger [2], were
the firsts who attracted attention to a strange phe-
nomenon in the quantum-mechanical theory. Namely,
there may exist quantum-mechanical states of com-
posite systems, the wave functions of which cannot
be presented as a product of wave functions of sep-
arate subsystems. Later, such states were started to
call entangled states, and the phenomenon itself was
called entanglement. The very possibility for entan-
gled states to exist follows immediately from the fun-
damental principle of superposition in the quantum-
mechanical theory.

In 1964, Bell [3] adopted the basic principles of
work [1] as a working hypothesis and formalized Ein-
stein’s global deterministic idea in terms of the so-
called Local Hidden-Variable Theory (LHVT). Bell
showed that the principles, on which this model
is based, give rise unavoidably to certain restric-
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tions on statistical correlations in two-particle sys-
tems. The mathematical formulation of such re-
strictions was presented in the form of Bell’s in-
equalities, which are well-known now. For any
LHVT model, Bell’s inequalities are strictly satis-
fied. At the same time, the corresponding cal-
culations of correlations for entangled states fol-
lowing the quantum-mechanical rules violate them.
In other words, there are such correlations be-
tween the quantities in two subsystems in entan-
gled quantum-mechanical states that cannot be re-
produced in the framework of any local hidden-
variable model.

Later on, it became clear that the entanglement
is one of nature’s resources, which can be created,
stored, distributed, accumulated, and transferred
over a distance. Nowadays, the entanglement is really
created and processed in many physical laboratories.
The nature of physical carriers for entangled states
is very diverse; these can be photons, ions, atoms,
molecules, crystals, and so forth. The elucidation of
the role of entangled states promoted the appearance
of new directions in modern physics, such as quan-
tum calculations, quantum cryptography, and quan-
tum communications.
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During a certain period, it was considered that an
entangled state of a system composed of two and more
quantum-mechanical subsystems (particles, photons)
can be created only if the latter emerge either si-
multaneously from the same source in the course of
the same process or as a result of the interaction
between them. However, in 1993, Zukowski et al.
[4] proposed a protocol, in which quantum correla-
tions emerge between particles located at a large dis-
tance from one another and possessing no common
prehistory. This way to form the entanglement was
called the “entanglement swapping”, which can be
interpreted as the “entanglement exchange”, “entan-
glement switching”, or “entanglement transfer”. In
essence, it is a teleportation of the entanglement over
a distance. In what follows, we shall conditionally
refer to this phenomenon as the process of entangle-
ment swapping (ES).

The paper by Zukowski et al. [4] invoked a wide
resonance in the scientific literature. Dur et al. [5]
developed a protocol of quantum communication over
large distances, where ES is its component. Xue et
al. [6] proposed a scheme of entanglement swapping
on the basis of a three-particle state known as the
Greenberger–Horn–Zeilenger (GHZ) state,

|GHZ〉 =
1√
2
(|000〉+ |111〉).

Along with the theoretical development of ES pro-
tocols, real experiments are improved step by step at
physical laboratories [7–10].

For the actual capabilities of the quantum-
mechanical state transfer over large distances to be
correctly estimated, all negative factors that affect
the quality of a signal at all stages of its formation and
transmission through communication channels must
be taken into account. A detailed discussion of this
subject can be found in work [11]. In our opinion, in
order to study the cumulative influence of all factors,
it is necessary that a complete understanding of phys-
ical processes in every separate element of the com-
munication channel should be achieved. Entangle-
ment swapping is a mandatory element in the transfer
protocols of quantum-mechanical states over a large
distance with the use of the so-called quantum re-
peaters. Therefore, a detailed research of this element
with regard for the real process conditions is challeng-
ing, in our opinion. This work is aimed at studying
theoretically the influence of noise in initially formed

entangled states on the final state obtained as a result
of the entanglement swapping operation.

2. Some Elements of Quantum
Computer Science and the Entanglement
Swapping Phenomenon

In order to explain the notation adopted in this work,
we recall some elements of quantum computer science
and consider the essence of entanglement swapping.
Those who have a definite experience in this issue
may omit this section.

The basic notion in quantum computer science is
a quantum bit (“qubit”), which describes a state of
a quantum-mechanical two-level system of any phys-
ical nature. To describe the state of one qubit in
the Hilbert space, it is necessary to set two orthonor-
malized basis states, which are traditionally denoted
by ket-vectors |0〉 and |1〉. For a particle with the
spin s = 1

2 , the states with the spin projections “up”,
|0〉 ≡ | ↑〉, and “down”, |1〉 ≡ | ↓〉, onto a certain axis
can be selected as the basis ones. For the photon
polarization, the states |0〉 and |1〉 may correspond
to the horizontal and vertical polarizations, respec-
tively. The basis {|0〉, |1〉} is conventionally referred
to as the standard or computational basis. Instead
of the computational basis, one may select, e.g., the
Hadamard one,

|χ1〉 =
1√
2
(|0〉+ |1〉),

|χ2〉 =
1√
2
(|0〉 − |1〉),

or any other one. A change between the bases is
carried out with the use of a unitary transformation.
The orthonormality of basis states is defined by the
scalar products

〈0|1〉 = 〈1|0〉 = 0, 〈0|0〉 = 〈1|1〉 = 1,

〈χ1|χ2〉 = 〈χ2|χ1〉 = 0,

〈χ1|χ1〉 = 〈χ2|χ2〉 = 1.

Hence, any state of a separate qubit can always be
presented in the form

|χ〉 = α|0〉+ β|1〉,

where the coefficients α and β satisfy the normaliza-
tion condition |α|2 + |β|2 = 1. The basic difference of
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a qubit from the classical bit consists in that the state
of the former can be a superposition of basis vectors.

The state of a system composed of two qubits is
described by a vector in the 4-dimensional Hilbert
space, which is a tensor product of Hilbert spaces of
separate qubits. The most widespread bases in that
space are the computational (standard) basis in the
form of a tensor product of corresponding basis states
of separate qubits,

|01〉 · |02〉, |01〉 · |12〉, |11〉 · |02〉, |11〉 · |12〉, (1)

and the Bell basis,
|Ψ+〉12 = 1√

2
(|01〉 · |12〉+ |11〉 · |02〉),

|Ψ−〉12 = 1√
2
(|01〉 · |12〉 − |11〉 · |02〉),

|Φ+〉12 = 1√
2
(|01〉 · |02〉+ |11〉 · |12〉),

|Φ−〉12 = 1√
2
(|01〉 · |02〉 − |11〉 · |12〉),

(2)

where the subscripts 1 and 2 denote the qu-
bit number.

The Bell states are also conventionally called EPR-
pairs, because just the states of this kind were dealt
with in the work by Einstein, Podolsky, and Rosen.
All Bell states (2) are entangled, because they can-
not be presented as the products of state vectors for
separate qubits.

The most interesting and unusual phenomenon
that is based on the entanglement is the quantum
teleportation, when, by applying Local Operations
and Classical Communication (LOCC), an unknown
quantum-mechanical state is transmitted over an ar-
bitrary distance. Under local operations, we mean
unitary transformations and measurements that are
carried out only separately for every of the spatially
separated subsystems of a common system.

For the first time, the scenario (protocol) of tele-
portation of an unknown qubit state was proposed
by Bennett et al. in [12], where the entanglement of
an EPR pair was used for teleportation. Bennett’s
article stimulated the development of numerous tele-
portation schemes using entanglement carriers of dif-
ferent origins. Among them, in particular, there are
teleportation protocols that use the entanglement of
a three-particle GHZ state (Karlsson et al. [13]) and
a Wigner symmetric state (Shi et al. [14]),

|W 〉 =
1√
3
(|001〉+ |010〉+ |100〉).

An improved protocol on the basis of the Wigner
asymmetric state (Li et al. [15])

|Ws〉 =
1√
2
|001〉+ 1

2
(|010〉+ |100〉)

allows the teleportation of the state of a separate pho-
ton to be executed with a high probability. More de-
tailed references to the original works on the quantum
teleportation can be found, e.g., in works [16, 17].

Now let us proceed to the explanation of the essence
of the entanglement swapping phenomenon. Let each
of two sources independently form one pair of qubits
in one of the entangled EPR states (2). In the ex-
periment [7], short pulses of ultra-violet rays were
passed through a nonlinear β-BaB2O4 (BBO) crys-
tal. As a result of the parametric down-conversion
(PDC) of type II, there emerge photon pairs in the
polarization-entangled Bell state |Ψ−〉. If two such
entangled pairs are created independently, the state
vector for the system of four qubits looks like the ten-
sor product of state vectors of separate qubit pairs,

|Ψ1234〉 = |Ψ−12〉 · |Ψ
−
34〉.

Afterward, a projective measurement in the Bell ba-
sis (2) is carried out on the pair of qubits (photons) 2
and 3. The measuring device is so tuned that the cir-
cuit of coincidence of signals from detectors registers
an event when the pair of photons 2 and 3 is in the
state |Ψ−23〉. This operation is called an incomplete
projective measurement. Mathematically, this oper-
ation is regarded as a projection of the state |Ψ1234〉
on the state |Ψ−23〉.

By regrouping the terms, the state vector |Ψ1234〉
can be expressed in the form

|Ψ1234〉 =
1
2

(
|Ψ+

14〉 · |Ψ
+
23〉 − |Ψ

−
14〉 · |Ψ

−
23〉−

− |Φ+
14〉 · |Φ

+
23〉+ |Φ

−
14〉 · |Φ

−
23〉
)
.

Hence, after the projection operation, the state of
qubits 1 and 4 collapses into the Bell state |Ψ−14〉,

〈Ψ−23|Ψ1234〉 = −1
2
|Ψ−14〉,

i.e. the pair of qubits with numbers 1 and 4 turns
out in the same state |Ψ−〉 as the previously prepared
states of two pairs, (1, 2) and (3, 4).
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The operation of projection on a certain state is
an incomplete von Neumann measurement. There-
fore, as a result, we obtain a non-normalized vector
of state. In this case, if the operation of preparation of
the state |Ψ1234〉 followed by its projection on |Ψ−23〉 is
multiply repeated, only one of four attempts, on the
average, produces the desirable result, |Ψ−23〉. How-
ever, after the event has been fixed, the state vector
is considered to be normalized to 1. Note once more
that the previously prepared pairs of qubits were cre-
ated independently of each other, and they did not
interact with each other in any way.

The ES process can be illustrated in the form of
a simple diagram shown in Fig. 1 [7]. It should be
emphasized that the entanglement of qubits 1 and 4
arises at the time moment of the measurement, i.e.
when the projection on the state |Ψ−23〉 is executed.
Qubits 1 and 4 can be at any distance from each other
in this case. In this example, the both qubit pairs are
supposed to be prepared in the pure Bell state |Ψ−〉,
and the ES procedure yields the same pure entangled
state |Ψ−〉 of qubits 1 and 4.

Now, let us consider the ES phenomenon in the
case where each of two initial qubit pairs is formed in
the mixed state.

3. Entanglement Swapping in the Presence
of White Noise in Initial States

Let the pure state |Ψ−〉 be summed up, in the mix-
ture, with all basis states with the same weight coef-
ficient. The density operator for this state, which is
called the Werner state [18], is presented in the form

ρ̂W = p|Ψ−〉〈Ψ−|+ 1− p
4

Î , (3)

where Î is the unity operator in the four-dimensional
space, and p is the state purity parameter, p ∈ [0, 1].
At p = 1, we obtain the density operator for the pure
state |Ψ−〉 and, at p = 0, the so-called white noise.
Noise is called white, because it is formed by all basis
states with the same weight coefficient. The corre-
sponding density matrix in the computational basis
looks like

ρW =
1
4

1− p 0 0 0
0 1 + p −2p 0
0 −2p 1 + p 0
0 0 0 1− p

, (4)

Fig. 1. Diagram of the entanglement swapping process

whereas it is presented in the Bell basis (2) by the
diagonal matrix

ρB
W =

1
4

1− p 0 0 0
0 1 + 3p 0 0
0 0 1− p 0
0 0 0 1− p

. (5)

The density operator for this state can be presented
in the form of a mixture of Bell states,

ρ̂W =
1
4

{
(1− p)|Ψ+〉〈Ψ+|+ (1 + 3p)|Ψ−〉〈Ψ−|+

+ (1− p)|Φ+〉〈Φ+|+ (1− p)|Φ−〉〈Φ−|
}
.

Since the qubit pairs were prepared independently,
the density operator for the system of two qubit pairs
can be presented in the form of a tensor product of
states (3),

ρ̂1234 = ρ̂12 ⊗ ρ̂34. (6)

As a result of projection (6) on the Bell state |Ψ−23〉,
we obtain the density matrix for the pair of qubits 1
and 4,

ρ̂14 = 〈Ψ−23|ρ̂1234|Ψ−23〉. (7)

The matrix representations for ρ̂14 in the compu-
tational and Bell bases can be obtained with the use
of Eqs. (4) and (5), respectively, and carrying out a
simple substitution p→ p1 ·p2 in them, where p1 and
p2 are the weight coefficients of the pure state in the
first (particles 1 and 2) and second (particles 3 and 4),
respectively, qubit pairs. Whence, it is evident that,
if either of qubit pairs is prepared in the pure state,
i.e. p1 = 1 or p2 = 1, the density matrix ρ14 exactly
reproduces the density matrix of qubit pairs prepared
in a mixed initial state. However, if both qubit pairs
are prepared in the mixed state, the resulting state of
the pair of qubits 1 and 4 is noisier than the state of
each of the initially prepared pairs.
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Fig. 2. Dependences of the von Neumann entropy for the
state of a qubit pair on the parameter p: (1 ) for the state of
each of the initially prepared qubit pairs (the Werner state)
and (2 ) for the state of a qubit pair obtained as a result of the
ES process

By presenting the density operator in form (3), we
assume that the noisiness of a state grows, as the pa-
rameter p decreases, because, in this case, the fraction
of the required pure state |Ψ−〉 in the mixture dimin-
ishes, and the noise fraction (the coefficient 1 − p)
increases.

Let us examine the case p1 = p2 = p in detail. The
density operator for the final state of qubits after the
ES process termination can be presented in the form
similar to Eq. (3), namely,

ρ̂14W = p2|Ψ−14〉〈Ψ
−
14|+

1− p2

4
Î14. (8)

The density matrix of the same state looks like

ρ̃14W =
1
4

1− p2 0 0 0
0 1 + p2 −2p2 0
0 −2p2 1 + p2 0
0 0 0 1− p2

, (9)

in the computational basis and like

ρ̃B
14W =

1
4

1− p2 0 0 0
0 1 + 3p2 0 0
0 0 1− p2 0
0 0 0 1− p2

, (10)

in the Bell one. In other words, the density operator
(8) and matrices (9) and (10) can be obtained from
Eqs. (3)–(5), respectively, with the use of the simple
substitution p → p2. This means that the states of
the initial and final qubit pairs are similar to within
the substitution indicated above. Since p ∈ [0, 1],
we have that p2 ≤ p and 1 − p2 ≥ 1 − p in this

interval, which testifies to an increase of the white
noise component fraction.

A comparison between the von Neumann entropy
values for the corresponding initial and final states of
qubit pairs gives an illustrative demonstration that
the weight of the white noise component increased.
In Fig. 2, the entropy dependences on the parameter
p are plotted for both systems. The solid curve corre-
sponds to the entropy of qubit pair 1 and 4, and the
dashed one to the entropy of each initial qubit pair.
The figure demonstrates that the entropy of the fi-
nal qubit pair exceeds the entropy of each qubit pair
in the initial state at 0 < p < 1, which also testifies
to the noise increase. The largest entropy difference
ΔS ≈ 0.44 is observed at p ≈ 0.72.

The reduced density matrices that correspond to
matrices (4) and (9) are proportional to the identical
one,

ρRed
1 = ρRed

2 =
1
2
I =

1
2

(1 0
0 1

)
,

ρ̃Red
1 = ρ̃Red

4 =
1
2
I =

1
2

(1 0
0 1

)
.

This result is completely clear, because the summa-
tion of a pure system state with white noise cannot
reduce the entropy in subsystems. Since the reduced
density matrices are mixtures of both basis states,
the von Neumann entropy for those states does not
depend on p and equals 1.

The partially transposed density matrix for the ini-
tial state of a qubit pair in the standard basis looks
like

ρPT
W =

1
4

1− p 0 0 −2p
0 1 + p 0 0
0 0 1 + p 0
−2p 0 0 1− p

. (11)

For a two-qubit system, the positive definiteness of
the partially transposed density matrix of this system
is, according to the Peres–Horodecki criterion [19,20],
a necessary and sufficient condition for the entangle-
ment to be absent from the system. The violation of
this condition will testify to the presence of an entan-
glement.

Let us determine the interval of values for the co-
efficient p, when the initial qubit pair is entangled.
First, we diagonalize matrix (11) to obtain

ρPT
diag =

1
4

1 + p 0 0 0
0 1 + p 0 0
0 0 1 + p 0
0 0 0 1− 3p

.
272 ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 3



Quantum Teleportation of Entangled States in the Presence of Noise

If p ∈ [0, 1], we have λ1 = λ2 = λ3 = 1+p
4 ≥ 0.

The unique characteristic number that can be nega-
tive is λ4,

λ4 =
1− 3p

4
< 0 =⇒ p >

1
3
.

For the Werner state, this result is well known and
was derived for the first time in work [18].

The interval of p-values, for which the state of a
qubit pair formed in the course of ES is entangled, can
be easily obtained in view of the similarity between
the states of the initial and final pairs to within the
accuracy of substitution p→ p2. As a result, we have

p2 >
1
3

=⇒ p >
1√
3
≈ 0.58.

Hence, at 1
3 < p < 1√

3
, the entanglement result-

ing from the ES operation gets lost because of the
increase of white noise admixture.

4. Entanglement Swapping in the Presence
of Colored Noise in Initial States

During some time, it was conventionally considered
that, when entangled states are created under labo-
ratory conditions, a real state is a mixed one, which
is described by the density operator in the form of
a mixture of the required pure, as much as possible,
entangled state and a white noise admixture (Werner
state (3)). In 2005, Cabello et al. [21], having studied
the preparation of polarization-entangled states for a
pair of photons in the course of parametrical down-
conversion (PDC), arrived at a conclusion that really
prepared states cannot be colorless. For instance, for
the pure Bell state |Ψ−〉 = 1√

2
(|01〉 − |10〉) to be cre-

ated in an experimental device, the perfect agreement
must be achieved between the photons with respect to
both their phases and the time of their arrival at the
interference place. Under perfect conditions, photons
become undistinguishable at the interference place
and, as a result, there emerges an entangled state
|Ψ−〉 with a certain relative phase between states |01〉
and |10〉.

However, the perfect synchronization is impossible
in a real device, so that the state |Ψ−〉 turns out to
be separately mixed with the same states |01〉 and
|10〉, but without the definite phase correlation. This
results in the appearance of colored noise in the real

state, and the density operator of this state reads

ρ̂C = p|Ψ−〉〈Ψ−|+ 1− p
2

(|01〉〈01|+ |10〉〈10|), (12)

where p is the parameter characterizing the fraction of
the pure state |Ψ−〉 in the mixture. Noise in Eq. (12)
is called colored, because, in contrast to white noise,
it consists of a mixture of basis states with different
weighting coefficients.

The authors of work [21] also showed that the vio-
lation of the Bell inequality is extremely robust with
respect to a variation of the colored noise fraction in
state (12). This means that state (12) violates the
Bell inequality at any ratio between the pure state
|Ψ−〉 and colored noise in it (i.e. at every 0 < p ≤ 1).
At the same time, the Werner state (3) does not vio-
late the Bell inequality if the white noise fraction ex-
ceeds some critical value, i.e. the violation of the Bell
inequality turns out unstable with respect to white
noise.

On the basis of the experiments on correlations be-
tween the polarizations of two photons, Bovino et al.
[22] convincingly confirmed both the presence of col-
ored noise, the robustness of the Bell inequality viola-
tion with respect to colored noise, and its instability
with respect to white noise. In work [23], conditions
of the Bell inequality violation were studied, provided
that noises of both types are simultaneously available
in the density matrix.

Now, let us consider and analyze the final state
of qubit pair 1 and 4 after the ES operation and in
the presence of colored noise in the initial states of
two qubit pairs. We assume that the initial state of
each qubit pair in the presence of colored noise looks
like expression (12). The density matrix of this state
looks like

ρC =
1
2

0 0 0 0
0 1 −p 0
0 −p 1 0
0 0 0 0

, (13)

in the standard basis and like

ρB
C =

1
2

1− p 0 0 0
0 1 + p 0 0
0 0 0 0
0 0 0 0

 (14)

in the Bell one. Substituting the density operator
of the initial qubit pairs (12) with different parame-
ters p1 and p2 into expressions (6) and (7), we obtain
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Fig. 3. Dependences of the von Neumann entropy on the
parameter p in the presence of colored noise: (1) for the state
of each of the initially prepared qubit pairs and (2 ) for the
state of a qubit pair obtained as a result of the ES operation

ρ̂14. The matrix representation of ρ̂14 in the compu-
tational and Bell bases can be obtained from expres-
sions (13) and (14), respectively, with the use of the
simple substitution p→ p1 · p2 in them. Similarly to
the case of white noise, we see that, in the case where
one of the initial qubit pairs is prepared in the pure
state, i.e. p1 = 1 or p2 = 1, the density matrix ρ14

identically reproduces the density matrix of a qubit
pair prepared in a mixed initial state.

Provided that p1 = p2 = p, the density operator of
the final state of qubits can be presented in a form
similar to Eq. (12), namely,

ρ̂14C =p2|Ψ−14〉〈Ψ
−
14|+

1−p2

2
(|0114〉〈0114|+|1104〉〈1104|).

The density matrix of the same state looks like

ρ̃14C =
1
2

0 0 0 0
0 1 −p2 0
0 −p2 1 0
0 0 0 0

, (15)

in the computational basis and like

ρ̃B
14C =

1
2

1− p2 0 0 0
0 1 + p2 0 0
0 0 0 0
0 0 0 0


in the Bell one. Analogously to the previous case, the
states of the initial and final qubit pairs are similar
to each other with an accuracy to the substitution
p→ p2. Since p ∈ [0, 1], we have p2 ≤ p and 1− p2 ≥
1 − p in this interval, which evidences an increase in
the fraction of colored noise.

In Fig. 3, the comparison is made between the de-
pendences of the von Neumann entropy on the param-
eter p for the state of each of the initially prepared
qubit pairs (dashed curve) and the final state of qubit
pair 1 and 4 (solid curve). One can see that the en-
tropy of final qubit pairs exceeds that of qubit pairs
in the initial state if 0 < p < 1, which also testifies to
an increase of the noise fraction. The largest differ-
ence between the entropies, ΔS ≈ 0.21, is observed
at p ≈ 0.76. Note also that the maximum value of en-
tropy equals Smax = 1 (at p = 0), whereas Smax = 2
in the previous case with white noise. Such a differ-
ence is quite clear, because white noise is the most
chaotic state.

The reduced density matrices corresponding to ma-
trices (13) and (15) are proportional to the identity
matrix, as it was in the previous case. Therefore, the
von Neumann entropy for the state of each qubit in
the pair does not depend on p and equals 1.

The partially transposed density matrix for the ini-
tial state of a qubit pair looks like

ρPT
C =

1
2

 0 0 0 −p
0 1 0 0
0 0 1 0
−p 0 0 0

,
in the standard basis, and the characteristic values of
this matrix are λ1 = λ2 = 1, λ3 = p, and λ4 = −p.
The value λ4 < 0 at 0 < p ≤ 1 testifies that each of
the initially prepared qubit pairs is in the entangled
state at an arbitrary fraction of colored noise. Using
the similarity between the states of initial and final
pairs (p → p2), we arrive at the conclusion that the
pair of qubits 1 and 4 will also be entangled after
the performance of the ES operation at any values of
parameter p.

5. Entanglement Swapping
at the Simultaneous Presence of White
and Colored Noises in Initial States

Now, let us consider the entanglement swapping oper-
ation when both white and colored noises are simulta-
neously present in the initial states of two qubit pairs.
The state of initially prepared pairs is determined in
this case by the density operator [23]

ρ̂CW =p|Ψ−12〉〈Ψ−|+
r

2
(|01〉〈01|+|10〉〈10|)+1− p− r

4
Î12,

(16)
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where p is the fraction of the pure state, p ∈ [0, 1],
and r the fraction of the colored state (the weighting
factor), r ∈ [0, 1 − p]. Let us denote the weighting
factor of white noise, which equals 1− p− r, by q; so
that the normalization condition is p+r+q = 1. The
density matrix of state (16) looks like

ρCW =

=
1
4

1− p− r 0 0 0
0 1 + p+ r −2p 0
0 −2p 1 + p+ r 0
0 0 0 1− p− r

,
(17)

in the standard basis and like

ρB
CW =

=
1
4

1− p+ r 0 0 0
0 1 + 3p+ r 0 0
0 0 1− p− r 0
0 0 0 1− p− r


in the Bell one. Substituting the density operator of
the initial qubit pairs (16) with different parameters
p1, p2, r1, and r2 into expressions (6) and (7), we ob-
tain the following matrix representations for the state
of qubit pair 1 and 4 in the final state after executing
the ES operation: in the computational basis,

ρ14CW =
1
4

a1 0 0 0
0 a2 a3 0
0 a3 a2 0
0 0 0 a1

,
where a1 = 1 − (p1 + r1)(p2 + r2), a2 = 1 + (p1 +
r1)(p2 + r2), a3 = −2p1p2, and, in the Bell basis,

ρ̃B
14CW =

1
2

diag
(
1− 2p1p2 + (p1 + r1)(p2 + r2);

1 + 2p1p2 + (p1 + r1)(p2 + r2);

1− (p1 + r1)(p2 + r2); 1− (p1 + r1)(p2 + r2)
)
.

At p1 = p2 = p and r1 = r2 = r, the density operator
of the final state of qubits can be presented in the
form similar to Eq. (16), namely,

ρ̂14 = p̃ |Ψ−14〉〈Ψ
−
14|+

r̃

2
(|0114〉〈0114|+

+ |1104〉〈1104|) +
q̃

4
Î14, (18)

where

p̃ = p2, r̃ = r2 + 2pr,

q̃ = 1− (p̃+ r̃) = 1− (p+ r)2. (19)

Let us analyze the fraction redistribution among
the pure state and colored and white noises owing to
the ES process. If p = 1 (so that r = 0 and q = 0),
we have p̃ = 1, r̃ = 0, and q̃ = 0. Hence, the pure
initial state transforms into a pure one, i.e. the noise
components are absent from the final state.

If p = 0 and r 6= 0 (then, q = 1−r), we have p̃ = 0,
r̃ = r2, and q̃ = 1− r2. Since r2 < r (0 < r < 1) and
1− r2 > 1− r, the fraction of colored noise decreases
and that of white noise increases after the ES process.

If p = 0 and r = 0 (then, q = 1), we have p̃ = 0,
r̃ = 0, and q̃ = q = 1, i.e. white noise does not vary.

If 0 < p < 1, we have p2 < p and (p+r)2 < p+r, so
that p̃ < p, q̃ > q, and, therefore, the fraction of the
pure state decreases and that of white noise increases.

If the fraction of the pure state in the initial state
(16) is equal to the fraction of white noise, i.e. p =
1− (p+ r) (whence, p = 1−r

2 ), the fraction of colored
noise does not change after the ES process. Really,

r̃ = r2 + 2pr = r2 + 2 · 1− r
2
· r = r.

Then it is obvious that, if p < q (i.e. if p < 1−r
2 ),

we obtain r̃ < r, which means that the colored noise
fraction decreases, i.e. the growth of white noise oc-
curs owing to a reduction of the pure state and colored
noise fractions.

If p > q (i.e. if p > 1−r
2 ), the colored and white

noises grow owing to a reduction of the pure state
fraction.

The density matrix of state (18) looks like

ρ̃14CW =
1
4

a1 0 0 0
0 a2 a3 0
0 a3 a2 0
0 0 0 a1

, (20)

in the standard basis (here, a1 = 1 − (p + r)2, a2 =
= 1 + (p+ r)2, and a3 = −2p2) and like

ρ̃B
14CW =

1
2
diag

(
1− 2p2 + (p+ r)2; 1 + 2p2 + (p+ r)2;

1− (p+ r)2; 1− (p+ r)2
)

in the Bell one.
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Fig. 4. Diagram for the values of parameters p and r, at
which (1 ) the system in the initial and final states is non-
entangled, (2 ) the system is entangled in the initial state and
non-entangled in the final one, and (3 ) the initial and final
states of the systems are entangled

For any p ∈ [0, 1] and any r ∈ [0, 1 − p], the von
Neumann entropy for the state of the final qubit pair,
Sfin(p, r), exceeds the entropy Sin(p, r) for the state
of each of the initial qubit pairs. The largest differ-
ence between those entropies, ΔS ≈ 0.4, is observed
at p ≈ 0.72 and r ≈ 0.15.

The reduced density matrices that correspond to
matrices (17) and (20) are proportional to the iden-
tity matrix, as it was in the previous cases, and, ac-
cordingly, the von Neumann entropy for the state of
each qubit in the pair does not depend on p and r,
being equal to 1.

The partially transposed density matrix for the
state of each of the initially prepared pairs looks like

ρPT
CW =

=
1
4

1− p− r 0 0 −2p
0 1 + p+ r 0 0
0 0 1 + p+ r 0
−2p 0 0 1− p− r

 (21)

in the standard basis. To find the range of values
for coefficients p and r, in which the state of each of
the initially prepared pairs is entangled, let us firstly
diagonalize matrix (21),

ρPT
diag =

=
1
4

1 + p+ r 0 0 0
0 1 + p+ r 0 0
0 0 1 + p− r 0
0 0 0 1− 3p− r

.

Owing to the conditions p ∈ [0, 1] and r ∈ [0, 1− p]
imposed on the weight coefficients, only one charac-
teristic value of the partially transposed matrix can
be negative, namely,

1− 3p− r ≤ 0 =⇒ 3p+ r ≥ 1. (22)

This result was obtained earlier in work [23].
Now, let us determine the range of p and r val-

ues, in which the state of a qubit pair formed by the
ES operation is entangled. For this purpose, we use
relations (19) and (22) to obtain

3p̃+ r̃ ≥ 1 =⇒ 3p2 + r2 + 2pr ≥ 1 =⇒

=⇒ 2p2 + (p+ r)2 ≥ 1.

Figure 4 exhibits the range of values for the param-
eters p and r, in which the initial and final systems
of qubits are either entangled or not. One can see
that there is a range of parameters (it is marked by
number 2 in Fig. 4), for which the state of each of the
initially prepared pairs is entangled, whereas the state
of a pair obtained as a result of the ES operation is
non-entangled. In other words, there may arise a situ-
ation after the entanglement swapping process, when
the final state of qubits 1 and 4 is non-entangled ow-
ing to the influence of noise, whereas the initial qubit
pairs are entangled.

6. Conclusions

1. If either of qubit pairs is prepared in the pure state
(p1 = 1 or p2 = 1), the density matrix ρ14 of a qubit
pair obtained as a result of the entanglement swap-
ping process identically reproduces the density ma-
trix of the second qubit pair prepared in the mixed
state. If the both qubit pairs are prepared in the
mixed state, the final state of qubit pair 1 and 4 turns
out noisier than the state of each of the initially pre-
pared pairs, which results in an increase of the von
Neumann entropy for the qubit pair.

2. Depending on the initial distribution among the
fractions of the pure state and colored and white
noise, different scenarios for the redistribution of
those fractions are implemented in the course of the
ES process.

3. The range of values for the parameters p and r
was determined, at which an entangled state trans-
forms into the non-entangled one in the course of en-
tanglement swapping.
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КВАНТОВА ТЕЛЕПОРТАЦIЯ ЗАШУМЛЕНИХ
ЗАПЛУТАНИХ СТАНIВ

Р е з ю м е

У системi чотирьох кубiтiв розглянуто вплив наявностi бi-
лого та кольорового шуму в станах початково приготованих
заплутаних пар кубiтiв на кiнцевий стан пари кубiтiв, що
отримується в результатi операцiї безконтактного заплуту-
вання. Побудовано вiдповiднi матрицi густини, проаналiзо-
вано перерозподiл часток чистого стану та бiлого i кольоро-
вого шуму. З’ясовано умови збереження та руйнування за-
плутаностi при переходi вiд початкового до кiнцевого стану.
Проведено також порiвняння ентропiї фон Неймана поча-
ткового i кiнцевого станiв пари кубiтiв.
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