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The synergy of the decomposition and electromigration in binary alloys under a very strong
electric current is analyzed in the frame of the entropy production rate approach and simulated
by the Monte Carlo method. The morphology evolution and the Joule heating rate time behavior
depend on what is fixed during the electromigration – current or voltage.
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1. Introduction

The current in a metal alloy causes at least two ef-
fects – (1) the emission of Joule heat (and the corre-
sponding rate of entropy production 𝑆̇Joule [1] due to
the scattering of electrons by defects), (2) electromig-
ration of atoms of both components of the alloy under
the influence of an electron wind [2–5]. The second ef-
fect is also related to the entropy production 𝑆̇atomic;
however, it requires a longer time period and high
current densities for its fixation. If the alloy is hetero-
geneous (e.g., it is a mixture of two phases), higher-
order cross-effects also occur. For example, the differ-
ence in the specific resistances of the phases leads to
the locally heterogeneous heat generation and, as a
consequence, to local temperature gradients. These
gradients cause the thermomigration and, in some
cases, can lead to “anticoalescence” [6]. Here, we will
not go so far, but restrict ourselves to only two main
processes – Joule heat and electromigration. Howe-
ver, at the same time, we will investigate the interde-
pendence of these processes with the process of diffu-
sion decomposition of the alloy. In addition, we will
discuss whether the often discussed principles of en-
tropy production extremality and other principles of
extremality are implemented [7–10]. In this case, it
will be important to clearly fix, on which set the ex-
tremum is looking for. One thing is the extremum of
entropy production relative to the variations of the
spatial distribution of potentials and the current den-
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sity at a fixed atomic distribution. Another thing is
the extremum (if it exists!) of the entropy produc-
tion due to variations of the spatial distribution of
atoms. The entropy production goes to the extremum
alongside the evolution of the morphology of the alloy
in the course of the time.

Due to the miniaturization of elements of inte-
grated circuits, the density of currents in them has
significantly increased. In some cases, this leads to the
formation of ordered structures. An example of the
ordering of the two-phase structure of a solder along
the lines of the current is shown in Fig. 1 (see, e.g., a
monograph [11]). Since this structure is an open sys-
tem in the field of external currents, it can be inter-
preted as an example of self-organization in open sys-
tems, which is associated with the extreme properties
of entropy production. In addition, the minimization
of entropy production, as suggested by K.-N. Tu [2],
may be the cause for the so-called gradient forces act-
ing on a nanopore under the conditions of a sharply
heterogeneous distribution of currents in a chip. Na-
mely, it is empirically noted that the pores tend to
exit the region of the congestion of the current lines
(“current crowding” areas). K.-N. Tu explains this as
the aspiration to reduce the energy dissipation.

Consider the stationary distributions of the cur-
rent density j(r) and electrical potential 𝜙(r) in a
non-uniform (e.g., two-phase) conductive alloy with
a known spatial distribution of the electrical conduc-
tivity 𝜎(r). The local form of Ohm’s law for the cur-
rent density (j = 𝜎(r)E = −𝜎(r)grad𝜙(r)) together
with the local form of Kirchhoff’s first law (i.e., the
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Fig. 1. Typical morphology of a two-phase solder under the
influence of electromigration. The arrows indicate the local cur-
rent direction [11]

law of conservation of the charge and the condition
of stationarity, div j = 0) lead us to the well-known
equation for a stationary potential distribution:

div (𝜎(r) grad𝜙(r)) = 0. (1)

As G. Kirchhoff noticed long before, by introduc-
ing the concept of entropy and its production (see [1]),
Eq. (1) can alternatively be interpreted as a minimum
energy dissipation condition (Joule heat). In the ap-
proximation of the temperature uniformity (which is
sufficiently well performed in metal samples under a
current), it can be reformulated as a minimum con-
dition for the part of entropy production that is not
related to the redistribution of components, i.e., the
production of entropy with a fixed distribution of con-
ductivity (with a fixed distribution of alloy compo-
nents) and under fixed boundary conditions. In addi-
tion, this property can be used as a means for solving
Eq. (1). At the same time, solving Eq. (1) by min-
imizing the functional of the total Joule heat may
prove to be most productive for a numerical solution
of the three-dimensional problem (1) with a complex
conductivity distribution.

Briefly, we recall the basic ideas of Joule heat ex-
tremalization. The production of entropy by the Joule
heating of a temperature-homogeneous system with
volume 𝑉,

𝑆̇Joule =

∫︁∫︁∫︁
𝑉

jE

𝑇
𝑑𝑉 =

1

𝑇

∫︁∫︁∫︁
𝑉

𝜎(r)(∇𝜙)2𝑑𝑉, (2)

is a function of the spatial distribution of the potential
𝜙(r). A variation of this functional equals

𝛿𝑆̇Joule =
2

𝑇

∫︁∫︁∫︁
𝑉

𝜎(r)(∇𝜙)∇(𝛿𝜙)𝑑𝑉 =

=

∮︁
Σ(𝑉 )

𝜎(r)
𝜕𝜙

𝜕𝑛
𝛿𝜙𝑑𝑉 − 2

𝑇

∫︁∫︁∫︁
𝑉

∇(𝜎(r)(∇𝜙))𝛿𝜙𝑑𝑉.

(3)

Here, we consider the following boundary condi-
tions on the limiting surface for the volume 𝑉 −Σ(𝑉 ):
(1) on two boundaries, the potentials are fixed (volt-
age is given at the ends of the sample between the
“cathode” and “anode”), so that the variation of the
potential at these boundaries is equal to zero: 𝛿𝜙|Σ =
0, (2) on the rest of the boundary, the metal sam-
ple is bounded by dielectrics, i.e., at each point of
such boundaries, the normal component of the cur-
rent density is equal to zero. Hence, the derivative of
the potential along the normal to the surface equals
zero, 𝜕𝜙

𝜕𝑛 |Σ = 0. In the case of Born–Karman’s peri-
odic boundary conditions on the lateral boundaries,
the normal component of the current, say, on the
“upper” boundary, may not be equal to zero, but
the current that flows through the upper boundary
will be fully offset by the current entering the sys-
tem through the bottom boundary in accordance with
periodic boundary conditions. For the above reasons,
the first integral (on a surface) on the right-hand side
of Eq. (3) is zero. So,

𝛿𝑆̇Joule = − 1

𝑇

∫︁∫︁∫︁
𝑉

∇(𝜎(r)(∇𝜙))𝛿𝜙𝑑𝑉. (4)

The extremum of a functional means the equality
of the first variation of a functional with an arbitrary
small variation of a function to zero. This means that
the integral expression in Eq. (4), ∇(𝜎(r)(∇𝜙)), is
zero under the condition of entropy production ex-
tremality. Thus, Eq. (1) can be interpreted, indeed,
as the Euler–Lagrange equation of the variational
problem for the total rate of heat generation and
the corresponding part of entropy production (in
the approximation of the temperature field unifor-
mity). The extremal is sought in a class of functions
𝜙(r) with the before-specified boundary conditions
and the given distribution of conductivity 𝜎(r), i.e.,
with a given distribution of atoms in the alloy.
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Under these conditions, Eq. (1) is a consequence
of the extremality of entropy production. In other
words, the system distributes currents and potentials
within itself so that the dissipation of energy is ex-
tremal. The fact that this extremum is a minimum is
guaranteed by the positive conductivity in functional
(2) (details are given in the next paragraph).

In this paper, we propose an atomistic model of
the distributions of currents and potentials, which is
then used to simulate simultaneously the decomposi-
tion of an unstable alloy and the electromigration of
atoms in it. We wonder whether any extremal prin-
ciples work at the level of a distribution of phases
in a two-phase system, rather than currents and po-
tentials. At the intuitive level, one can expect that
a change in the current morphology should somehow
correlate with that part of the production of entropy,
which is associated with Joule heat. For example, if
we assume that the system is trying to reduce the en-
ergy dissipation, then, at a given current, it will try
to reduce the resistance (i.e., to evolve toward the
parallel phase connection) and, at a fixed voltage, to
increase the resistance (i.e., to evolve toward the suc-
cessive connection of phases). We will see below that
our intuition is justified only partially!

2. Discrete Atomistic
Model of Distribution of Currents

Consider the discrete atomistic model of binary al-
loy, which is based on the approximation of a regular
solid solution, say, with a face-centered cubic lattice
(or in the two-dimensional case – with a triangular
one). The alloy is characterized by a positive mixing
energy 𝐸mix = 𝑉𝐴𝐵 − 𝑉𝐴𝐴+𝑉𝐵𝐵

2 > 0. At a fairly low
temperature 𝑇 < 𝑍𝐸mix

2𝑘B
(𝑍 = 12 for an FCC lattice,

and 𝑍 = 6 for a triangular lattice), the system has
a two-phase area and can decompose itself. Here, we
shall consider the decomposition simultaneously with
the electromigration caused by the electric current
with given potentials on the anodic and cathodic sur-
faces. It will be simpler to assume that the current in
the alloy goes from node to node through a connect-
ing “internode conductor”. Let I, In be the indices of
an arbitrarily selected node and one of its 𝑍 neigh-
bors (each of the indices I and In actually represents
three indices in three axes). By 𝜎[I] and 𝜎[In], we de-
note the conductivities corresponding to the filling of
nodes I and In. Conductance 𝜎[I] attributed to the

node is equal to 𝜎𝐴 or 𝜎𝐵 , depending on the filling of
the site [11].

The contact between the nodes is attributed to the
average proportional conductivity

𝜎[I, In] =
2𝜎[I]𝜎[In]

𝜎[I] + 𝜎[In]
. (5)

For the specific resistance, this means the arith-
metic mean (which is logical for the sequential con-
nection of the two nodes)

𝜌[I, In] =
𝜌[I] + 𝜌[In]

2
. (6)

The current density in the direction from node I
to the neighboring node In, 𝑗[I → In], in our discrete
scheme is given by the relation

𝑗[I → In] = −𝜎[I, In]
𝜙[In]− 𝜙[I]

𝑑
(7)

(here, 𝑑 is the interatomic distance; in the case of a
FCC lattice, 𝑑 = 𝑎/

√
2). As is known, the flux diver-

gence is defined as the limit of the ratio of the flux
through the constricted surface to the volume inside
this surface. In our discrete scheme, the constriction
stops at the level of a Wigner–Seitz cell, which is a
polyhedron with atomic volume Ω and (in the case of
a FCC lattice) 𝑍 = 12 faces with the same area 𝑆1:

div𝑗(I) =

∮︀
Σ(Ω)

𝑗𝑛𝑑𝑆

Ω
=

∑︀𝑍
In=1 𝑗[I → In]𝑆1

Ω
=

=
𝑆1

Ω

𝑍∑︁
In=1

𝜎[I, In](𝜙[I]− 𝜙[In]). (8)

Thus, the discrete analog of the differential equa-
tion (1) is the system of algebraic equations

𝑍∑︁
In=1

𝜎[I, In](𝜙[I]− 𝜙[In]) = 0, I = 1, ..., 𝑁. (9)

In this case, the potentials on the cathodic and an-
odic nodes are given. The equilibrium of the normal
components of the current density at the lateral sur-
faces equals zero either by periodic boundary condi-
tions or by the automatic zeroing of the conductivity
at the boundary with the dielectric node:

𝜎[I, Indielectric] =
2𝜎[I] 0

𝜎[I] + 0
. (10)
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An analog of functional (2) in our discrete scheme
is a function of the values of the potential in all nodes
of the system:

𝑆̇Joule(𝜙[1], ..., 𝜙[𝑁 ]) ∝

∝ 1

𝑇

𝑁∑︁
I=1

𝑍∑︁
In=1

𝜎[I, In](𝜙[I]− 𝜙[In])2

𝑑2
Ω. (11)

The minimum conditions are formulated as follows:

𝜕𝑆̇Joule(𝜙[1], ..., 𝜙[𝑁 ])

𝜕𝜙[I]
= 0, I = 1, ..., 𝑁,

𝜕2𝑆̇Joule(𝜙[1], ..., 𝜙[𝑁 ])

𝜕𝜙[I]2
> 0.

(12)

Substituting expression (11) into the minimal con-
ditions (12), we obtain

𝑍∑︁
In=1

𝜎[I, In](𝜙[I]− 𝜙[In]) = 0,

𝑍∑︁
In=1

𝜎[I, In] > 0, I = 1, ..., 𝑁.

In other words, the condition of minimal Joule heat
yields the basic system of equations (9).

Thus, the minimization of the entropy production
for a stationary distribution of currents with a fixed
distribution of conductivity and fixed voltages at the
ends of the conductor is strictly fulfilled and confirms
the principle of minimal entropy production in the
stationary states of open linear systems. This prin-
ciple [7] is proved only in the case of constant ki-
netic coefficients. In a more general case, a change of
the entropy production with time is divided into two
parts: the first one, 𝑑𝑋𝜎

𝑑𝑡 , is associated with changes in
driving forces, and the second part, 𝑑𝐽𝜎

𝑑𝑡 , with changes
of fluxes:

𝑑𝜎

𝑑𝑡
=

𝑑𝑋𝜎

𝑑𝑡
+

𝑑𝐽𝜎

𝑑𝑡
. (13)

For the first term, the non-positivity is proved(︀
𝑑𝑋𝜎
𝑑𝑡 <= 0

)︀
. For the second term, such a property is

not proved and, in general, is unfair.
It should be noted that there are still many dis-

crepancies regarding the principles of entropy pro-
duction extremality. In fact, one should distinguish

cases where the entropy production goes to a min-
imum and, when it is, tends to maximum by con-
trast. If the thermodynamic system is closed, i.e.,
it is under homogeneous external conditions (either
adiabatic ones or in a spatially homogeneous ther-
mostat), it tends to equilibrium that corresponds to
the extremum of any thermodynamic potential (the
maximum of entropy if the system is isolated, the
minimum of Helmholtz’s free energy; if the tempera-
ture of the thermostat and the volume of the system
are fixed, the minimum free energy of Gibbs; if the
temperature of the thermostat and the external pres-
sure are fixed). In all these cases, the production of
entropy in an extreme state (in this case, it is an
equilibrium one) is zero. If the thermodynamic sys-
tem is open, i.e., it is under heterogeneous, but con-
stant in time external conditions (e.g., different, but
constant temperatures or chemical, or electrical po-
tentials within the limits), then it will never come
to equilibrium, but, most likely, will be in a station-
ary state, which is characterized by constant fluxes
(an alternative is the oscillatory regime). In the sim-
plest case, this stationary state corresponds to a min-
imum of entropy production. This property has no di-
rect relation to the problem of choosing the path of
evolution. To the final state (equilibrium or station-
ary), the system can move by different ways. Many
physicists “believe” that the system chooses usually
the path that corresponds to the maximum entropy
production.

This hypothesis sounds quite plausible, but it is
not always strictly valid [8, 9]. We give an opportu-
nity to answer all these questions to the model sys-
tem itself. It is known that the electromigration in
a decomposing alloy can change the morphology of
the system. Our task is to find out how, in this case,
the production of entropy changes, especially the part
(main) that is associated with Joule heat. Additional
sources of entropy production (if temperature gradi-
ents are neglected) are the electromigration and de-
composition. The ratio of the entropy production due
to the electromigration to that due to the Joule heat
is

1
Ω

𝐷
𝑘B𝑇 (Δ𝑍𝑒𝐸)2/𝑇

𝜎𝐸2/𝑇
=

𝐷 (Δ𝑍𝑒)2

Ω𝑘B𝑇𝜎
.

The realistic values of the diffusion coefficients, ef-
fective charges, and conductivities give a very small
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value of this ratio (less than a millionth part), i.e., the
contribution of the electromigration to the produc-
tion of entropy can be neglected. As for the chemical
part (the production of entropy due to the decom-
position), this case is more complicated and depends
on the mechanism and the stage of the decomposi-
tion. An analytical theory of the early stages of spin-
odal decay in the presence of the electromigration will
be outlined elsewhere.

3. Finding the Distribution
of Voltages and Currents in the Fixed
Distribution of Components

In the general case, the problem of alloy self-organi-
zation in the presence of a strong current is very com-
plex, since it involves a feedback: the electron wind
influences differently the migration of atoms of A and
B sorts and thus changes the spatial distribution of
atoms between the nodes, and this distribution deter-
mines, in turn, the distribution of potentials, current,
and electron wind. Therefore, strictly speaking, it is
necessary to redefine the distribution of potentials af-
ter each diffusion jump, i.e., to solve an optimization
problem. It is technically very difficult to do. So, we
calculate the potentials by the Monte Carlo proce-
dure. We tested three methods:

(1) a simple iterative method,
(2) a gradient descent method with a constant step,
(3) fast gradient descent method with an optimized

step.

3.1. Simple iterative method

The system of equations (9) can be represented as
follows:

𝜙[I] =

𝑍∑︀
In=1

𝜎[I, In]𝜙[In]

𝑍∑︀
In=1

𝜎[I, In]

, I = 1, ..., 𝑁.

The idea of the iterative method is that the left-hand
side is treated as the next iteration, while the right-
hand side is as a current one:

𝜙iter+1[I] =

𝑍∑︀
In=1

𝜎[I, In]𝜙iter[In]

𝑍∑︀
In=1

𝜎[I, In]

, I = 1, ..., 𝑁. (14)

The reassignment according to relation (14) occurs
for all nodes except the cathodic and anodic ends, on
which the potentials are considered to be given. The
initial iteration is traditionally adopted by a lin-
ear function that acquires fixed values at the anodic
and cathodic ends: 𝜙0(𝐼) = 𝜙cathode + 𝑥

𝐿𝑥
(𝜙anode −

−𝜙cathode). The disadvantage of this method is that
the iterative procedure does not always ensure con-
vergence. In the case of the usage of the method
for the random distribution of atoms, a minimum
of Joule heat is achieved fairly rapidly, but there
is a further increase in the parameter 𝑃 [see for-
mula (15)], which indicates a deviation of the val-
ues of the nodal potentials from the real values,
and, respectively, the divergence of the iteration
procedure.

3.2. Gradient descent
method with constant step

The gradient descent method is based on the quad-
ratic minimization theorem proved above. We have

𝑃 =

𝑁∑︁
I=1

𝑍∑︁
In=1

𝜎[I, In](𝜙[I]− 𝜙[In])2. (15)

When choosing a constant step of the gradient de-
scent at each step, the potentials at each node are
redefined by the formula

𝜙[I] = 𝜙[I]− 2𝜆

𝑍∑︁
In=1

𝜎[I, In](𝜙[I]− 𝜙[In]). (16)

Here, in relation (16), the step 𝜆 has an inverse to the
conductivity units, i.e. [Ω𝑚].

To verify the efficiency of the gradient descent
method, a model two-dimensional sample with a tri-
angular lattice, whose nodes form a block structure,
was used: up to half the length, the sample is filled
with atoms of the same sort; after, with atoms of
another sort. Using the gradient descent method can
eliminate the lack of the previous algorithm, namely,
the possible divergence of successive approximations.

3.3. Fast gradient descent method

The idea of the method is the same, but there is a one-
dimensional optimization of the change of 𝑃 with a
step 𝜆 (i.e., the first derivative of the change of 𝑃 with
respect to the step is zero, and the second derivative
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is greater than zero). In this case, the optimal step is
determined by the formula

𝜆opt =

=

∑︀
I

∑︀
In

∑︀
Inb

𝜎[I, In]𝜎[I, Inb](𝜙[I]− 𝜙[In])(𝜙[I]− 𝜙[Inb])

2
∑︀
I

∑︀
In

𝜎[I, In](
∑︀
Inb

𝜎[I, Inb](𝜙[I]− 𝜙[Inb]))2
.

(17)

Given that the iteration procedure congerges with
a computation accuracy sufficient for our modeling,
and the optimization procedure has a lower conver-
gence rate for a large number of particles, the iterative
approach was chosen for our calculations.

4. Investigation of the Time
Dependence of the Morphology, Resistance,
and Entropy Production
in a Decomposing Alloy

The first results for a two-dimensional model (trian-
gular lattice) in the case of a fixed current were ob-
tained by the iterative method in [12] with the par-
ticipation of two authors of this article (A.M. Gusak,
V.V. Turlo). Here, we has complicated the prob-
lem, by considering two alternatives for the poten-
tial (fixed current and fixed voltage) and two alterna-
tive boundary conditions for the electromigration of
atoms (zero fluxes at the limits and periodic bound-
ary conditions). A fixed voltage is provided by simply
fixing the potentials on the left and right boundaries
of the sample. The most convenient way to fix a cur-
rent is to renormalize the potential at all points of the
scheme. In the case of zero fluxes at the boundaries,
the segregation of almost pure components within
the boundaries (as observed) can be expected. An al-
ternative assignment of periodic boundary conditions
physically means simply allocating a small part of the
sample in the region of quasistationary flows of atoms
outside the segregation regions. A simulation in a
three-dimensional case is also included. The Monte
Carlo method was used for the exchange mechanism
in a decomposing binary alloy. A standard Metropolis
algorithm was used with the following modification:
the change in the energy at the exchange of atoms
𝐴 in the node In and 𝐵 in the site I included the
electromigration term

Δ𝐸𝑞 = (𝑍𝐴 − 𝑍𝐵)𝑒(𝜙[I]− 𝜙[In]), (18)

𝑍𝐴, 𝑍𝐵 are the effective charges of components. The
task includes a characteristic size

𝑙el =
𝑘B𝑇

Δ𝑍𝑒(𝜌𝑗)average
= 𝐿

𝑘B𝑇

Δ𝑍𝑒(𝜙anode − 𝜙cathode)
,

where 𝐿 is the complete longitudinal length of a
sample.

While the characteristic size of the heterogeneity
of the decomposing alloy is less than 𝑙el, the expected
impact of the electromigration on the redistribution
of components is small. Therefore, it can be expected
that, at the initial stage of the decomposition, the
effect of the electromigration will be relatively small,
and all Joule heat changes will be determined firstly
by simply increasing the characteristic length of the
heterogeneity (e.g., increasing the size of inclusions of
the second phase and the corresponding decrease in
their number), which means a decrease in the resis-
tance (see below).

When constructing a two-dimensional model, some
model parameters remote from reality (especially a
huge current density) were used, which allow tracing
the evolution of the structure for a reasonable ma-
chine time: the size of the sample 𝑁𝑋=600, 𝑁𝑌 =300,
𝑉𝐴𝐴/𝑘B𝑇 = 𝑉𝐵𝐵/𝑘B𝑇 = −1.087, 𝑉𝐴𝐵/𝑘B𝑇 =
= −0.181, conductivity of components 𝐴 and 𝐵,
𝜎𝐴 = 6 × 107 Ω−1 ·m−1, 𝜎𝐵 = 6 × 106 Ω−1 ·m−1

respectively, Δ𝑍 𝑒 = 30 × 10−19 C, interatomic dis-
tance 𝑎 = 2.55× 10−10 m.

4.1. Fixed current
in a two-dimensional sample

4.1.1. Zero component fluxes
at boundaries (phase segregation
at the anodic and cathodic ends)

A typical picture of the evolution of a morphology
in the case of a fixed current and a zero flux of
components on the cathode and anode is shown in
Fig. 2. The system shows the competition of two
trends: to the sequential connection as a result of
the segregation on the electrodes and to the parallel
connection in the inner part of the sample.

The intensity of the Joule heat generation in the
case of a fixed current is obviously proportional to
the total resistance and, therefore, repeats the form
of the dependence of Fig. 3, which shows the typical
time dependence of the total resistance.
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4.1.2. Periodic boundary conditions for components
The nonmonotonicity of the time dependence of the
Joule heat generation is obviously related to the seg-
regation of the phases on the cathode and the anode
and, as a result, to the increase of the fraction of the
serial connection in the two-phase alloy. In order to
notice the desired trend in its pure form, it is neces-
sary to get rid of the effects of areas of the electro-
migration segregation. To do this, of course, you can
simply trim the extreme areas, but we will choose an-
other way: without changing the boundary conditions
for currents and potentials, we introduce new bound-
ary conditions for the components on the boundaries;
instead of the zero fluxes of components, we introduce
periodic boundary conditions for the components on
the cathode and the anode. The results are presented
in Figs. 4 and 5.

4.2. Fixed voltage
in a two-dimensional sample. Zero
component flows at the boundaries

Next, we substitute the voltage for the current, by ex-
pecting that the structure strives to a consistent con-

a

b
Fig. 2. Decomposition of an alloy during the transmission
of a fixed current (triangular lattice, zero component fluxes at
the boundaries); initial state (a), after 5000 Monte Carlo steps
(b); 𝑉𝐴𝐴/𝑘B𝑇 = 𝑉𝐵𝐵/𝑘B𝑇 = −1.087, 𝑉𝐴𝐵/𝑘B𝑇 = −0.181,
𝑙el/𝑎 = 0.18

Fig. 3. Typical time dependence of the total resistance with
a fixed total current and the zero flows of components at the
boundaries. 𝑉𝐴𝐴/𝑘B𝑇 = 𝑉𝐵𝐵/𝑘B𝑇 = −1.087, 𝑉𝐴𝐵/𝑘B𝑇 =

= −0.181, 𝑙el/𝑎 = 0.18

Fig. 4. Structure of a 2D alloy with fixed current and un-
der periodic boundary conditions in atomic fluxes (after 75000
MC steps, the remaining parameters correspond to the above-
presented ones)

nection. (Our initial idea was that the system strives
always to reduce the energy dissipation. Since, at a
given voltage, the power of the Joule heat genera-
tion is equal to 𝑈2/𝑅, we expected an increase in the
resistance, which the system can provide, by form-
ing the structure of a serial connection). As can be
seen in Fig. 6, the situation is somewhat more com-
plicated. The structure of the parallel connection is
not really formed, unlike the previous cases. In addi-
tion, the tendency to a serial connection really man-
ifests itself, at least for a fairly large voltage, but the
resistance of the sample at first still falls and begins
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a

b
Fig. 5. Dependence of the total resistance (a) and the pro-
duction of Joule heat (b) at a fixed current and under periodic
boundary conditions on atomic flows. 𝑉𝐴𝐴/𝑘B𝑇=𝑉𝐵𝐵/𝑘B𝑇 =

= −1.087, 𝑉𝐴𝐵/𝑘B𝑇 = −0.181, 𝑙el/𝑎 = 0.18

to grow only in some time. The time dependence of
Joule heat generation is shown in Fig. 7.

An attempt to explain the nonmonotonicity of the
total resistance in this case is given in Section 5.

4.3. Simulation of the evolution
of the morphology and the heat generation,
3D case

Modeling the evolution of a structure in three-
dimensional samples requires much larger machine

Fig. 6. Morphology at a fixed voltage instead of a fixed current
(after 1900 MC steps)

Fig. 7. Time dependence of the heat generation with the fixed
voltage 𝑈 = 3𝑉

resources, so we give no systematic study, but only
a typical example of the evolution. Figure 8 shows
the morphology of a three-dimensional decomposable
FCC alloy under fixed-voltage conditions. The mor-
phology contains both elements of sequential and par-
allel connections. Thus, the recurring tendency is re-
vealed in the two-dimensional case.

5. Discussion

Starting this study, we expected (as a working hy-
pothesis) to obtain (a) the formation of a parallel
connection and a decrease of the resistance in the case
of fixed current, (b) the formation of the serial con-
nection and an increase of the resistance in the case
of fixed voltage. Then, in both cases, the energy dis-
sipation at the expense of the Joule heat goes to a

1038 ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 12



Modeling of entropy production and self-organization

minimum. However, our expectations turned out to
be somewhat naive.

1. In the case of fixed current, the situation is com-
plicated by the segregation at the ends, which makes
the time dependence of the resistance and heat gen-
eration nonmonotonic.

2. In the case of a fixed voltage before the stage of
growth of the resistance and a drop in the heat dissi-
pation, there is a rather noticeable phase of reducing
the resistance and increasing the heat dissipation.

Let us discuss the second feature, by using a simpli-
fied model. Our hypothesis is that the decrease of the
resistance in the initial stages can be caused not only
by the formation of a structure of parallel connection,
but also simply by the decomposition, i.e., by the re-
distribution of components at the local level. To test
the hypothesis, we consider firstly two simple phe-
nomenological models.

I. Consider a change in the resistance of the par-
allel connection of two phases 𝛼 and 𝛽 during the
redistribution of their concentrations with constant
phase proportions: the initial concentrations 𝑐𝛼 and
𝑐𝛽 are equal to 0.5, and, in the course of the time, 𝑐𝛼
and 𝑐𝛽 tend to 1 and to zero, respectively. We have
𝑐𝛼𝑝𝛼 + 𝑐𝛽𝑝𝛽 = 𝑐, where 𝑝𝛼 and 𝑝𝛽 are the volumet-
ric fractions of phases, and 𝑝𝛼 + 𝑝𝛽 = 1. In a rough
approximation, the resistivity of each phase will be
linear in the concentration:

𝜌𝛼(𝑐𝛼) = 𝜌𝐴𝑐𝛼 + 𝜌𝐵(1− 𝑐𝛼),

𝜌𝛽(𝑐𝛽) = 𝜌𝐴𝑐𝛽 + 𝜌𝐵(1− 𝑐𝛽).
(19)

The average inverse specific resistance of the sys-
tem, as easily verified, is equal to

1

𝜌
=

𝑝𝛼
𝜌𝐴𝑐𝛼 + 𝜌𝐵(1− 𝑐𝛼)

+
𝑝𝛽

𝜌𝐴𝑐𝛽 + 𝜌𝐵(1− 𝑐𝛽)
.

In this case,

𝜕
(︁
1
𝜌

)︁
𝜕𝑐𝛼

=

= 𝑝𝛼
(𝜌𝐴 − 𝜌𝐵)

2(𝑐2𝛼 − 𝑐2𝛽)(𝜌𝑎 + 𝜌𝐵)

(𝜌𝐴𝑐𝛼 + 𝜌𝐵(1− 𝑐𝛼))(𝜌𝐴𝑐𝛽 + 𝜌𝐵(1− 𝑐𝛽))
> 0.

Thus, as the components are redistributed (when
𝑐𝛼 increases from 0.5 to 1), the inverse resistance in-
creases, and the resistance itself falls, respectively.

II. Consider now a change in the resistance of the
serial connection of two phases 𝛼 and 𝛽 during the

Fig. 8. Morphology at a fixed voltage in the three-dimensional
model after 500 Monte Carlo steps

Fig. 9. Dynamics of a change in the complete resistance of
the system in the cases of a strong current and its practical
absence

redistribution of their concentrations. We have

𝜌 = 𝑝𝛼(𝜌𝐴𝑐𝛼 + 𝜌𝐵(1− 𝑐𝛼))+

+ 𝑝𝛽(𝜌𝐴𝑐𝛽 + 𝜌𝐵(1− 𝑐𝛽)) →
𝜕𝜌

𝜕𝑐𝛼
= 0.

Thus, in the case of a sequential connection, the
redistribution of components in a linear approxima-
tion for the resistance does not change the total re-
sistance. The real alloy is, as always, an intermediate
case between serial and parallel connections, so one
can expect that the component stratification should
reduce the resistance.

In order to verify the above heuristic reasoning,
we compared the evolution of the resistance at the
initial stage of decomposition with high and very low
currents (2 × 1014 A/m2 and 2 A/m2). As shown in
Fig. 9, at the initial stage, a decrease of the resistance
is observed in both cases. But, in the case of high
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Fig. 10. Morphology of a system that does not undergo the
decomposition after 500 Monte Carlo steps. The simulation
parameters are similar to the case of fixed current and zero
atomic fluxes on the cathode and anode

current, the drop is considerably faster. Thus, in the
case of fixed current, two effects (the redistribution of
components and the formation of the structure with
parallel connection) are observed together. In the case
of fixed voltage, we can expect their competition: the
stratification of components at the initial stage leads
to a decrease of the resistance, but the formation of
the structure with serial connection prevails after a
while.

The obtained results are consistent with the gen-
eral property described by I. Prigogine et al. Namely,
the production of entropy in a fixed flow tends to
decrease. With a fixed force (voltage), it can behave
differently.

The results described above indicate a great influ-
ence of the electromigration on the evolution of the
structure of a two-phase alloy. However, this effect is
manifested only in the area of instability of the al-
loy. To verify this statement, we considered the effect
of the electromigration on an alloy with zero mixing
energy. The structure of the alloy after 500 steps is
shown in Fig. 10. As in the previous cases, the elec-
tromigration leads to the segregation of components
on the cathode and anode. However, in the intermedi-
ate region between the anode and cathode, there are
no signs of the parallel or sequential coupling. Thus,
even a very strong electric current only helps the sys-
tem to choose the orientation of the lamellar struc-
ture, but does not create this structure in itself.
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МОДЕЛЮВАННЯ ВИРОБНИЦТВА ЕНТРОПIЇ
ТА САМООРГАНIЗАЦIЇ МЕТАЛIЧНОГО СПЛАВУ,
ЩО РОЗПАДАЄТЬСЯ, ПIД ДIЄЮ СИЛЬНОГО
ЕЛЕКТРИЧНОГО СТРУМУ

Р е з ю м е

Синергiя розпаду та електромiграцiї в бiнарних сплавах пiд
дiєю дуже сильного електричного струму проаналiзована в
рамках пiдходу швидкостi виробництва ентропiї i промоде-
льована методом Монте-Карло. Еволюцiя структури i ча-
сова залежнiсть джоулевого нагрiвання залежить вiд того,
що саме фiксується пiд час електромiграцiї – струм чи на-
пруга.
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