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LENGTH IN A NONCOMMUTATIVE PHASE SPACE

We study restrictions on the length in a noncommutative phase space caused by noncommu-
tativity. The uncertainty relations for coordinates and momenta are considered, and the lower
bound of the length is found. We also consider the eigenvalue problem for the squared length
operator and find the expression for the minimal length in the noncommutative phase space.
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1. Introduction

Due to the development of String Theory and Quan-
tum Gravity [1, 2]), the studies of physical systems
in the framework of noncommutative quantum and
classical mechanics attract a great interest [3-15]. Tt
is worth noting that the idea of noncommutativity is
quite old, has been proposed by W. Heisenberg, and
formalized by H. Snyder in work [16].

Much attention has been devoted to the influence of
noncommutativity on the properties of physical sys-
tems, among them are hydrogen atom [18-20, 34],
harmonic oscillator [21-27, 34|, particle in a grav-
itational quantum well [28, 29|, composite systems
[30], ete.

In the general case, the noncommutative phase
space can be realized with the following commutation
relations for coordinates and momenta:

[Xs, P;] = ihdij + ihvyij, (2)

Here, 0;; and 7;; are elements of the constant anti-
symmetric matrices called the parameters of noncom-
mutativity of the coordinates and momenta, respec-
tively. The parameters +;; are elements of a constant
matrix.
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Note that the coordinates X; and the momenta P;,
which satisfy relations (1) and (3), can be represented
as

1
Xi=m — 5 Z 0ip;) (4)
J
1
P =pi+ 527717'95;'7 (5)
J
with x;, p; being coordinates and momenta, which

satisfy the ordinary commutation relations

[xh x]] = 0) (
[xiapj] = Zh§lja
[pi; pj] = 0. (®)
Using (4) and (5), we obtain

—~
~N
~— —

. . Oiknjk
X;, P;] = ihd;; +ih E ==
[Xi, Pj] = ihd;; +i : 1 9)
So, we consider ;; to be defined as

Oiknjk
Vig =y
%

(10)

In view of the commutation relations (1)—(3), one
can write the following uncertainty relations:
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2 o o P

9
(PP > 0 (12)
(axapy > DO II ) gy

4

Note that there are no summations over indices i and
j in (13). So, in the noncommutative phase space,
there are additional limits to the precision, with
which coordinates and momenta can be known. This
leads to additional bounds of the physical values in
a space with noncommutativity of coordinates and
noncommutativity of momenta.

In the present paper, we consider a length in the
noncommutative phase space. We study lower bounds
of the length caused by the noncommutativity. For
this purpose, the uncertainty relations are considered,
and the eigenvalue problem for the squared length
operator is examined. We find an expression for the
minimal length in the noncommutative phase space.

The article is organized as follows. In Section 2,
the squared length operator defined in the coordi-
nate space is studied. We consider restrictions on the
length caused by the noncommutativity. In Section 2,
we examine the length defined in the momentum
space and find lower bounds on its value. Section 4
is devoted to studies of a length defined in the phase
space. The eigenvalue problem for the squared length
operator is examined, and the minimal length in the
phase space is found. Conclusions are presented in
Section 5.

2. Length in the Coordinate Space

Let us first examine lower bounds on the length,
which is defined in the two-dimensional coordinate
space. For this purpose, we consider the squared
length operator
R}, = Xi 4+ X3, (14)
and write its eigenvalues. The coordinates X; and X
satisfy the commutation relation

[X17X2:| = ihalg. (15)
Note that X7, X5 can be represented as
1
X1 =21 — 5912;02, (16)
1
Xo =z + 5912;01. (17)
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Here, the coordinates x; and the momenta p; satisfy
the ordinary commutation relations

[71,22] =0, (18)
[p1,p2] =0, (19)
[x1,p1] = [22, p2] = ih. (20)

So, we can rewrite the operator R%, in the following
form:

92
R}, = x%—kx%—k% (P% +P%) —b12(z1p2—x2p1). (21)

Note that R?, can be factorized. Considering the
operators (see, e.g., [26, 32])

1 . . d d
by = B} <—Z§1 - ZT& +& + d€2>7 (22)
1 d d
T Y e
by = 3 (lfl Zd& + &2 d§2>’ (23)
with dimensionless coordinates
V2
§1 = ——— 11, (24)
NGy
V2
fo = ——— 1, (25)
/ h|012|
we can write
1
R, = 2h|612] (b{bl + 2). (26)

The operators by, b satisfy the commutation relation

[b1,bf] = 1. (27)
Therefore, the eigenvalues of R?, read [31]

9 1
’I”an = 2h‘012| 12 + 5 5 (28)

where ni5 is a quantum number: n15 = 0,1,2,3,....
So, taking (28) into account, we can write the inequal-
ities

(AR?,) > h|612], (29)

ARi3 > \/h|0:2], (30)

where (X7) = (X3) =0,

(AR},) = (AXT) + (AX3), (31)
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ARi2 = \/(ARL). (32)
Similarly, for the operators

R3s = X3 + X3, (33)

R, = X3+ X7, (34)

where the coordinates X;, X; satisfy the commuta-
tion relations (1), we can write the eigenvalues

1
772@3 = 2h|923| <n23 + 2>, (35)
9 1
Tha = 2h|031| ns1 + 5 s (36)

with nog and ng; being quantum numbers, and obtain
the inequalities

(AR33) > Bl02s], ARss > /hlfs], (37)
(AR%) > h|0s1], ARz > \/h|03]. (38)
Here, (X1) = (X3) = (X3) =0,

(ARZ) = (AX?) + (AX7F), (39)
ARy = \J(ARZ). (40)

With regard for (29), (37), and (38), we can con-
clude that there are restrictions on the length caused
by the noncommutativity. It is worth noting that, in
the general case, |612| # |023| # |031]. So, the restric-
tion on the length is anisotropic.

Let us study the squared length operator defined
in a three-dimensional coordinate space

R> =) X7
i

Note that the coordinates X; do not commute (1). In
view of (41), we can writes

(41)

(AR?) = (AX?) + (AX2) 4+ (AX3). (42)

To find restrictions on the value (AR?) and, as
a result, to obtain restrictions on the value of length
AR = /(AR?), let us write eigenvalues of R?. Using
the representation for the noncommutative coordi-
nates

1
Xi=zi—5 zj:@jpgy
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(43)

with the coordinates x; and p; satisfying the ordinary
commutation relations (6)—(8), we can write

R2:X2+%[0Xp]2—(0L):

=x?+ ie%ﬁ - %(0 p)? - (6L). (44)

Here, x2 = ixf, and the components of the vector
0 are defined as

1
O = 3 ;&‘jwzj-

It is worth noting that two first terms in (44) are in-
variant under rotation. So, it is convenient to choose
a frame of reference so that the directions of the x5
axis and the vector 8 coincide. In this case, we can
write

1
R? = x4 20 x p|* = 0(z1p2 — wap1) =

(45)

1 1
=zi+a3+ai+ 1 0%pT+ 1 0p3 —0(z1p2 —x2p1) (46)
with

0=10] = \/ 075 + 035 + 03,

In (46), we use the same notations for the coordi-
nates z; in the chosen frame of reference. Note that
x3 commutes with R2. So, the eigenvalues of R? read

(47)

1
R? =210 <n+ 2) +73.

(48)
Here, r2 are eigenvalues of the operator 23, and n are
the quantum number: n = 0,1,2.... In view of (48),
we can writes

(AR?) > 1. (49)
So, we obtain the inequality

AR > V1, (50)
AR = /(AR?), (51)

which imposes a restriction on the length in the three-
dimensional noncommutative space.
Note that, adding inequalities (29), (37), and (38),
we get
(AR?) = (AXT) + (AX3) + (AX3) >
h
2 5 (1012] +1023] + [0z1), (52)
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Relation (52) yields

h
AR > \/2(|912+|923|+|931)- (53)

On the other hand, the restriction on the value AR
can be found, by using the uncertainty relations (11)
[33]. Taking (11) and (42) into account and making
algebraic transformations, we can write

(AR?)? > 2(AXT)(AX3) + 2(AXF)(AXF) +

hQ
+2(AX3)(AXT) > 5 (9%2 + 055 + 931) ) (54)
which leads to
hZ 1/4
AR2(2W$+%ﬁW;D. (55)

Let us compare the obtained results (50), (53),
and (55). It is clear that the lower bound h'/2(6%, +
+ 63, + 63,)'/* presented by (50) is stronger than

2 1/4
(% (6%, + 035 + 9%1))

compare (50) and (53), we consider

which is given in (55). To

h2
h2 (07, + 035 + 03,) — Z(|912\ + [623] 4 [631])* =
h2 h2
== (1612] — [025] — [031])% + T (|023] — |012] —

ﬁ2
—1631])* + ”y (1631] — 623] — [612])* > 0. (56)

Therefore,

/2
B2 (02,402, +62)Y4 > <2> (16124 |623| 4631 ) /2.
(57)

So, inequality (50) imposes a stronger restriction on
the length in the noncommutative space than (53)
and (55). The minimal length in the noncommutative
space reads

AR™ = RY/2(02, + 03, + 03,) /. (55)

3. Length in the Momentum Space

Let us study the squared length operator defined in
the momentum space. Let us first consider the two-
dimensional case. We have
P =P+ P;. (59)
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Here, the momenta P;, P, do not commute

[1317 PQ] = ih’lhg. (60)

Let us use the representation for noncommutative
momenta

Py =p + 5Ma%2, (61)

1

Py =py — 521 (62)
The commutation relations for the operators z; and
p; are as follows [z1, 2] = 0, [p1,p2] = 0, [x1,p1] =
= [za, p2] = ih. Using the above-given representation,
we have )

n
PP, = pi+p3+ % (23 + 23) —ma(z1p2 —z2p1), (63)
Like the previous section in the case of the opera-
tor R%,, we introduce the dimensionless coordinates
&1 = /mar1/V2h, & = /ni2xa/V/2h. Considering

the operators (22) and (23), we can write

1
Pl = 2nlon] (370 + 5). (69
The eigenvalues of PZ read [34]
9 1
Dinyy = 20|m2| (a2 + 3) (65)

with my2 being a quantum number: mis = 0, 1, 2,

3, .... So, the following inequality can be written:
(AP}) + (APF) > hmal, (66)
APy > /hlnal, (67)

where <P1> = <P2> =0 and Aplg =\ <AP122> Ana-

logously, the eigenvalues of the operators

Pjy = P; + P, (68)
P} =P} + P} (69)
read
9 1
Dinys = 20|M23] mas + 3) (70)
1
Prngy = 2hI131] (m31 + 2>, (71)

where mo3 and mgs; are quantum numbers: mayg = 0,
1,2,3,..,m31=0,1, 2, 3,.... So, we can write
APy3 > \/hlnas|,

(72)
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AP3; > +\/hlnai,
with APZ] =4/ <AP£>

In the general case, |ni2| # |n23| # |931]. So, there
is the anisotropy of restrictions on the length defined
in the momentum space. This anisotropy is caused
by the anisotropy of parameters of the momentum
noncommutativity (3).

On the basis of inequalities (67), (72), and (73), we
get

(73)

h
(AP?) > 5 (el + [n23| + Insal), (74)
h
AP > 5 (Imal + 23] + [n31])- (75)
In the three-dimensional case, we have
P? =P} + P+ P;. (76)

To find the eigenvalues of operator (76), let us use
the representation for noncommutative momenta

1
P; =p; + §ijzj’ (77)
j

with the coordinates x; and p; satisfying the ordinary
commutation relations (6)—(8). So, we can rewrite P?
as

Lmx)? - (1),

1 (78)

1
P2 —p? ¢ 1772172 _

where the components of the vector 77 are defined as

1
=5 Z EijkMij (79)
]
n=|n|=\/n7 + 135 + 3. (80)

Note that two first terms in (78) are rotationally in-
variant. Therefore, we can write

1
P’ =p’+ 1[77 X X]2 —n(x1p2 — x2p1) =
1 1

1 4772953—77(551192—562]91)- (81)

= pi+p3+pi+gniai+
Here, we have chosen a frame of reference with the
coincidence of the x3-axis direction and the direction
of the vector n. It is worth noting that [p3, P?] = 0.

So, the eigenvalues of P? read

(82)

1
P? = 2mn (m + 2) + B%E?,

106

where m is the quantum number: m =0,1,2, ..., and
h2k? are eigenvalues of the operator p2. Using expres-
sion (82) for the eigenvalues, we can write

(AP?) > hn. (83)

Here, we consider that (P;) = 0.

So, the restriction on the length defined in the non-
commutative momentum space is given by the in-
equality

AP > +/hn), (84)
Note that

1 1/2

h1/2(7ﬁ2+77§3+77§1)1/4 > K12 (2(7712 + 123 + 7]31)) .

(85)

So, the minimal length in the noncommutative mo-
mentum space reads

AP = V2, + iy + 1) (56)

4. Length in the Phase Space

In the general case, the squared length operator can
be defined in noncommutative phase space as

Q*=a) P +5) X7, (87)
where ' '
Q = aP + BX, (88)

and « and § are constants. By the dimensional cause,
the constant [ is dimensionless and « has dimen-
sion s/kg. Coordinates X; and momenta P; satisfy
the noncommutative algebra (1)—(3). Note that oper-
ator (87) can be also considered as the Hamiltonian
of a harmonic oscillator in the noncommutative phase
space.

First, let us consider the two-dimensional case.
Therefore, we have

1y = (P} + P§) + B*(XT + X3). (89)

Operator (89) corresponds to the Hamiltonian of
a two-dimensional harmonic oscillator in the non-
commutative phase space. Using representation (16),
(17), (61), (62), we can write

62 62 ,’72 042
= (o + B25) G ) + (52 4+ 1227

(90)

x (23 + 23) — (m20” + 0128%)(z1p2 — 2p1),
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Introducing the set of operators (see, e.g., [26, 32])
1 . d d
by = - |—¢ 1
1 2<Z§1 i +§2+d€> (91)
1 d d
+ e s _ )
ot =g (6 i+ ) 2
1/ . o d d
b2 = 5 <—Z€1 - ZT& - 62 - d&)’ (93)
1 d d
+ o e, s . 4
=5 (16— ige — e ) (94
where 51 = loxl, 52 = lol’g with
L /402 4 62.82\/4
lo = ht (A0 0L (95)
462 + nipa

the operator 2, can be written as

92 2 2 2
2, = h<\/ (2a2 + ) (w i )+

+ 1202 + 0126%)b] by +

+ h(\/ <2a2 + —%f 2) (262 + 77%220‘2) =

- 77120t2 - 91252)b+bz +

92 6 772 a2
oo 2 o+ 55

Note that the following commutation relations are
satisfied:

[bla b;r} =
[blﬂ b;} =

(96)

[ba, b3 ] =1
[b2, 0] = [b1,bs] =

So, with regard for (96), (97), and (98), the eigenval-
ues of Q3, read [26]

2 2
f =y oo+ B2 e+ )

+m120? + 912ﬂ2> (n1+1)+

+ h<\/ (2a2 Il 2) (262 + 77%20‘2) =
2 2

2 2
— Moo’ — 01287 | na.

(b3 b1] = 0.

(99)
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Using (99), we can write the inequality

o 1/2 1/2
AQ; > (h <2a+ i ) (25+ "g ) +

1/2
+ hmjoz + h97]ﬂ> . (100)
Here,
AQij = \/(AQF) =
= \JO2AP?) + a2(AP?) + BXAXP) + HAXD),
(101)
(X;) =0, (P) =0, i, = (1,2,3). So, the minimal

length reads

62.
min 2 1)
A ij = <ﬁ (20& + T

1/2 1/2
2) (2&2 4 e a2> +
2
1/2
+ Fmijaz + heij62> . (102)

Note that, in the general case, AQE" #

# AQE™ because of |na| # \7723| + |7731|.
In the three-dimensional phase space, we have

Q? = o*(P} + Py + P} + B%(X7 + X3 + X3). (103)

Qmm

Using the representation for the noncommutative co-
ordinates and noncommutative momenta (4)—(5), we
obtain

2 2
sz(a2+i92)p2+<2+ojln2>x2_

2 2
~B*(0L).

«

~ S mx?- T ep) - a’rL) (104)

It is convenient to choose a frame of reference, by
considering the coincidence of the directions of the
r3-axis and the vector a?n + $26. We also consider
the vectors @ and 1 to have the same direction

0|n.

In this case, preserving notations for coordinates and
momenta, we have

Q2—<a2+5292)(2+ 2)+(2+
= 4 P1 T D2

(a®n + B%0) x

(105)

x (23 +23) + o’pj + B*aj —
X (x1pa — Tap1). (106)
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Note that the operator a?p3 + 32z%, which corre-
sponds to the Hamiltonian of a harmonic oscillator
in the ordinary space, commutes with Q2. Note also
that other terms in Q?2,

2 62 2 2 2 2
— (a®n+ B°0)(z1p2 — z2p1), (107)

x (23 + 23)

correspond to the Hamiltonian of a two-dimensional
noncommutative harmonic oscillator. Therefore, in
view of (99), the eigenvalues of Q? read

2 —
ningns

:h<\/(2 24 ﬂ) <252 )+na +9,62>n1+
+h <\/( 92§2> <252—|—772a2> —17042—962> ng +
o ) o ),

1

(108)

On the basis of this result, we can write the inequal-
ities

(AQ?) > h\/ <2a2 i ) (2/32 220‘2)+

+ e + h9B% + haf, (109)
9232 1/2 n2a? 1/2
AQ > h(Za + ) (252+2) +
1/2
+hna® + hB* + haﬁ} , (110)

with AQ = /(AQ?). So, the minimal length in the
noncommutative phase space reads
2,2\'/2
n ) N

1/2
AQM™ = {h <2a2 - —9225 2) (252
(111)

1/2
+ hna? 4+ hB% + haﬁ} .

Note that, by putting o = 0, we get AD™" =
= AP™" which is defined in (86). For 8 = 0, we
obtain AD™ = AR™IN presented by (58), as it has
to be. Note that the noncommutativity of momenta
(3) causes additional restrictions on the length com-
paring with that in the noncommutative space (space
with the noncommutativity of coordinates, 7;; = 0).

108

5. Conclusions

We have considered a noncommutative phase space
realized with the help of the commutation relations
(1)—(3). The lower bound on the length in the space
has been studied. Particular cases of the definition of
length in the coordinate and momentum spaces are
examined. In each case, the restrictions on the length
have been obtained, by analyzing the uncertainty re-
lations for coordinates and momenta, on the basis of
solutions of the eigenvalue problem for the squared
length operator. Comparing with the ordinary space
(space with commutative coordinates and commuta-
tive momenta), where the length is not restricted, the
noncommutative space has a minimal length. It has
been shown that noncommutativity (1)-(3) causes
the existence of a lower bound of the length and also
its anisotropy.

We have also studied the general case where the
length is defined in the phase space. Based on the ex-
act solution of the eigenvalue problem for the squared
length operator, we have found an expression for the
minimal length (111). It has been shown that, in the
noncommutative phase space (space with the non-
commutativities of coordinates and momenta), there
are additional restrictions on the length comparing
to that in the noncommutative space (space with the
noncommutativity of coordinates).

This work was partly supported by the FEuro-
pean Commission under the project STREVCOMS
PIRSES-2013-612669 and the projects FF-63Hp
(No.01170007190), FF-30F (No.0116U001539)
from the Ministry of FEducation and Science of
Ukraine.
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JOB2KNHA YV HEKOMYTATUBHOMY
DOA3B0BOMY IMTPOCTOPI

Peszmowme

BuBueHo oOMerkeHHsi Ha JIOBXXUHY y HEKOMYTAaTUBHOMY da-
30BOMY IIPOCTOPi, 3yMOBJIEHI HEKOMyTaTUBHICTIO. Posrisigato-
ThCsI CIIBBIIHOIIEHHS HEBU3HAYEHOCTEN JIJIsT KOOPJIUHAT Ta iM-
IIyJIbCIB Ta 3HAXOJAUTHCH HUXKHSI MeKa JJIsl JOBXKUHH. Mu Ta-
KOXK PO3IVISJAEMO 3a/1a4dy Ha 3HAXOJXKEHHSI BJIACHUX 3HAYEHb
omepaTopa KBa/ipaTa JIOBXKHHU Ta OTPUMAaJUd BUpa3 I MiHi-
MaJIbHOI OBXKWHU y HEKOMYTATHBHOMY (pa30BOMY IIPOCTODI.
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