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LENGTH IN A NONCOMMUTATIVE PHASE SPACE

We study restrictions on the length in a noncommutative phase space caused by noncommu-
tativity. The uncertainty relations for coordinates and momenta are considered, and the lower
bound of the length is found. We also consider the eigenvalue problem for the squared length
operator and find the expression for the minimal length in the noncommutative phase space.
K e yw o r d s: noncommutative phase space, minimal length, uncertainty relations.

1. Introduction

Due to the development of String Theory and Quan-
tum Gravity [1, 2]), the studies of physical systems
in the framework of noncommutative quantum and
classical mechanics attract a great interest [3–15]. It
is worth noting that the idea of noncommutativity is
quite old, has been proposed by W. Heisenberg, and
formalized by H. Snyder in work [16].

Much attention has been devoted to the influence of
noncommutativity on the properties of physical sys-
tems, among them are hydrogen atom [18–20, 34],
harmonic oscillator [21–27, 34], particle in a grav-
itational quantum well [28, 29], composite systems
[30], etc.

In the general case, the noncommutative phase
space can be realized with the following commutation
relations for coordinates and momenta:

[𝑋𝑖, 𝑋𝑗 ] = 𝑖~𝜃𝑖𝑗 , (1)
[𝑋𝑖, 𝑃𝑗 ] = 𝑖~𝛿𝑖𝑗 + 𝑖~𝛾𝑖𝑗 , (2)
[𝑃𝑖, 𝑃𝑗 ] = 𝑖~𝜂𝑖𝑗 . (3)

Here, 𝜃𝑖𝑗 and 𝜂𝑖𝑗 are elements of the constant anti-
symmetric matrices called the parameters of noncom-
mutativity of the coordinates and momenta, respec-
tively. The parameters 𝛾𝑖𝑗 are elements of a constant
matrix.
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Note that the coordinates 𝑋𝑖 and the momenta 𝑃𝑖,
which satisfy relations (1) and (3), can be represented
as
𝑋𝑖 = 𝑥𝑖 −

1

2

∑︁
𝑗

𝜃𝑖𝑗𝑝𝑗 , (4)

𝑃𝑖 = 𝑝𝑖 +
1

2

∑︁
𝑗

𝜂𝑖𝑗𝑥𝑗 , (5)

with 𝑥𝑖, 𝑝𝑖 being coordinates and momenta, which
satisfy the ordinary commutation relations

[𝑥𝑖, 𝑥𝑗 ] = 0, (6)
[𝑥𝑖, 𝑝𝑗 ] = 𝑖~𝛿𝑖𝑗 , (7)
[𝑝𝑖, 𝑝𝑗 ] = 0. (8)

Using (4) and (5), we obtain

[𝑋𝑖, 𝑃𝑗 ] = 𝑖~𝛿𝑖𝑗 + 𝑖~
∑︁
𝑘

𝜃𝑖𝑘𝜂𝑗𝑘
4

, (9)

So, we consider 𝛾𝑖𝑗 to be defined as

𝛾𝑖𝑗 =
∑︁
𝑘

𝜃𝑖𝑘𝜂𝑗𝑘
4

. (10)

In view of the commutation relations (1)–(3), one
can write the following uncertainty relations:

⟨Δ𝑋2
𝑖 ⟩⟨Δ𝑋2

𝑗 ⟩ ≥
~2𝜃2𝑖𝑗
4

, (11)
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⟨Δ𝑃 2
𝑖 ⟩⟨Δ𝑃 2

𝑗 ⟩ ≥
~2𝜂2𝑖𝑗
4

, (12)

⟨Δ𝑋2
𝑖 ⟩⟨Δ𝑃 2

𝑗 ⟩ ≥
~2(𝛿𝑖𝑗 + 2𝛾𝑖𝑗𝛿𝑖𝑗 + 𝛾2

𝑖𝑗)

4
. (13)

Note that there are no summations over indices 𝑖 and
𝑗 in (13). So, in the noncommutative phase space,
there are additional limits to the precision, with
which coordinates and momenta can be known. This
leads to additional bounds of the physical values in
a space with noncommutativity of coordinates and
noncommutativity of momenta.

In the present paper, we consider a length in the
noncommutative phase space. We study lower bounds
of the length caused by the noncommutativity. For
this purpose, the uncertainty relations are considered,
and the eigenvalue problem for the squared length
operator is examined. We find an expression for the
minimal length in the noncommutative phase space.

The article is organized as follows. In Section 2,
the squared length operator defined in the coordi-
nate space is studied. We consider restrictions on the
length caused by the noncommutativity. In Section 2,
we examine the length defined in the momentum
space and find lower bounds on its value. Section 4
is devoted to studies of a length defined in the phase
space. The eigenvalue problem for the squared length
operator is examined, and the minimal length in the
phase space is found. Conclusions are presented in
Section 5.

2. Length in the Coordinate Space

Let us first examine lower bounds on the length,
which is defined in the two-dimensional coordinate
space. For this purpose, we consider the squared
length operator

𝑅2
12 = 𝑋2

1 +𝑋2
2 , (14)

and write its eigenvalues. The coordinates 𝑋1 and 𝑋2

satisfy the commutation relation

[𝑋1, 𝑋2] = 𝑖~𝜃12. (15)

Note that 𝑋1, 𝑋2 can be represented as

𝑋1 = 𝑥1 −
1

2
𝜃12𝑝2, (16)

𝑋2 = 𝑥2 +
1

2
𝜃12𝑝1. (17)

Here, the coordinates 𝑥𝑖 and the momenta 𝑝𝑖 satisfy
the ordinary commutation relations

[𝑥1, 𝑥2] = 0, (18)

[𝑝1, 𝑝2] = 0, (19)

[𝑥1, 𝑝1] = [𝑥2, 𝑝2] = 𝑖~. (20)

So, we can rewrite the operator 𝑅2
12 in the following

form:

𝑅2
12 = 𝑥2

1+𝑥2
2+

𝜃212
4

(︀
𝑝21 + 𝑝22

)︀
−𝜃12(𝑥1𝑝2−𝑥2𝑝1). (21)

Note that 𝑅2
12 can be factorized. Considering the

operators (see, e.g., [26, 32])

𝑏1 =
1

2

(︂
−𝑖𝜉1 − 𝑖

𝑑

𝑑𝜉1
+ 𝜉2 +

𝑑

𝑑𝜉2

)︂
, (22)

𝑏+1 =
1

2

(︂
𝑖𝜉1 − 𝑖

𝑑

𝑑𝜉1
+ 𝜉2 −

𝑑

𝑑𝜉2

)︂
, (23)

with dimensionless coordinates

𝜉1 =

√
2√︀

~|𝜃12|
𝑥1, (24)

𝜉2 =

√
2√︀

~|𝜃12|
𝑥2, (25)

we can write

𝑅2
12 = 2~|𝜃12|

(︂
𝑏+1 𝑏1 +

1

2

)︂
. (26)

The operators 𝑏1, 𝑏+1 satisfy the commutation relation

[𝑏1, 𝑏
+
1 ] = 1. (27)

Therefore, the eigenvalues of 𝑅2
12 read [31]

𝑟2𝑛12
= 2~|𝜃12|

(︂
𝑛12 +

1

2

)︂
, (28)

where 𝑛12 is a quantum number: 𝑛12 = 0, 1, 2, 3, ... .
So, taking (28) into account, we can write the inequal-
ities

⟨Δ𝑅2
12⟩ ≥ ~|𝜃12|, (29)

Δ𝑅12 ≥
√︀
~|𝜃12|, (30)

where ⟨𝑋1⟩ = ⟨𝑋2⟩ = 0,

⟨Δ𝑅2
12⟩ = ⟨Δ𝑋2

1 ⟩+ ⟨Δ𝑋2
2 ⟩, (31)
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Δ𝑅12 =
√︁
⟨Δ𝑅2

12⟩. (32)

Similarly, for the operators

𝑅2
23 = 𝑋2

2 +𝑋2
3 , (33)

𝑅2
31 = 𝑋2

3 +𝑋2
1 , (34)

where the coordinates 𝑋𝑖, 𝑋𝑗 satisfy the commuta-
tion relations (1), we can write the eigenvalues

𝑟2𝑛23
= 2~|𝜃23|

(︂
𝑛23 +

1

2

)︂
, (35)

𝑟2𝑛31
= 2~|𝜃31|

(︂
𝑛31 +

1

2

)︂
, (36)

with 𝑛23 and 𝑛31 being quantum numbers, and obtain
the inequalities

⟨Δ𝑅2
23⟩ ≥ ~|𝜃23|, Δ𝑅23 ≥

√︀
~|𝜃23|, (37)

⟨Δ𝑅2
31⟩ ≥ ~|𝜃31|, Δ𝑅31 ≥

√︀
~|𝜃31|. (38)

Here, ⟨𝑋1⟩ = ⟨𝑋2⟩ = ⟨𝑋3⟩ = 0,

⟨Δ𝑅2
𝑖𝑗⟩ = ⟨Δ𝑋2

𝑖 ⟩+ ⟨Δ𝑋2
𝑗 ⟩, (39)

Δ𝑅𝑖𝑗 =
√︁
⟨Δ𝑅2

𝑖𝑗⟩. (40)

With regard for (29), (37), and (38), we can con-
clude that there are restrictions on the length caused
by the noncommutativity. It is worth noting that, in
the general case, |𝜃12| ̸= |𝜃23| ̸= |𝜃31|. So, the restric-
tion on the length is anisotropic.

Let us study the squared length operator defined
in a three-dimensional coordinate space

R2 =
∑︁
𝑖

𝑋2
𝑖 . (41)

Note that the coordinates 𝑋𝑖 do not commute (1). In
view of (41), we can writes

⟨ΔR2⟩ = ⟨Δ𝑋2
1 ⟩+ ⟨Δ𝑋2

2 ⟩+ ⟨Δ𝑋2
3 ⟩. (42)

To find restrictions on the value ⟨ΔR2⟩ and, as
a result, to obtain restrictions on the value of length
Δ𝑅 =

√︀
⟨ΔR2⟩, let us write eigenvalues of R2. Using

the representation for the noncommutative coordi-
nates
𝑋𝑖 = 𝑥𝑖 −

1

2

∑︁
𝑗

𝜃𝑖𝑗𝑝𝑗 , (43)

with the coordinates 𝑥𝑖 and 𝑝𝑖 satisfying the ordinary
commutation relations (6)–(8), we can write

R2 = x2 +
1

4
[𝜃 × p]2 − (𝜃L) =

= x2 +
1

4
𝜃2𝑝2 − 1

4
(𝜃 p)2 − (𝜃L). (44)

Here, x2 =
∑︀

𝑖 𝑥
2
𝑖 , and the components of the vector

𝜃 are defined as

𝜃𝑘 =
1

2

∑︁
𝑖,𝑗

𝜀𝑖𝑗𝑘𝜃𝑖𝑗 . (45)

It is worth noting that two first terms in (44) are in-
variant under rotation. So, it is convenient to choose
a frame of reference so that the directions of the 𝑥3

axis and the vector 𝜃 coincide. In this case, we can
write
R2 = x2 +

1

4
[𝜃 × p]2 − 𝜃(𝑥1𝑝2 − 𝑥2𝑝1) =

= 𝑥2
1+𝑥2

2+𝑥2
3+

1

4
𝜃2𝑝21+

1

4
𝜃2𝑝22−𝜃(𝑥1𝑝2−𝑥2𝑝1) (46)

with

𝜃 = |𝜃| =
√︁
𝜃212 + 𝜃223 + 𝜃231. (47)

In (46), we use the same notations for the coordi-
nates 𝑥𝑖 in the chosen frame of reference. Note that
𝑥2
3 commutes with R2. So, the eigenvalues of R2 read

𝑅2 = 2~𝜃
(︂
𝑛+

1

2

)︂
+ 𝑟23. (48)

Here, 𝑟23 are eigenvalues of the operator 𝑥2
3, and 𝑛 are

the quantum number: 𝑛 = 0, 1, 2... . In view of (48),
we can writes

⟨ΔR2⟩ ≥ ~𝜃. (49)

So, we obtain the inequality

Δ𝑅 ≥
√
~𝜃, (50)

Δ𝑅 =
√︀
⟨ΔR2⟩, (51)

which imposes a restriction on the length in the three-
dimensional noncommutative space.

Note that, adding inequalities (29), (37), and (38),
we get

⟨ΔR2⟩ = ⟨Δ𝑋2
1 ⟩+ ⟨Δ𝑋2

2 ⟩+ ⟨Δ𝑋2
3 ⟩ ≥

≥ ~
2
(|𝜃12|+ |𝜃23|+ |𝜃31|), (52)
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Relation (52) yields

Δ𝑅 ≥
√︂

~
2
(|𝜃12|+ |𝜃23|+ |𝜃31|). (53)

On the other hand, the restriction on the value Δ𝑅
can be found, by using the uncertainty relations (11)
[33]. Taking (11) and (42) into account and making
algebraic transformations, we can write

⟨ΔR2⟩2 ≥ 2⟨Δ𝑋2
1 ⟩⟨Δ𝑋2

2 ⟩+ 2⟨Δ𝑋2
2 ⟩⟨Δ𝑋2

3 ⟩+

+2⟨Δ𝑋2
3 ⟩⟨Δ𝑋2

1 ⟩ ≥
~2

2

(︀
𝜃212 + 𝜃223 + 𝜃231

)︀
, (54)

which leads to

Δ𝑅 ≥
(︂
~2

2

(︀
𝜃212 + 𝜃223 + 𝜃231

)︀)︂1/4
. (55)

Let us compare the obtained results (50), (53),
and (55). It is clear that the lower bound ~1/2(𝜃212 +
+ 𝜃223 + 𝜃231)

1/4 presented by (50) is stronger than(︁
~2

2

(︀
𝜃212 + 𝜃223 + 𝜃231

)︀)︁1/4
which is given in (55). To

compare (50) and (53), we consider

~2(𝜃212 + 𝜃223 + 𝜃231)−
~2

4
(|𝜃12|+ |𝜃23|+ |𝜃31|)2 =

=
~2

4
(|𝜃12| − |𝜃23| − |𝜃31|)2 +

~2

4
(|𝜃23| − |𝜃12| −

− |𝜃31|)2 +
~2

4
(|𝜃31| − |𝜃23| − |𝜃12|)2 ≥ 0. (56)

Therefore,

~1/2(𝜃212+𝜃223+𝜃231)
1/4 ≥

(︂
~
2

)︂1/2
(|𝜃12|+|𝜃23|+|𝜃31|)1/2.

(57)

So, inequality (50) imposes a stronger restriction on
the length in the noncommutative space than (53)
and (55). The minimal length in the noncommutative
space reads

Δ𝑅min = ~1/2(𝜃212 + 𝜃223 + 𝜃231)
1/4. (58)

3. Length in the Momentum Space

Let us study the squared length operator defined in
the momentum space. Let us first consider the two-
dimensional case. We have

𝑃 2
12 = 𝑃 2

1 + 𝑃 2
2 . (59)

Here, the momenta 𝑃1, 𝑃2 do not commute

[𝑃1, 𝑃2] = 𝑖~𝜂12. (60)

Let us use the representation for noncommutative
momenta
𝑃1 = 𝑝1 +

1

2
𝜂12𝑥2, (61)

𝑃2 = 𝑝2 −
1

2
𝜂12𝑥1. (62)

The commutation relations for the operators 𝑥𝑖 and
𝑝𝑖 are as follows [𝑥1, 𝑥2] = 0, [𝑝1, 𝑝2] = 0, [𝑥1, 𝑝1] =
= [𝑥2, 𝑝2] = 𝑖~. Using the above-given representation,
we have

𝑃 2
12 = 𝑝21+𝑝22+

𝜂212
4

(︀
𝑥2
1 + 𝑥2

2

)︀
−𝜂12(𝑥1𝑝2−𝑥2𝑝1), (63)

Like the previous section in the case of the opera-
tor 𝑅2

12, we introduce the dimensionless coordinates
𝜉1 =

√
𝜂12𝑥1/

√
2~, 𝜉2 =

√
𝜂12𝑥2/

√
2~. Considering

the operators (22) and (23), we can write

𝑃 2
12 = 2~|𝜂12|

(︂
𝑏+1 𝑏1 +

1

2

)︂
. (64)

The eigenvalues of 𝑃 2
12 read [34]

𝑝2𝑚12
= 2~|𝜂12|

(︂
𝑚12 +

1

2

)︂
, (65)

with 𝑚12 being a quantum number: 𝑚12 = 0, 1, 2,
3, ... . So, the following inequality can be written:

⟨Δ𝑃 2
1 ⟩+ ⟨Δ𝑃 2

2 ⟩ ≥ ~|𝜂12|, (66)

Δ𝑃12 ≥
√︀

~|𝜂12|, (67)

where ⟨𝑃1⟩ = ⟨𝑃2⟩ = 0 and Δ𝑃12 =
√︀
⟨Δ𝑃 2

12⟩. Ana-
logously, the eigenvalues of the operators

𝑃 2
23 = 𝑃 2

2 + 𝑃 2
3 , (68)

𝑃 2
31 = 𝑃 2

3 + 𝑃 2
1 (69)

read
𝑝2𝑚23

= 2~|𝜂23|
(︂
𝑚23 +

1

2

)︂
, (70)

𝑝2𝑚31
= 2~|𝜂31|

(︂
𝑚31 +

1

2

)︂
, (71)

where 𝑚23 and 𝑚31 are quantum numbers: 𝑚23 = 0,
1, 2, 3, ..., 𝑚31 = 0, 1, 2, 3,... . So, we can write

Δ𝑃23 ≥
√︀
~|𝜂23|, (72)
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Δ𝑃31 ≥
√︀
~|𝜂31|, (73)

with Δ𝑃𝑖𝑗 =
√︁
⟨Δ𝑃 2

𝑖𝑗⟩.
In the general case, |𝜂12| ̸= |𝜂23| ̸= |𝜂31|. So, there

is the anisotropy of restrictions on the length defined
in the momentum space. This anisotropy is caused
by the anisotropy of parameters of the momentum
noncommutativity (3).

On the basis of inequalities (67), (72), and (73), we
get

⟨ΔP2⟩ ≥ ~
2
(|𝜂12|+ |𝜂23|+ |𝜂31|), (74)

Δ𝑃 ≥
√︂

~
2
(|𝜂12|+ |𝜂23|+ |𝜂31|). (75)

In the three-dimensional case, we have

P2 = 𝑃 2
1 + 𝑃 2

2 + 𝑃 2
3 . (76)

To find the eigenvalues of operator (76), let us use
the representation for noncommutative momenta

𝑃𝑖 = 𝑝𝑖 +
1

2

∑︁
𝑗

𝜂𝑖𝑗𝑥𝑗 , (77)

with the coordinates 𝑥𝑖 and 𝑝𝑖 satisfying the ordinary
commutation relations (6)–(8). So, we can rewrite P2

as

P2 = p2 +
1

4
𝜂2𝑝2 − 1

4
(𝜂 x)2 − (𝜂L), (78)

where the components of the vector 𝜂 are defined as

𝜂𝑘 =
1

2

∑︁
𝑖,𝑗

𝜀𝑖𝑗𝑘𝜂𝑖𝑗 , (79)

𝜂 = |𝜂| =
√︁
𝜂212 + 𝜂223 + 𝜂231. (80)

Note that two first terms in (78) are rotationally in-
variant. Therefore, we can write

P2 = p2 +
1

4
[𝜂 × x]2 − 𝜂(𝑥1𝑝2 − 𝑥2𝑝1) =

= 𝑝21+𝑝22+𝑝23+
1

4
𝜂2𝑥2

1+
1

4
𝜂2𝑥2

2−𝜂(𝑥1𝑝2−𝑥2𝑝1). (81)

Here, we have chosen a frame of reference with the
coincidence of the 𝑥3-axis direction and the direction
of the vector 𝜂. It is worth noting that [𝑝23,P

2] = 0.
So, the eigenvalues of P2 read

𝑃 2 = 2~𝜂
(︂
𝑚+

1

2

)︂
+ ~2𝑘2, (82)

where 𝑚 is the quantum number: 𝑚 = 0, 1, 2, ..., and
~2𝑘2 are eigenvalues of the operator 𝑝23. Using expres-
sion (82) for the eigenvalues, we can write

⟨ΔP2⟩ ≥ ~𝜂. (83)

Here, we consider that ⟨𝑃𝑖⟩ = 0.
So, the restriction on the length defined in the non-

commutative momentum space is given by the in-
equality

Δ𝑃 ≥
√︀
~𝜂, (84)

Note that

~1/2(𝜂212+𝜂223+𝜂231)
1/4 ≥ ~1/2

(︂
1

2
(𝜂12 + 𝜂23 + 𝜂31)

)︂1/2
.

(85)

So, the minimal length in the noncommutative mo-
mentum space reads

Δ𝑃min = ~1/2(𝜂212 + 𝜂223 + 𝜂231)
1/4. (86)

4. Length in the Phase Space

In the general case, the squared length operator can
be defined in noncommutative phase space as

Q2 = 𝛼2
∑︁
𝑖

𝑃 2
𝑖 + 𝛽2

∑︁
𝑖

𝑋2
𝑖 , (87)

where

Q = 𝛼P+ 𝛽X, (88)

and 𝛼 and 𝛽 are constants. By the dimensional cause,
the constant 𝛽 is dimensionless and 𝛼 has dimen-
sion 𝑠/𝑘𝑔. Coordinates 𝑋𝑖 and momenta 𝑃𝑖 satisfy
the noncommutative algebra (1)–(3). Note that oper-
ator (87) can be also considered as the Hamiltonian
of a harmonic oscillator in the noncommutative phase
space.

First, let us consider the two-dimensional case.
Therefore, we have

𝑄2
12 = 𝛼2(𝑃 2

1 + 𝑃 2
2 ) + 𝛽2(𝑋2

1 +𝑋2
2 ). (89)

Operator (89) corresponds to the Hamiltonian of
a two-dimensional harmonic oscillator in the non-
commutative phase space. Using representation (16),
(17), (61), (62), we can write

𝑄2
12 =

(︂
𝛼2 +

𝜃212𝛽
2

4

)︂(︀
𝑝21 + 𝑝22

)︀
+

(︂
𝛽2 +

𝜂212𝛼
2

4

)︂
×

×
(︀
𝑥2
1 + 𝑥2

2

)︀
− (𝜂12𝛼

2 + 𝜃12𝛽
2)(𝑥1𝑝2 − 𝑥2𝑝1), (90)
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Introducing the set of operators (see, e.g., [26, 32])

𝑏1 =
1

2

(︂
−𝑖𝜉1 − 𝑖

𝑑

𝑑𝜉1
+ 𝜉2 +

𝑑

𝑑𝜉2

)︂
, (91)

𝑏+1 =
1

2

(︂
𝑖𝜉1 − 𝑖

𝑑

𝑑𝜉1
+ 𝜉2 −

𝑑

𝑑𝜉2

)︂
, (92)

𝑏2 =
1

2

(︂
−𝑖𝜉1 − 𝑖

𝑑

𝑑𝜉1
− 𝜉2 −

𝑑

𝑑𝜉2

)︂
, (93)

𝑏+2 =
1

2

(︂
𝑖𝜉1 − 𝑖

𝑑

𝑑𝜉1
− 𝜉2 +

𝑑

𝑑𝜉2

)︂
, (94)

where 𝜉1 = 𝑙0𝑥1, 𝜉2 = 𝑙0𝑥2 with

𝑙0 = ~
1
2

(︂
4𝛼2 + 𝜃212𝛽

2

4𝛽2 + 𝜂212𝛼
2

)︂1/4
, (95)

the operator 𝑄2
12 can be written as

𝑄2
12 = ~(

√︃(︂
2𝛼2 +

𝜃212𝛽
2

2

)︂(︂
2𝛽2 +

𝜂212𝛼
2

2

)︂
+

+ 𝜂12𝛼
2 + 𝜃12𝛽

2)𝑏+1 𝑏1 +

+ ~(

√︃(︂
2𝛼2 +

𝜃212𝛽
2

2

)︂(︂
2𝛽2 +

𝜂212𝛼
2

2

)︂
−

− 𝜂12𝛼
2 − 𝜃12𝛽

2)𝑏+2 𝑏2 +

+ ~

√︃(︂
2𝛼2 +

𝜃212𝛽
2

2

)︂(︂
2𝛽2 +

𝜂212𝛼
2

2

)︂
. (96)

Note that the following commutation relations are
satisfied:

[𝑏1, 𝑏
+
1 ] = [𝑏2, 𝑏

+
2 ] = 1, (97)

[𝑏1, 𝑏
+
2 ] = [𝑏2, 𝑏

+
1 ] = [𝑏1, 𝑏2] = [𝑏+2 , 𝑏

+
1 ] = 0. (98)

So, with regard for (96), (97), and (98), the eigenval-
ues of 𝑄2

12 read [26]

𝑄2
12,𝑛1𝑛2

= ~

(︃√︃(︂
2𝛼2 +

𝜃212𝛽
2

2

)︂(︂
2𝛽2 +

𝜂212𝛼
2

2

)︂
+

+ 𝜂12𝛼
2 + 𝜃12𝛽

2

)︃
(𝑛1 + 1)+

+ ~

(︃√︃(︂
2𝛼2 +

𝜃212𝛽
2

2

)︂(︂
2𝛽2 +

𝜂212𝛼
2

2

)︂
−

− 𝜂12𝛼
2 − 𝜃12𝛽

2

)︃
𝑛2. (99)

Using (99), we can write the inequality

Δ𝑄𝑖𝑗 ≥

(︃
~

(︃
2𝛼+

𝜃2𝑖𝑗𝛽

2

)︃1/2(︃
2𝛽 +

𝜂2𝑖𝑗𝛼

2

)︃1/2
+

+ ~𝜂𝑖𝑗𝛼+ ~𝜃𝑖𝑗𝛽

)︃1/2
. (100)

Here,

Δ𝑄𝑖𝑗 =
√︁
⟨Δ𝑄2

𝑖𝑗⟩ =

=
√︁
𝛼2⟨Δ𝑃 2

𝑖 ⟩+ 𝛼2⟨Δ𝑃 2
𝑗 ⟩+ 𝛽2⟨Δ𝑋2

𝑖 ⟩+ 𝛽2⟨Δ𝑋2
𝑗 ⟩,

(101)

⟨𝑋𝑖⟩ = 0, ⟨𝑃𝑖⟩ = 0, 𝑖, 𝑗 = (1, 2, 3). So, the minimal
length reads

Δ𝑄min
𝑖𝑗 =

(︃
~

(︃
2𝛼2 +

𝜃2𝑖𝑗𝛽
2

2

)︃1/2(︃
2𝛽2 +

𝜂2𝑖𝑗𝛼
2

2

)︃1/2
+

+ ~𝜂𝑖𝑗𝛼2 + ~𝜃𝑖𝑗𝛽2

)︃1/2
. (102)

Note that, in the general case, Δ𝑄min
12 ̸= Δ𝑄min

23 ̸=
̸= Δ𝑄min

31 because of |𝜂12| ≠ |𝜂23| ≠ |𝜂31|.
In the three-dimensional phase space, we have

Q2 = 𝛼2(𝑃 2
1 + 𝑃 2

2 + 𝑃 2
3 ) + 𝛽2(𝑋2

1 +𝑋2
2 +𝑋2

3 ). (103)

Using the representation for the noncommutative co-
ordinates and noncommutative momenta (4)–(5), we
obtain

Q2 =

(︂
𝛼2 +

𝛽2

4
𝜃2
)︂
𝑝2 +

(︂
𝛽2 +

𝛼2

4
𝜂2
)︂
𝑥2 −

− 𝛼2

4
(𝜂 x)2 − 𝛽2

4
(𝜃 p)2 − 𝛼2(𝜂L)− 𝛽2(𝜃L). (104)

It is convenient to choose a frame of reference, by
considering the coincidence of the directions of the
𝑥3-axis and the vector 𝛼2𝜂 + 𝛽2𝜃. We also consider
the vectors 𝜃 and 𝜂 to have the same direction

𝜃‖𝜂. (105)

In this case, preserving notations for coordinates and
momenta, we have

Q2 =

(︂
𝛼2 +

𝛽2

4
𝜃2
)︂(︀

𝑝21 + 𝑝22
)︀
+

(︂
𝛽2 +

𝛼2

4
𝜂2
)︂
×

×
(︀
𝑥2
1 + 𝑥2

2

)︀
+ 𝛼2𝑝23 + 𝛽2𝑥2

3 − (𝛼2𝜂 + 𝛽2𝜃)×

× (𝑥1𝑝2 − 𝑥2𝑝1). (106)
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Note that the operator 𝛼2𝑝23 + 𝛽2𝑥2
3, which corre-

sponds to the Hamiltonian of a harmonic oscillator
in the ordinary space, commutes with Q2. Note also
that other terms in Q2,(︂
𝛼2 +

𝛽2

4
𝜃2
)︂(︀

𝑝21 + 𝑝22
)︀
+

(︂
𝛽2 +

𝛼2

4
𝜂2
)︂
×

×
(︀
𝑥2
1 + 𝑥2

2

)︀
− (𝛼2𝜂 + 𝛽2𝜃)(𝑥1𝑝2 − 𝑥2𝑝1), (107)

correspond to the Hamiltonian of a two-dimensional
noncommutative harmonic oscillator. Therefore, in
view of (99), the eigenvalues of Q2 read

𝑄2
𝑛1𝑛2𝑛3

=

= ~

(︃√︃(︂
2𝛼2+

𝜃2𝛽2

2

)︂(︂
2𝛽2+

𝜂2𝛼2

2

)︂
+ 𝜂𝛼2+𝜃𝛽2

)︃
𝑛1 +

+ ~

(︃√︃(︂
2𝛼2+

𝜃2𝛽2

2

)︂(︂
2𝛽2+

𝜂2𝛼2

2

)︂
−𝜂𝛼2−𝜃𝛽2

)︃
𝑛2 +

+ ~

√︃(︂
2𝛼2 +

𝜃2𝛽2

2

)︂(︂
2𝛽2 +

𝜂2𝛼2

2

)︂
+

+2~𝛼𝛽
(︂
𝑛3 +

1

2

)︂
. (108)

On the basis of this result, we can write the inequal-
ities

⟨ΔQ2⟩ ≥ ~

√︃(︂
2𝛼2 +

𝜃2𝛽2

2

)︂(︂
2𝛽2 +

𝜂2𝛼2

2

)︂
+

+ ~𝜂𝛼2 + ~𝜃𝛽2 + ~𝛼𝛽, (109)

Δ𝑄 ≥

{︃
~
(︂
2𝛼2 +

𝜃2𝛽2

2

)︂1/2(︂
2𝛽2 +

𝜂2𝛼2

2

)︂1/2
+

+ ~𝜂𝛼2 + ~𝜃𝛽2 + ~𝛼𝛽

}︃1/2
, (110)

with Δ𝑄 =
√︀

⟨ΔQ2⟩. So, the minimal length in the
noncommutative phase space reads

Δ𝑄min =

{︃
~
(︂
2𝛼2 +

𝜃2𝛽2

2

)︂1/2(︂
2𝛽2 +

𝜂2𝛼2

2

)︂1/2
+

+ ~𝜂𝛼2 + ~𝜃𝛽2 + ~𝛼𝛽

}︃1/2
. (111)

Note that, by putting 𝛼 = 0, we get Δ𝐷min =
= Δ𝑃min, which is defined in (86). For 𝛽 = 0, we
obtain Δ𝐷min = Δ𝑅min presented by (58), as it has
to be. Note that the noncommutativity of momenta
(3) causes additional restrictions on the length com-
paring with that in the noncommutative space (space
with the noncommutativity of coordinates, 𝜂𝑖𝑗 = 0).

5. Conclusions

We have considered a noncommutative phase space
realized with the help of the commutation relations
(1)–(3). The lower bound on the length in the space
has been studied. Particular cases of the definition of
length in the coordinate and momentum spaces are
examined. In each case, the restrictions on the length
have been obtained, by analyzing the uncertainty re-
lations for coordinates and momenta, on the basis of
solutions of the eigenvalue problem for the squared
length operator. Comparing with the ordinary space
(space with commutative coordinates and commuta-
tive momenta), where the length is not restricted, the
noncommutative space has a minimal length. It has
been shown that noncommutativity (1)–(3) causes
the existence of a lower bound of the length and also
its anisotropy.

We have also studied the general case where the
length is defined in the phase space. Based on the ex-
act solution of the eigenvalue problem for the squared
length operator, we have found an expression for the
minimal length (111). It has been shown that, in the
noncommutative phase space (space with the non-
commutativities of coordinates and momenta), there
are additional restrictions on the length comparing
to that in the noncommutative space (space with the
noncommutativity of coordinates).
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ДОВЖИНА У НЕКОМУТАТИВНОМУ
ФАЗОВОМУ ПРОСТОРI

Р е з ю м е

Вивчено обмеження на довжину у некомутативному фа-
зовому просторi, зумовленi некомутативнiстю. Розглядаю-
ться спiввiдношення невизначеностей для координат та iм-
пульсiв та знаходиться нижня межа для довжини. Ми та-
кож розглядаємо задачу на знаходження власних значень
оператора квадрата довжини та отримали вираз для мiнi-
мальної довжини у некомутативному фазовому просторi.
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