
FIELDS AND ELEMENTARY PARTICLES

ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 7 425

https://doi.org/10.15407/ujpe70.7.425

G.F. FILIPPOV , M.D. SOLOHA-KLYMCHAK, A.V. NESTEROV
Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03143, Ukraine; e-mail: nesterov@bitp.kyiv.ua)

FUNDAMENTALS OF THE ALGEBRAIC
VERSION OF THE RESONATING-GROUP
METHOD IN THE ONE-DIMENSIONAL
CASE. I. ANALYTIC RESULTS

The features of analytic calculations in the framework of the algebraic version of the resonating-
group method, which is based on expanding the wave function of a quantum system on the basis
of oscillator functions, have been examined in the one-dimensional case. The construction of
the Hamiltonian matrix elements using the technique of generating functions and generating
matrix elements has been discussed in detail. The asymptotic behavior is found for the coeffi-
cients in the wave function expansion in the oscillator function basis as the oscillator quantum
number tends to infinity in the continuous spectrum case. The asymptotic dependence of the
potential-energy matrix elements on the oscillator quantum number has been obtained for a
Gaussian potential.
K e yw o r d s: one-dimensional case, algebraic version of the resonating-group method, oscil-
lator basis, matrix elements, asymptotics of coefficients.

1. Introduction
The fundamentals of the algebraic version of the
resonating-group method (AVRGM) were initially
formulated in works [1, 2]. This is a cluster approach,
which is technically based on the expansion of the
functions describing the relative motion of clusters
in the oscillator function basis. From the very be-
ginning, it was focused on describing the properties
of the states in the discrete and continuous spectra
of light atomic nuclei from the same viewpoint. This
makes it especially interesting, because the research
of the states in the continuous spectrum of light
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atomic nuclei has attracted attention of theorists and
experimenters for many years. The corresponding ex-
planation is simple: as a rule, these nuclei have only
a small number of states in the discrete spectrum,
whereas the overwhelming majority of their other
states are in the continuous spectrum.

From the viewpoint of its useful application, the
AVRGM has already demonstrated itself. Over the
years, since its appearance, a very large number of
works devoted to the study of the states in the dis-
crete spectrum of light atomic nuclei, single- and mul-
tichannel reactions involving light atomic nuclei, the
relation between the collective and cluster modes of
motion, the influence of taking the Pauli principle into
account on the properties of light atomic nuclei, the
study of the properties of hypernuclei, and so forth
have been published [3–12]. Unfortunately, we cannot
provide references to a plenty of works performed in
the AVRGM framework due to their large number,
which does not reduce their significance. It should be
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noted at once that, along with the works dealing with
the development and application of the AVRGM, one
should get acquainted with works [13–16], which are
closely related to this method.

In order to understand more easily the possibili-
ties of using the AVRGM, it is desirable to study,
in more details, the features of working with the os-
cillator function basis, which the AVRGM is based
on. Accordingly, the aim of this work is to help the
reader, via using one-dimensional examples (which
does not reduce the generality of consideration), pen-
etrate deeper into the “secrets” of using the oscilla-
tor function basis in order to describe the states in
both the discrete and continuous spectra of quan-
tum systems. For this purpose, we consider one-
dimensional quantum mechanical model problems
with the presence of bound or quasi-stationary states
with Gaussian-type potentials. This is not a very
strong restriction on the systems that can be ana-
lyzed, because the basis composed of Gaussian func-
tions is complete so that any potential can be repre-
sented with a reasonable accuracy as a superposition
of Gaussians.

Today, we know about only two works, where the
possibility of using the oscillator function basis to
describe the states in the continuous spectrum of
one-dimensional quantum systems was demonstrated
[17,18]. The main difference of our work from those
two works consists in that we pay considerable atten-
tion to the demonstration of the analytic calculation
technique developed in the AVRGM framework. The
idea of this work belongs to G.F. Filippov, who left
his notes on this topic.

So, we have to solve the Schrödinger equation

�̂�Ψ(𝑥) = 𝐸Ψ(𝑥),

where

�̂� = 𝑇 + 𝑉 ,

𝑇 = − }2

2𝑚

𝑑2

𝑑𝑥2
,

and 𝑉 (𝑥) is given as a Gaussian function in the
form 𝑉0 exp

(︀
−𝑥2/𝑟20

)︀
or a superposition of Gaussian

functions. As can be seen, our potential is always an
even function. As a result, our problem practically
becomes split into two problems: with positive and
negative parity. Note that, in what follows, for the
sake of brevity and clarity, most formulas for positive

parity will be written down. All necessary expressions
for negative parity can be obtained similarly to those
for positive parity, or they can be obtained from the
formulas for positive parity by simply redefining the
indices. Specific calculations in both cases will be pre-
sented in the continuation of this paper.

Instead of solving the differential equation for the
wave function Ψ(𝑥), let us represent this function in
the form of a series expansion in Hermite functions

Ψ(𝑥) =

∞∑︁
𝑚=0

𝐶𝑚𝜑𝑚 (𝑥),

𝜑𝑚 (𝑥) =
1√︀

2𝑚𝑚! 𝑟0
√
𝜋
𝐻𝑚 (𝑥) exp

(︂
−𝑥2

2

)︂
,

(1)

where the dimensionless variable 𝑥 is normalized by
the oscillator radius 𝑟0. In this case, 𝑚 is even or
odd, if even or odd, respectively, states are consid-
ered, which is determined by the parity properties
of Hermite polynomials. All the above brings us to a
system of algebraic equations in the form
∞∑︁
�̃�

⟨𝑛| �̂� |�̃�⟩.𝐶�̃� = 𝐸𝐶𝑛,

which can be solved by considering the states in both
the discrete and continuous spectra, setting the ap-
propriate boundary conditions, determining the set
of coefficients that represent the wave function of the
problem in the oscillator representation, and finding
the energies of the bound states or the parameters of
the scattering process. It is obvious that our system of
equations can be elementary rewritten in the matrix
form. In other words, when working in the AVRGM
framework, we are in the framework of matrix quan-
tum mechanics. The applied representation is usually
called the energy (or 𝑛-) representation.

2. Calculation of Hamiltonian
Matrix Elements, Generating Functions,
and Generating Matrix Elements

The matrix elements of the kinetic energy operator 𝑇 ,
being calculated on oscillator functions, are known.
In our case, being expressed in ~2/

(︀
𝑚𝑟20

)︀
units, they

look like

⟨2𝑛|𝑇 |2𝑛− 1⟩ = −
√︀
2𝑛(2𝑛− 1)

4
,

⟨2𝑛|𝑇 |2𝑛⟩ = 𝑛+
1

4
,

⟨2𝑛|𝑇 |2𝑛+ 1⟩ = −
√︀
(2𝑛+ 1)(2𝑛+ 2)

4
.

(2)
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Here, in accordance with our previous agreement, we
have written out the matrix elements of the kinetic
energy operator only for the case of positive parity.
What we need to pay attention to is that the kinetic
energy matrix is tridiagonal, i.e., a Jacobi matrix (or
𝐽-matrix). The methods of matrix quantum mechan-
ics where the kinetic energy is tridiagonal are often
called the 𝐽-matrix methods; this also concerns the
AVRGM.

Since, in practice, the calculation of the matrix ele-
ments of the kinetic energy operator usually does not
cause difficulties, we will focus our attention on the
calculation of the matrix elements of the potential en-
ergy operator. For this purpose, we need to calculate
integrals in the form

⟨2𝑛|𝑉 |2�̃�⟩ = 𝑉0

∞∫︁
−∞

𝜑*
2𝑛 (𝑥) exp

(︂
−𝑥2

𝑏20

)︂
𝜑2�̃� (𝑥) 𝑑𝑥.

Formulas for calculating such integrals are known
(see, for example, work [19]). Therefore, we can im-
mediately write down that

⟨2𝑛|𝑉 |2�̃�⟩ = (−1)
𝑛+�̃�

𝑉0𝑧
1/2 (1− 𝑧)

𝑛+�̃� ×

×

√︃
(2𝑛− 1)!!(2�̃�− 1)!!

(2𝑛)!!(2�̃�)!!
2𝐹1

{︃
−𝑛,−�̃�;

1

2
;

(︂
𝑧

1− 𝑧

)︂2}︃
,(3)

or, in the expanded form,

⟨2𝑛|𝑉 |2�̃�⟩ = (−1)
𝑛+�̃�

𝑉0𝑧
1/2(1− 𝑧)𝑛+�̃�

√︂
(2𝑛)!(2�̃�)!

22𝑛22�̃�
×

×
min{𝑛,�̃�}∑︁

𝑘=0

22𝑘

(𝑛− 𝑘)! (�̃�− 𝑘)! (2𝑘)!

(︂
𝑧

1− 𝑧

)︂2𝑘
, (4)

where

1

𝑧
= 1 +

𝑟20
𝑏20

.

A good test for the validity of formulas (3) and (4)
is the choice of unity as the potential energy opera-
tor. In our case, this is achieved by enlarging 𝑏0 to
infinity, which transforms 𝑧 to unity. This operation
should lead to the transformation of the potential en-
ergy matrix into a diagonal matrix with the matrix
elements equal to 𝑉0 due to the orthonormality of
Hermite functions.

It may seem that the problem of calculating the
matrix elements in the Hamiltonian has been solved.
However, when dealing with real physical problems,
one has to consider much more complicated expres-
sions for the matrix elements and operate with ma-
trix equations with large dimensions, where the sit-
uation becomes not so simple. Therefore, in order to
calculate the matrix elements of the Hamiltonian, a
special technique has been developed. It was called
the technique of generating functions and generating
matrix elements [20, 21], being closely related to the
Bargmann representation for oscillator functions.

Let us consider the derivative function for Hermite
functions in the notation that coincides by its form
with the notation for the modified Bloch–Brink or-
bital. Namely,

Φ𝑥 (𝑅) =
1

4
√
𝜋𝑟

1/2
0

exp

{︂
−𝑥2

2
+

√
2𝑅𝑥− 𝑅2

2

}︂
=

=

∞∑︁
𝑛=0

1√
𝑛!
𝑅𝑛 1√︀

2𝑛𝑛!
√
𝜋
𝐻𝑛 (𝑥) exp

(︂
−𝑥2

2

)︂
. (5)

The last expansion associates every Hermitian func-
tion with the expression

𝜑𝑛 (𝑅) =
1√
𝑛!
𝑅𝑛,

which can be considered as an image of the oscillator
function in the representation of generating parame-
ters. The choice of the coefficient 1/

√
𝑛! allows us to

work with normalized functions.
In order to calculate the generating matrix ele-

ments of some operator
⌢

𝑂(𝑥), let us introduce another
orbital in form (5) where the generating parameter 𝑅
is substituted by the generating parameter 𝑆,

Φ𝑥 (𝑆) =
1

4
√
𝜋𝑟

1/2
0

exp

{︂
−𝑥2

2
+

√
2𝑆𝑥− 𝑆2

2

}︂
=

=

∞∑︁
𝑛=0

1√
𝑛!
𝑆𝑛 1√︀

22𝑛!
√
𝜋
𝐻𝑛 (𝑥) exp

(︂
−𝑥2

2

)︂
. (6)

Integral

𝑂𝑅𝑆 =

∫︁
Φ𝑥 (𝑅)

⌢

𝑂 (𝑥) Φ𝑥 (𝑆) 𝑑𝑥

is called the generating matrix element of the opera-
tor

⌢

𝑂(𝑥). This is so, because it can be represented as
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the expansion

𝑂𝑅𝑆 =

∞∑︁
𝑛=0

∞∑︁
�̃�=0

⟨𝑛|
⌢

𝑂(𝑥)|�̃�⟩ 1√
𝑛!
𝑅𝑛 1√

�̃�!
𝑆�̃�.

Whence one can see that the expansion coefficients
of the generating matrix element in the functions
𝜑𝑛 (𝑅) and 𝜑�̃� (𝑆) are the sought matrix elements
of the operator

⌢

𝑂(𝑥) as the coefficients in front of
𝜑𝑛 (𝑅)𝜑�̃�(𝑆). It is evident that, in full accordance
with the definition of generating function, this is
equivalent to the fact that, by differentiating the last
expression, a required number of times with respect
to 𝑅 and 𝑆 and, afterward, by zeroing 𝑅 and 𝑆, we
can obtain any required matrix element, which is cal-
culated in the oscillator function basis.

Having obtained the basic relationships for calcu-
lating the generating matrix elements, it is necessary
to recall that if we have functions given in the space
of generator variables, then, according to the canons
of quantum mechanics, we can write down the op-
erators of physical quantities in terms of the same
variables. In some cases, it can be easily done.

In particular, in ~𝜔 units, the Hamiltonian opera-
tor of a harmonic oscillator takes the form

�̂�𝑜𝑐𝑐 = 𝑅
𝜕

𝜕𝑅
+

1

2
.

This expression follows from the obvious fact that
𝑅 can be considered as the creation operator of an
oscillator quantum, and the derivative 𝜕/𝜕𝑅 as its
annihilation operator, because

𝑅𝜑𝑛 (𝑅) =
√
𝑛+ 1𝜑𝑛+1,

𝜕

𝜕𝑅
𝜑𝑛 =

√
𝑛𝜑𝑛−1,

and

�̂�𝑜𝑐𝑐𝜑𝑛(𝑅) =

(︂
𝑅

𝜕

𝜕𝑅
+

1

2

)︂
𝜑𝑛(𝑅) =

(︂
𝑛+

1

2

)︂
𝜑𝑛(𝑅).

It turns out that the operator

𝑘 = −𝑖
𝑑

𝑑𝑥
⇒ − 𝑖√

2

(︂
𝑑

𝑑𝑅
−𝑅

)︂
and, accordingly, the operator

𝑘2

2
=

𝑑2

2𝑑𝑥2
⇒ 1

4

(︂
𝑑

𝑑𝑅
−𝑅

)︂2
=

=
1

4

(︂
𝑑2

𝑑𝑅2
− 2𝑅

𝑑

𝑑𝑅
− 1 +𝑅2

)︂

are the momentum and kinetic energy operators, re-
spectively. That is,

−𝑘2

2
𝜑𝑛 (𝑅) = −1

4

√︀
𝑛 (𝑛− 1)𝜑𝑛−2 (𝑅)+

+
1

2

(︂
𝑛+

1

2

)︂
𝜑𝑛 (𝑅)− 1

4

√︀
(𝑛+ 1) (𝑛+ 2)𝜑𝑛+2 (𝑅).

Let us write down explicit forms for three generat-
ing matrix elements, which are of interest to us, and
their formal expansions. These are:

∙ the integral of overlapping with the unit operator,
or the normalization integral,

𝐼𝑅𝑆 = exp(𝑅𝑆)=

∞∑︁
𝑛=0

1

𝑛!
𝑅𝑛𝑆�̃�=

∞∑︁
𝑛=0

1√
𝑛!
𝑅𝑛 1√

𝑛!
𝑆�̃� =

=

∞∑︁
𝑛=0

𝜑𝑛(𝑅)𝜑𝑛(𝑆) =

𝜑𝑛∑︁
𝑛=0,�̃�=0

(𝑅)𝜑�̃�(𝑆)𝛿𝑛,�̃�. (7)

∙ the generative matrix element of kinetic energy,

𝑇𝑅𝑆 = 1/2 exp(𝑅𝑆)
(︀
−1 + (𝑅− 𝑆)2

)︀
=

=

∞∑︁
𝑛=0,�̃�=0

𝜑𝑛 (𝑅)𝜑�̃� (𝑆) 𝛿𝑛,�̃� =

=
1

2

(︀
−1 + (𝑅− 𝑆)2

)︀ ∞∑︁
𝑛=0

𝜑𝑛(𝑅)𝜑𝑛(𝑆). (8)

∙ and the matrix generator of the potential energy
operator,

𝑉𝑅𝑆 = 𝑉0𝑧
1/2 exp

{︂
𝑧𝑅𝑆 − 1− 𝑧

2

(︀
𝑅2 + 𝑆2

)︀}︂
=

=

∞∑︁
𝑛=0

∞∑︁
�̃�=0

⟨𝑛|𝑉 |�̃�⟩𝜑𝑛 (𝑅)𝜑�̃� (𝑆). (9)

From these expressions, it is clear that the matrix of
overlapping with unity is a unit matrix, which is ob-
vious because the eigenfunctions of a harmonic oscil-
lator are orthonormalized. The matrix of the kinetic
energy operator is tridiagonal, with its elements given
by Eq. (5). Surely, when considering ⟨𝑛|𝑉 |�̃�⟩ with
the positive parity, we obtain the matrix element in
the form (3) or (4).

The generating matrix elements (7)–(9) do not have
the parity property. But they can be projected onto
a state with a certain parity following the standard
way. In our case, this can be done already at the level
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of generating matrix elements, in particular, using the
fact that the generating functions of form (5) or (6)
are constructed in such a way that the substitution of
𝑥 by −𝑥 in them is equivalent to the substitution of 𝑅
by −𝑅. Let us demonstrate this result by the exam-
ple of the generating matrix elements of the potential
energy operator,

𝑉 +
𝑅𝑆 = 𝑧1/2ch (𝑧𝑅𝑆) exp

{︂
− (1− 𝑧)

2

(︀
𝑅2 + 𝑆2

)︀}︂
=

= 𝑧1/2
∞∑︁

𝑛=0,�̃�=0

⟨2𝑛|𝑉 |2�̃�⟩𝜑2𝑛 (𝑅)𝜑2�̃� (𝑆),

𝑉 −
𝑅𝑆 = 𝑧1/2sh (𝑧𝑅𝑆) exp

{︂
− (1− 𝑧)

2

(︀
𝑅2 + 𝑆2

)︀}︂
=

= 𝑧1/2
∞∑︁

𝑛=0,�̃�=0

⟨2𝑛+ 1|𝑉 |2�̃�+ 1⟩𝜑2𝑛+1 (𝑅)𝜑2�̃�+1 (𝑆).

Such a projection can not be done, but, in this case,
it is necessary to remember all the time the parity
peculiarities of Hermite polynomials.

The development of the AVRGM has reached a
level at which the consideration of multicluster prob-
lems is possible. Here, given the enormous complexity
of direct formulas for calculating the matrix elements
of potential energy, practically the only way to cal-
culate them is the application of recurrent relation-
ships, and the source of the latter can be the method
of derivative functions and derivatives of matrix ele-
ments. Below, using a simple example, we will try to
outline the basic principles of their derivation in the
framework of the indicated method

𝑉𝑅𝑆 = 𝑉0𝑧
1/2 exp

{︂
𝑧𝑅𝑆 − 1− 𝑧

2

(︀
𝑅2 + 𝑆2

)︀}︂
=

=

∞∑︁
𝑛=0

∞∑︁
�̃�=0

⟨𝑛|𝑉 |�̃�⟩𝜑𝑛 (𝑅)𝜑�̃� (𝑆). (10)

Let us consider Eq. (9) for the generating matrix
element and apply the quantum annihilation operator
𝜕/𝜕𝑅 to the right- and left-hand sides of tus equal-
ity. We obtain

𝜕𝑉𝑅𝑆

𝜕𝑅
=
∑︁
𝑛,�̃�

⟨𝑛|𝑉 |�̃�⟩
√
𝑛𝜑𝑛−1 (𝑅)𝜑�̃� (𝑆)

and

𝜕𝑉𝑅𝑆

𝜕𝑅
= {𝑧𝑆 − (1− 𝑧)𝑅}𝑉𝑅𝑆 =

=
∑︁
𝑛,�̃�

⟨𝑛|𝑉 |�̃�⟩
{︁
𝑧
√
�̃�+ 1𝜑𝑛 (𝑅)𝜑�̃�+1 (𝑆) −

− (1− 𝑧)
√
𝑛+ 1𝜑𝑛+1 (𝑅)𝜑�̃� (𝑆)

}︁
.

By equating the last two expressions and comparing
the coefficients at the same functions, we obtain the
following recurrence relationship for the matrix ele-
ments of the potential energy operator:

⟨𝑛|𝑉 |�̃�⟩ = 1√
𝑛

{︁
𝑧
√
�̃� ⟨𝑛− 1|𝑉 |�̃�− 1⟩ −

−
√
𝑛− 1 (1− 𝑧) ⟨𝑛− 2|𝑉 |�̃�⟩

}︁
. (11)

A peculiarity of this recurrence relationship is that
it does not work, if 𝑛 = 0, i.e., for the first row of
the Hamiltonian matrix with the positive parity. The-
refore, we have to supplement our first recurrence re-
lationship with at least one more, which eliminates
this drawback and gives us a complete set of recur-
rence relationships.

Let us apply the quantum annihilation oper-
ator 𝜕/𝜕𝑅 to the right- and left-hand sides of
Eq. (10). Then, we obtain

⟨𝑛|𝑉 |�̃�⟩ = 1√
�̃�

{︁
𝑧
√
𝑛 ⟨𝑛− 1|𝑉 |�̃�− 1⟩ −

−
√
�̃�− 1 (1− 𝑧) ⟨𝑛|𝑉 |�̃�− 2⟩

}︁
. (12)

Recurrence relationships (11) and (12) are enough to
obtain the elements of the full potential energy ma-
trix, if the simplest of them are given by direct for-
mulas to start the recurrence sequence.

Sometimes the obtained recurrence relationships
are not very convenient for numerical calculations.
Then, provided that we have their complete set, it is
possible to construct their linear combinations, which
are more interesting. With the help of our recurrence
relationships, we can do the following.

1. Multiply both parts of recurrence relationship
(11) by

√︀
𝑛/�̃�.

2. Multiply both parts of recurrence relation (12)
by
√︀

𝑛/�̃�.
3. Subtract the latter result from the former one;

then we get a new recurrence relationship,(︃√︂
𝑛

�̃�
−
√︂

�̃�

𝑛

)︃
⟨𝑛|𝑉 |�̃�⟩ = (1− 𝑧)×

×

(︃√︂
�̃�− 1

𝑛
⟨𝑛|

⌢

𝑉 |�̃�− 1⟩ −
√︂

𝑛− 1

�̃�
⟨𝑛− 2|

⌢

𝑉 |�̃�⟩

)︃
.
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It is symmetric with respect to the permutation of 𝑛
and �̃� and allows us to calculate all matrix elements
of the potential energy operator matrix, except the
diagonal ones. One can also see that all non-diagonal
matrix elements vanish at 𝑧 = 1.

4. Sum up the results of steps 1) and 2) and put
�̃� = 𝑛; then, we obtain

⟨𝑛|𝑉 |𝑛⟩ = 𝑧 ⟨𝑛− 1|
⌢

𝑉 |𝑛− 1⟩−

− (1− 𝑧)

√︂
𝑛− 1

𝑛
⟨𝑛− 2|

⌢

𝑉 |𝑛⟩.

This recurrence relationship allows us to calculate
those matrix elements of the potential energy opera-
tor that are located on the main diagonal. At 𝑧 = 1,
all matrix elements are equal to 𝑉0 according to the
orthonormality of Hermite functions.

By acting in such a way, we can obtain other re-
currence relationships. For example, using the opera-
tors 𝜕2/𝜕𝑅

2, 𝜕2/𝜕𝑆
2
, and 𝜕2/ (𝜕𝑅𝜕𝑆), it is possible

to find a complete set consisting of three recurrence
relationships. Note that the obtained recurrence re-
lationships are not the “children” of the method of
generating functions and generating matrix elements,
but a direct consequence of the properties of Her-
mite functions. The only question is: In which repre-
sentation, the coordinate representation or the rep-
resentation of generating parameters, should they be
determined? Interesting information about the rele-
vant properties of Hermite functions can be found in
book [22].

3. Asymptotic Relationships

It is known how important the knowledge of the
asymptotic wave function behavior is when perform-
ing quantum mechanical calculations in the coor-
dinate representation. The same picture is observed
when an expansion in the oscillator function basis is
made, especially if it concerns the study of the states
in the continuous spectrum, when the role of the wave
function, as for the states in the discrete spectrum, is
played by the set of coefficients {𝐶𝑛} in the expan-
sion of the wave function in the oscillator function
basis. The property of the oscillator expansion is as
follows: the larger the value of the quantum number
𝑛, the larger the distances from the coordinate ori-
gin corresponding to the contribution given by the
basis function 𝜑𝑛(𝑥). Therefore, we are interested in
the asymptotic behavior of the expansion coefficients
{𝐶𝑛} and some other quantities at large 𝑛-values.

The Schrödinger equation in the coordinate repre-
sentation looks like{︂
− }2

2𝑚

𝑑2

𝑑𝑥2
− exp

(︂
−𝑥2

𝑏2

)︂}︂
Ψ(𝑥) = 𝐸Ψ(𝑥).

As |𝑥| increases, this equation becomes simpler and
transforms into the wave equation for free motion,

− }2

2𝑚

𝑑2

𝑑𝑥2
Ψ(𝑥) = 𝐸Ψ(𝑥). (13)

The general solution to this equation can be written
as a superposition of the even and odd solutions,

Ψ(𝑥) = 𝐴 sin 𝑘𝑥+𝐵 cos 𝑘𝑥,

where

𝑘 =

√︂
2𝑚𝐸

}2
.

In the discrete representation, owing to the princi-
ple of correspondence between the discrete and con-
tinuous representations, the same has to occur. Then,
the limit transition to the equations

∞∑︁
�̃�

⟨𝑛|𝑇 |�̃�⟩𝐶�̃� = 𝐸𝑛𝐶𝑛 (14)

is natural. Before proceeding to the analysis of this
system of equations and in order to better under-
stand the logic of our further speculations, let us
consider the asymptotic behavior of the coefficients
on the basis of the properties of Hermite polynomials
when 𝑛 ≫ 1.

Let us consider the integral

𝐶2𝑛 =

+∞∫︁
−∞

𝜑2𝑛 (𝑥) cos (𝑘𝑥) 𝑑𝑥.

Its calculation gives us the coefficients in the expan-
sion of the free-motion function. It is known that
the Hermite polynomials satisfy the integral equation
(see, for example, work [23])

𝑒−
𝑥2

2 𝐻2𝑛 (𝑥) = (−1)
𝑛

√︂
2

𝜋

∞∫︁
0

𝑒−
𝑡2

2 𝐻2𝑛 (𝑡) cos (𝑥𝑡) 𝑑𝑡.

This remarkable equality means, in particular, the
invariance of Hermite functions with respect to the
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Fourier transform. It also immediately brings us to
the relationship

𝐶2𝑛 = 𝐴𝑟0 (−1)
𝑛
√
2𝜋𝐻2𝑛 (𝑘𝑟0) 𝑒

− 𝑘2𝑟20
2 , (15)

where 𝐴 is the normalization factor (for its explicit
expression, see formula (1)).

After having found exact expressions for the co-
efficients of the cos (𝑘𝑥) expansion in the oscillator
function basis, we should demonstrate whether it is
realistic, in practice, to expand the free-motion wave
function in a finite number of oscillator functions. For
this purpose, let us consider the task of the numeri-
cal reconstruction of a continuous-spectrum function
using the expansion coefficients obtained in a prede-
termined region of argument variation. The results of
such a numerical experiment are shown in Fig. 1. The
segment with the endpoints at −50 and 50 fm was
taken as the range of independent variable 𝑥. The
results are presented for three calculation variants
corresponding to different numbers of basis functions
𝑛 = 50, 100, and 200.

The depicted plots demonstrate that it is quite easy
to describe the function of free particle motion us-
ing the expansion in oscillator functions. At an en-
ergy of 10 MeV, we have to use even functions with
𝑛 = 50 in order to describe the free-motion function
to a distance of approximately 25 fm, 𝑛 = 100 to a
distance of 40 fm, and 𝑛 = 200 to distances more than
50 fm. Note that, from the viewpoint of the AVRGM,
where the interaction of light atomic nuclei is usu-
ally considered, the distances exhibited in Fig. 1 are
rather large, even if we take long-range Coulomb in-
teraction into account, and the asymptotics are dif-
ferent. Here, we simply tried to demonstrate as well
as possible some possibilities of expanding the free-
motion function in the oscillator function basis.

The change to the asymptotic expression of Her-
mite polynomials in formula (1) can be performed
using the asymptotic equality (see, for example,
work [23])

𝐻𝑛 (𝑥) =
√
2

(︂
2𝑛

𝑒

)︂𝑛
2

𝑒
𝑥2

2

[︃
cos
(︁
𝑁𝑥− 𝑛𝜋

2

)︁
+

+𝑂

(︂
1

𝑛

)︂
+𝑂

(︁
𝑛− 1

4 |𝑥|
5
2

)︁]︃
, (16)

where 𝑁 =
√
2𝑛+ 1. Here, we should emphasize at

once that the applicability of this formula largely de-

Fig. 1. Presentation of the free-motion function as a series
expansion in the harmonic oscillator eigenfunctions

pends on the ratio between the values of the quanti-
ties 𝑛 and |𝑥|.

Using relationships (15) and (16), and applying
Stirling’s formula to simplify the expression for the
normalizing factor, we arrive at the final expression,
which can be written down in the form

𝐶2𝑛 =
2𝑟0

𝑟
1/2
0

4
√
4𝑛+ 1

cos
(︀
𝑘𝑟0

√
4𝑛+ 1

)︀
. (17)

Attention should be paid to that the quantity 𝑁 =
= 𝑟0

√
4𝑛+ 1 is the coordinate of the quasiclassical

turning point for a one-dimensional harmonic oscilla-
tor. This point plays a very important role in the the-
ory of harmonic oscillator; namely, the oscillator wave
function density increases near the turning points as
the oscillator quantum number grows. At 𝑛 → ∞,
the behavior of the wave function acquires a 𝛿-like
character. An interpretation of this fact can already
be given in the framework of classical concepts: it is
clear that if the oscillator energy is large, the particle
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Fig. 2. Comparison of the exact values of the coefficients in
the expansion of the free-motion function in the basis of oscil-
lator functions with their asymptotic values at various energy
values

passes the equilibrium point at a high velocity and
spends the longest time near the turning points.

Let us look at obtaining the asymptotic expressions
from the other side and return to Eqs. (14). They are
discrete equations of the type

−1

2

√︃
𝑛

(︂
𝑛− 1

2

)︂
𝐶2𝑛−2 +

[︂
1

2

(︂
2𝑛+

1

2

)︂
+

1

2
𝑘2𝑟20

]︂
×

×𝐶2𝑛 − 1

2

√︃
(𝑛+ 1)

(︂
𝑛+

(︂
1

2

)︂)︂
𝐶2𝑛+2 = 0.

At large 𝑛-values, we can consider the expansion co-
efficients 𝐶2𝑛 as the values of a function of the con-
tinuous variable 2𝑛,

𝐶2𝑛 = 𝐶 (2𝑛).

In this case, we may write that 𝐶(2𝑛± 2) →
→ 𝐶(𝑥±Δ𝑥), i.e., 𝑥 = 2𝑛 and Δ𝑥 = 2, and use

the Taylor series expansion

𝐶 (𝑥±Δ𝑥) ≈ 𝐶 (𝑥)±Δ𝑥
𝑑𝐶 (𝑥)

𝑑𝑥
+

1

2
(Δ𝑥)

2 𝑑2𝐶 (𝑥)

𝑑𝑥2
,

which makes it possible to transform the algebraic
equation into a differential one,

−1

2

√︃
𝑛

(︂
𝑛− 1

2

)︂[︂
𝐶 (𝑥)− 2

𝑑𝐶 (𝑥)

𝑑𝑥
+ 2

𝑑2𝐶 (𝑥)

𝑑𝑥2

]︂
+

+

[︂
1

2

(︂
2𝑛+

1

2

)︂
+

1

2
𝑘2𝑟20

]︂
𝐶 (𝑥)−

+
1

2

√︃
(𝑛+ 1)

(︂
𝑛+

(︂
1

2

)︂)︂
×

×
[︂
𝐶 (𝑥) + 2

𝑑𝐶 (𝑥)

𝑑𝑥
+ 2

𝑑2𝐶 (𝑥)

𝑑𝑥2

]︂
= 0.

On the basis of previous experience, let us intro-
duce a new variable 𝑅𝑛 instead of the variable 𝑥 = 2𝑛,

𝑅𝑛 =
√
4𝑛+ 1 =

√
2𝑥+ 1.

Converting the derivatives and the coefficients in the
equation to new variables and expanding the result in
a power series of 1/𝑅𝑛 up to and including the fourth
power of this quantity, we arrive at the equation

𝑅2
𝑛

𝑑2𝐶 (𝑅𝑛)

𝑑𝑅2
𝑛

+𝑅𝑛
𝑑𝐶 (𝑅𝑛)

𝑑𝑅𝑛
+

+

[︂
−1

4
+𝑅2

𝑛𝑘
2𝑟20

]︂
𝐶 (𝑅𝑛) = 0.

Hence, as a result of all transformations, we obtained
the Bessel equation of order 1/2. The solutions of this
equation are the functions 𝐽1/2

(︁√︀
𝑘𝑟0 (4𝑛+ 1)

)︁
and

𝑁1/2

(︁√︀
𝑘𝑟0 (4𝑛+ 1)

)︁
; the latter coincides with ex-

pression (17) to an accuracy of the coefficient and
notations.

Let us illustrate by specific examples when the co-
efficients in the expansion of the free-motion func-
tion in the oscillator function basis can be replaced
by their asymptotic expressions. For this purpose, let
us refer to Fig. 2, where a comparison of the exact
values of the coefficients in the expansion of the free-
motion function in the oscillator function basis with
their asymptotic values is made for various energy
values. The results shown in the figure testify that
the coefficients in the expansion of the free-motion
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function become close to their asymptotic values at
various quantum number values depending on the in-
cident particle energy. The larger this energy is, the
more oscillator functions should be involved for this
purpose. This is easy to understand if you refer to the
comment on formula (16).

At the end of this section, let us consider the be-
havior of the matrix elements of the potential energy
in the course of the transition to large 𝑛- and �̃�-
values. For this purpose, we will use formula (3). For
simplicity, we assume that 𝑧 = 1/2. Accordingly, we
obtain(︂

𝑧

1− 𝑧

)︂2
= 1

and

2𝐹1

{︃
−𝑛,−�̃�;

1

2
;

(︂
𝑧

1− 𝑧

)︂2}︃
=

= 2𝐹1

{︂
−𝑛,−�̃�;

1

2
; 1

}︂
=

Γ (1/2) Γ (𝑛+ �̃�+ 1/2)

Γ (𝑛+ 1/2) Γ (�̃�+ 1/2)
.

So, the matrix element of the potential energy opera-
tor with the Gaussian dependence acquires the form

⟨2𝑛|𝑉 |2�̃�⟩ = (−1)
𝑛+�̃�

𝑉0

(︂
1

2

)︂𝑛+�̃�+ 1
2

×

×

√︃
(2𝑛− 1)!! (2�̃�− 1)!!

(2𝑛)!! (2�̃�)!!

Γ (1/2) Γ (𝑛+ �̃�+ 1/2)

Γ (𝑛+ 1/2) Γ (�̃�+ 1/2)
. (18)

By applying Stirling’s formulas in the examined case,
we obtain the following relationship:

⟨2𝑛|𝑉 |2�̃�⟩ ≈ 1

2
𝑉0

(︂
−1

2

)︂𝑛+�̃�

×

×

√︃
1

𝜋
√
𝑛�̃�

(︂
1 +

�̃�

𝑛

)︂𝑛 (︁
1 +

𝑛

�̃�

)︁�̃�
. (19)

This formula shows that the matrix elements at the
main diagonal decrease according to the law 1/

√
𝑛 as

𝑛 increases, which can be seen from the relationship

⟨2𝑛|𝑉 |2�̃�⟩ ≈ 𝑉0

2
√
𝜋𝑛

.

At the same time, the matrix elements of the kinetic
energy operator grow proportionally to 𝑛. That is, at
some stage of matrix expansion, we can neglect the

Fig. 3. Comparison of the exact and asymptotic values of the
matrix elements of potential energy

matrix elements of the potential energy in compar-
ison with the matrix elements of the kinetic energy
and further assume that the Hamiltonian matrix is
tridiagonal.

A comparison of the calculation results obtained for
the matrix elements using formulas (18) and (19) is
illustrated in Fig. 3. The figure demonstrates the dif-
ferences between the absolute values of the indicated
matrix elements. An analysis shows that, as the quan-
tum numbers of the lef and right functions increase,
the exact values of matrix elements rather quickly at-
tain their asymptotic values.

4. Conclusions

The aim of this work was to demonstrate techniques
that can be used when constructing the Hamilto-
nian matrix in the framework of the algebraic ver-
sion of the resonating-group method. For illustra-
tion, we considered the one-dimensional case, which
is relatively noncumbersome from the analytic view-
point. We also showed how the asymptotic behavior
of the coefficients of the wave function expansion in
the basis of oscillator functions, when the oscillator
quantum number tends to infinity can be obtained by
considering the states of the continuous spectrum. We
demonstrated the convergence of the matrix elements
of the potential energy to their asymptotic values.
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Г.Ф.Фiлiппов, М.Д.Солоха-Климчак, О.В.Нестеров

ОСНОВНI ПОЛОЖЕННЯ
АЛГЕБРАЇЧНОЇ ВЕРСIЇ МЕТОДУ
РЕЗОНУЮЧИХ ГРУП У РАЗI ОДНОВИМIРНОГО
ВИПАДКУ. I. АНАЛIТИЧНI РЕЗУЛЬТАТИ

На прикладi одновимiрного випадку розглядаються особли-
востi проведення аналiтичних розрахункiв в межах Алге-
браїчної версiї методу резонуючих груп, яка ґрунтується
на розкладi хвильової функцiї квантової системи по осциля-
торному базису. Детально обговорено побудову матричних
елементiв гамiльтонiана за допомогою технiки твiрних фун-
кцiй та твiрних матричних елементiв. Знайдено асимптоти-
чну поведiнку коефiцiєнтiв розкладу хвильової функцiї по
осцiляторному базису при прямуваннi осциляторного кван-
тового числа до нескiнченностi у випадку неперервного спе-
ктра. Отримана асимптотична залежнiсть матричних еле-
ментiв потенцiальної енергiї вiд осциляторного квантового
числа з гаусiвським потенцiалом.

Ключ о в i с л о в а: одновимiрний випадок, алгебраїчна
версiї методу резонуючих груп, осциляторний базис, матри-
чнi елементи, асимптотика коефiцiєнтiв.
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