
PLASMA PHYSICS

450 ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 7

https://doi.org/10.15407/ujpe70.7.450

YU.N. YELISEYEV
Institute of Plasma Physics,
National Science Center Kharkiv Institute of Physics and Technology,
Nat. Acad. of Sci. of Ukraine
(1, Akedemichna Str., Kharkiv 61108, Ukraine; e-mail: yeliseyev@kipt.kharkov.ua)

STATIONARY CYCLOTRON
RESONANCE IN NON-NEUTRAL PLASMA

This work deals with the condition required for a cyclotron resonance between a charged particle
and an axially asymmetric zero-frequency electromagnetic wave to take place in a non-neutral
plasma with an excess of electrons in the laboratory reference frame. The values of the param-
eter 𝑞 = 2𝜔2

𝑝𝑒/𝜔
2
𝑐𝑒 were calculated at which the condition of stationary cyclotron resonance

is obeyed for electrons, positrons, and positive and negative ions. Relationships between the
azimuthal number 𝑚 and the resonance multiplicity 𝑛, which are necessary for a stationary
cyclotron resonance to occur, have been determined. We have found the integral of the drift
motion equations which determines the variations of the particle trajectory parameters in the
non-neutral plasma subjected to the action of a small-amplitude electrostatic wave under the
cyclotron resonance conditions. These variations can be substantial and force the particles to
go outside the plasma. It is shown that, under the cyclotron resonance conditions, the consid-
ered drift motions can invoke an anomalous radial transport of particles in non-neutral-plasma
devices.
K e yw o r d s: non-neutral plasma, cyclotron resonance, drift motion.

1. Introduction

In a neutral plasma, the condition of the cyclotron
resonance between an electromagnetic wave and a
non-relativistic charged particle that is located in a
longitudinal uniform magnetic field and moves in a
plane oriented transversely to the magnetic field has
the well-known form

𝜔 = 𝑛𝜔𝑐𝛼, (1)

where 𝜔 is the wave frequency, 𝜔𝑐𝛼 = 𝑒𝛼𝐵/(𝑀𝛼𝑐) is
the cyclotron frequency of the particle, 𝑒𝛼 and 𝑀𝛼 are
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the particle’s charge (including the sign) and mass,
respectively, 𝐵 is the magnetic field induction, and
𝑛 = ±1,±2, ... is the resonance multiplicity.

In a non-neutral plasma, besides the longitudinal
magnetic field, there also exists an electric field, which
is a result of an uncompensated space charge of elec-
trons and ions. In a plasma with the shape of a long
cylinder – for example, plasma in the Malmberg–
Penning trap – the electric field is directed along the
radius. In these fields, in the absence of collisions, the
particles rotate in the azimuth direction and oscillate
along the radius (see (28)).

In a uniform non-neutral plasma, the cyclotron res-
onance condition for a particle and a wave traveling
in the azimuth direction looks like [1]
𝜔′ = 𝑛Ω𝛼, (2)
where 𝜔′ = 𝜔 − 𝑚𝜔𝛼

rot is the wave frequency in the
reference frame, where a charged particle of the 𝛼-th
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kind slowly rotates in the crossed fields,

𝜔𝛼
rot =

1

2
(−𝜔𝑐𝛼 +Ω𝛼), (3)

Ω𝛼 = sgn (𝑒𝛼)

√︂
𝜔2
𝑐𝛼−

4𝑒𝛼𝐸𝑟

𝑀𝛼𝑟
(4)

is the “modified” cyclotron frequency of the particle in
the crossed fields (it is equal to the frequency of radial
particle oscillations), and 𝑚 is the azimuthal wave
number. In the case of an excess of electrons, which
is considered in this work, the radial electric field is
directed toward the plasma axis, i.e., it is negative,

𝐸𝑟

𝑟
=

𝑀𝑒

2𝑒𝑒
𝜔2
𝑝𝑒 (1− 𝑓) = const < 0.

Here, 𝑟 is the distance from the plasma cylinder axis,
𝑓 = 𝑛𝑖/𝑛𝑒 < 1 is the charge neutralization coefficient
of plasma consisting of electrons and positive ions,
𝑛𝑒,𝑖 = const are the uniform concentrations of non-
neutral plasma components, and 𝜔2

𝑝𝑒 = 4𝜋𝑒2𝑛𝑒/𝑚𝑒 is
the square of the Langmuir frequency of electrons. In
a uniform non-neutral plasma, all characteristic fre-
quencies of the particle (𝜔𝛼

rot, Ω𝛼) and the plasma
itself (𝜔𝑝𝑒) do not depend on the radius.

Condition (2) of cyclotron resonance in the non-
neutral plasma is also well-known for a long time. The
author of book [1] refers to the work [2] which is pub-
lished in 1965 and deals with beams, and the authors
of work [3] refer to the article [4] published in 1967
and related to plasma rotation in crossed fields.

The author of this paper is aware of works [5–
10], carried out as long ago as in 1943–1945, pub-
lished in 1948, and related to the development of the
magnetron theory. In these works, such quantities are
used as the “modified” cyclotron frequency Ω𝛼 (4), the
slow rotation frequency 𝜔𝛼

rot (3), and the fast rotation
frequency 𝜔𝛼

rot =
1
2 (−𝜔𝑐𝛼 − Ω𝛼).

In the laboratory frame of reference, the cyclotron
resonance condition (2) takes the form

𝜔 = 𝑚𝜔𝛼
rot + 𝑛Ω𝛼. (5)

The resonance frequencies 𝜔 in this formula can be
positive or negative. For certain strengths of the elec-
tric and magnetic fields, as well as the particle (𝑒𝛼,
𝑀𝛼) and wave (𝑚 and 𝑛) parameters, the resonance
frequency 𝜔 (5) can be equal to zero,

𝜔 = 0 = 𝑚𝜔𝛼
rot + 𝑛Ω𝛼 (𝑚 ̸= 0, 𝑛 ̸= 0). (6)

This interesting specific case of cyclotron resonance
for a charged particle in a zero-frequency wave at-
tracted attention in works [11, 12]. Resonances sat-
isfying condition (6) can naturally be called sta-
tionary or static cyclotron resonances. We prefer the
first term.

To satisfy the stationary resonance condition (6),
the radial electric and longitudinal magnetic fields
must be such that the second equality in (6) would
be satisfied, and axially asymmetric waves with the
frequencies 𝜔 = 0 in the laboratory reference frame
would be present in the plasma (the first equality
in (6)).

Axially asymmetric waves of zero frequency include
static axially asymmetric electric, E∼, and/or mag-
netic, H∼, fields. Maxwell’s equations, which these
fields satisfy, form two pairs of independent equa-
tions: the electrostatic equations

rotE∼ = 0, div E∼ = 4𝜋𝜌∼, (7)

and the magnetostatic equations

div H∼ = 0, rot H∼ =
4𝜋

𝑐
j∼. (8)

(Here 𝜌∼ is the axially asymmetric distribution of
the static space charge density, which is the source
of the field E∼, and j∼ is the static current density,
which generates the field H∼, div j∼ = 0). That is,
the static fields E∼ and H∼ can be present in the non-
neutral plasma independently of each other, or they
can be present simultaneously, with their magnitudes
not being related to each other. The zero-frequency
waves E∼ and H∼ will be called static perturbations
or simply perturbations.

As one can see from (6), the condition of station-
ary cyclotron resonance does not depend on the dis-
turbance origin and the type of the electrodynamic
structure where the resonance is realized. It depends
only on the magnitudes of the main crossed fields 𝐸𝑟

and 𝐵, in which the charged particle is located. The
corresponding resonance values of these fields are de-
termined and analyzed in this work.

Of course, the result of the charged particle inter-
action with a static disturbance under the cyclotron
resonance conditions (6) depends on the disturbance
topography, which, in turn, depends on the distur-
bance nature and the electrodynamic structure where
this interaction is realized. The zero-frequency dis-
turbance in (6) can or cannot be an eigenmode of
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the non-neutral plasma. It is known that, in a waveg-
uide partially filled with cold uniform plasma, the
modes with zero frequency can be lower hybrid and
diocotron modes with finite values of the longitudi-
nal wave vector (𝑘𝑧 ̸= 0) [13–16]. In neutral plasma,
there are no eigenmodes with zero frequency.

In Eq. (6), as static perturbations that are not
eigenmodes of the non-neutral plasma (i.e., not the
solutions of the dispersion equation for the non-
neutral plasma oscillations) can be axially asymmet-
ric static perturbations, intentional or unintentional,
of the external electric, 𝐸𝑟, or magnetic, 𝐵, field (field
errors). Such perturbations can be caused by elec-
trodes or diagnostic probes that are either introduced
into the plasma or located near its surface. Static field
disturbances can also arise due to inaccurate manu-
facturing of electrodes, their inaccurate orientation
along the magnetic field [17–19], and so forth. Dis-
turbances of the main uniform magnetic field can be
created by conductors with permanent currents lo-
cated near the plasma surface. Surely, such small dis-
turbances of external electric or magnetic fields al-
ways exist in plasma. It is attractive that they can
be created experimentally, making no use of the RF
equipment.

The current interest concerning static disturbances
in the non-neutral plasma is associated with the fact
that they are considered as an origin of an anomalous
transport of charged particles along the radius and
the losses of particles from traps in general. It is be-
lieved that this is a result of static disturbances (with
the participation of collisions) that are zero-frequency
eigenmodes of the non-neutral plasma [13–15]. But,
for the condition of stationary cyclotron resonance
(6), it does not matter whether the disturbance is an
eigenmode of non-neutral plasma or not.

In the models considered, condition (6) of station-
ary cyclotron resonance for particles is not assumed.
However, this is just under cyclotron resonance con-
ditions (including the stationary resonance) that the
perturbation effect on the motion of charged particles
is much stronger than under non-resonance conditions
[20]. Therefore, the transport of particles along the
radius should be accelerated under the cyclotron res-
onance conditions. Furthermore, the common change
in the particle trajectory parameters (the parameters
𝑅 and 𝜌 in Eq. (28); see below) under cyclotron reso-
nance conditions even at a perturbation with a small
amplitude is much larger than under non-resonance

conditions and can reach the size of the plasma it-
self. In the course of this process, particles can go
beyond the plasma boundaries without the “help” of
collisions.

In the theory of non-neutral plasma [1], the follow-
ing parameter is introduced:

𝑞 = 2
𝜔2
𝑝𝑒

𝜔2
𝑐𝑒

<
1

1− 𝑓
, (9)

which characterizes the ratio between the electric and
magnetic fields in plasma. The quantities entering the
expression for 𝑞 are measured and can be changed in
the experiment. The characteristic frequencies of the
charged particles of all types that compose the plasma
are expressed in terms of the parameter 𝑞. The in-
equality in formula (9) determines the interval of 𝑞-
values, where the equilibrium of electrons takes place,
and the existence of the non-neutral plasma with an
excess of electrons as a whole is possible.

In Sect. 2, the values of the parameter 𝑞 [Eq. (9)]
and the perturbation parameters satisfying the sta-
tionary cyclotron resonance condition (6) for particles
of various masses and charge signs in a non-neutral
plasma with an excess of electrons are determined. In
Sect. 3, in the drift approximation, the law describ-
ing the change in the elements of the trajectories of
charged particles under the conditions of cyclotron
resonance with a potential wave of zero or non-zero
frequency is determined.

2. Resonance Values of Parameter 𝑞

2.1. Let us determine the values of the parameter 𝑞
[Eq. (9)] at which the stationary cyclotron resonance
condition (6) is satisfied for electrons, positrons, and
positive and negative ions. From Eq. (6), it follows
that this condition is obeyed, if

𝜔𝛼
rot = − 𝑛

𝑚
Ω𝛼. (10)

The (slow) rotation frequency of charged particle 𝜔𝛼
𝑟𝑜𝑡

in Eqs. (5) and (6) is determined by expression (3). In
the case of excess of electrons (𝐸𝑟 < 0), the rota-
tion frequency is positive (𝜔𝛼

rot > 0) for both posi-
tively and negatively charged particles. The sign of
the “modified” cyclotron frequency of the particle
Ω𝛼[Eq. (4)] is determined by the sign of the parti-
cle charge 𝑒𝛼. For Eq. (10) to be satisfied and the
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stationary cyclotron resonance be achieved, it is nec-
essary that the following inequality be satisfied:

−𝑛𝑚 sgn (𝑒𝛼) > 0. (11)

Substituting Eq. (3) into Eq. (6), we find the relation-
ship between 𝜔𝑐𝛼 and Ω𝛼 under stationary resonance
conditions,

Ω𝛼 =
𝑚

𝑚+ 2𝑛
𝜔𝑐𝛼. (12)

Since Ω𝛼 and 𝜔𝑐𝛼 have the same sign in Eq. (12),
the necessary condition for achieving the resonance is
also the fulfillment of the inequality

𝑚 (𝑚+ 2𝑛) > 0. (13)

That is, we have two necessary conditions on 𝑚 and
𝑛, under which the resonance is possible. These are
conditions (11) and (13).

Substituting Eq. (12) into Eq. (10), we find the re-
lationship between 𝜔𝛼

𝑟𝑜𝑡 and 𝜔𝑐𝛼 under the conditions
of stationary cyclotron resonance,

𝜔𝛼
rot = − 𝑛

𝑚+ 2𝑛
𝜔𝑐𝛼. (14)

For Eq. (14) to hold, it is necessary to satisfy condi-
tions (11) and (13).

2.2. For electrons (the index 𝛼 = 𝑒), the quantities
Ω𝑒 and 𝜔𝑐𝑒 are negative (Ω𝑒 < 0, 𝜔𝑐𝑒 < 0). Then it
follows from Eq. (11) that Eq. (6) can be fulfilled,
only if 𝑚 and 𝑛 have the same sign (i.e., 𝑚𝑛 > 0). For
unambiguity, we assume that the azimuthal number
𝑚 is positive, 𝑚 > 0. Then the stationary cyclotron
resonance is possible for electrons, only if 𝑛 > 0. In
this case, condition (13) is also fulfilled.

The quantity Ω𝑒 for electrons, being expressed in
terms of the parameter 𝑞, looks like [1]

Ω𝑒 = [1− 𝑞(1− 𝑓)]
1/2

𝜔𝑐𝑒, 𝑞 < 1/(1− 𝑓). (15)

By combining Eq. (12) and (15), we obtain the reso-
nance 𝑞-values for electrons,

𝑞 = 𝑞𝑒res =
4𝑛 (𝑚+ 𝑛)

(𝑚+ 2𝑛)
2

1

(1− 𝑓)
(𝑚 > 0, 𝑛 > 0). (16)

The stationary cyclotron resonance for electrons can
be achieved for all (𝑛,𝑚) > 0. Since in Eq. (16), the
coefficient 4𝑛 (𝑚+ 𝑛) /(𝑚+ 2𝑛)

2
< 1, then for all

(𝑛,𝑚) > 0, the resonance values 𝑞𝑒res satisfy the equi-
librium condition for the non-neutral plasma with an
excess of electrons (9), (15), and 𝑞𝑒res < 1/(1− 𝑓).

For illustration, Table 1 shows the numerical val-
ues of 𝑞𝑒res, Ω𝑒, 𝜔𝑒

rot for electrons under the stationary
resonance condition (6), the multiplicity 𝑛 = 1, and
various values of the azimuthal number 𝑚 are quoted;
they were calculated by formulas (16), (15) (or (12)),
and (14). One can see that electrons with a low rota-
tion frequency in the non-neutral plasma [see Eq. (3)]
can be in resonance with a static perturbation with
lower 𝑚- and 𝑛-values, if the value of the parameter
𝑞 of the order of the Brillouin value, 𝑞 ∼ 1/(1− 𝑓),
i.e., in electric fields with the magnitude order of ex-
tremely large permissible values.

2.3. For positive ions (the index 𝛼 = 𝑖+), from
Eqs. (3) and (4), we have

𝜔𝑖+
rot = (−𝜔𝑐𝑖+ +Ω𝑖+)/2 > 0,

𝜔𝑐𝑖+ > 0, Ω𝑖+ > 0.
(17)

From Eq. (11), it follows that the stationary reso-
nance condition (6) can be satisfied, only if 𝑚 and 𝑛
have different signs (i.e., 𝑚𝑛 < 0). Since we assume
𝑚 > 0, then 𝑛 must be negative, 𝑛 < 0. In this case,
condition (13) must also be satisfied.

For positive ions, expression (4) for Ω𝑖+ in terms
of the parameter 𝑞, has the form

Ω𝑖+ = 𝜔𝑐𝑖+ [1 + 𝑞 (𝑀𝑖+/𝑀𝑒) (1− 𝑓)]
1/2

,

𝑞 < 1/(1− 𝑓).
(18)

Substituting this expression into Eq. (12), we get the
𝑞-values at which the stationary cyclotron resonance
condition (6) for positive ions in a non-neutral plasma

Table 1. Numerical values of the parameters
𝑞𝑒
res, Ω𝑒, and 𝜔𝑒

rot for electrons under the conditions
of stationary cyclotron resonance (6) with multiplicity
𝑛 = 1 and various azimuthal numbers 𝑚 > 0.
Calculations were made by formulas
(16), (15), and (14)

𝑚 𝑞𝑒res Ω𝑒/𝜔𝑐𝑒 𝜔𝑒
rot/|𝜔𝑐𝑒|

1 (8/9)/(1− 𝑓) 1/3 1/3
2 (3/4)/(1− 𝑓) 1/2 1/4
3 (16/25)/(1− 𝑓) 3/5 1/5
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is satisfied,

𝑞 = 𝑞𝑖+res ≡
𝑀𝑒

𝑀𝑖+

(−4𝑛) (𝑚+ 𝑛)

(𝑚+ 2𝑛)
2

1

(1− 𝑓)

(𝑛 < 0,𝑚+ 2𝑛 > 0).

(19)

At stationary resonance condition (6), the 𝑞𝑖+res-va-
lues are different for ions with different masses. Thus,
a selective influence on ions with different masses
is possible in a non-neutral plasma under station-
ary cyclotron resonance conditions, as at cyclotron
resonance (5) in a non-neutral plasma (𝜔 ̸= 0) and
“ordinary” cyclotron resonance in a neutral plasma
(𝜔 = 𝑛𝜔𝑐𝛼).

In Table 2, the numerical values of 𝑞𝑖+res, Ω𝑖+, and
𝜔𝑖+
rot are shown for positive ions under stationary res-

onance conditions (6) with multiplicity 𝑛 = −1 and
various permissible values of the azimuthal number
𝑚. As follows from Eq. (13), a resonance of a pos-
itive ion with a static perturbation is possible at
sufficiently large values of the azimuthal number 𝑚
(𝑚 > −2𝑛). In particular, resonances of multiplic-
ity 𝑛 = −1, −2, −3, ... are possible only at 𝑚 ≥
≥ +3, +5, +7, ..., respectively.

Owing to the coefficient 𝑀𝑒/𝑀𝑖+, the resonance
𝑞𝑖+res-values for positive ions [Eq. (19)] turn out small
as compared to the resonance 𝑞𝑒res-values for electrons
[Eq. (16)]. For example, for argon (𝑀𝑖+ = 40 a.u.),
we have 𝑀𝑒/𝑀𝑖+ ≈ 1.36× 10−5. However, the radial
electric field acting on the ions and corresponding to
these small 𝑞𝑖+res-values remains strong in comparison
with the magnetic field. Thus, at 𝑚 = 3, the ratio
between the electric and magnetic fields, which is de-
scribed by the second term in the square brackets in
Eq. (18), is equal to 8 (see the second column in Ta-
ble 2). At 𝑚 = 4, this ratio equals 3.

Table 2. Numerical values of the parameters 𝑞
𝑖+
res,

Ω𝑖+, and 𝜔
𝑖+
rot for positive ions under the conditions

of stationary cyclotron resonance (6) with multiplicity
𝑛 = −1 and various admissible azimuthal numbers
𝑚 > 0. Calculations were made by formulas
(19), (18) [or (12)], and (14)

𝑚 𝑞𝑖+res Ω𝑖+/𝜔𝑐𝑖+ 𝜔𝑖+
rot/𝜔𝑐𝑖+

3 8(𝑀𝑒𝑀𝑖+)/(1− 𝑓) 3 1
4 3(𝑀𝑒𝑀𝑖+)/(1− 𝑓) 2 1/2
5 (16/9)(𝑀𝑒𝑀𝑖+)/(1− 𝑓) 5/3 1/3

2.4. If, along with electrons and positive ions, a
non-neutral plasma contains a small number of neg-
ative ions (the index 𝛼 = 𝑖−), we have the following
expression for their frequency Ω𝑖−, which is similar
to expression (18):

Ω𝑖− = 𝜔𝑐𝑖−

√︂
1− 𝑞

𝑀𝑖−

𝑀𝑒
(1− 𝑓) < 0. (20)

This formula (20) differs from Eq. (18) by the sign of
the second term under the square root and the sign of
𝜔𝑐𝑖−. The motion of negative ions is finite within the
radius only in a narrow (as compared to the interval
of admissible 𝑞-values for electrons (15)) interval of
the values of the parameter 𝑞,

𝑞 <
𝑀𝑒

𝑀𝑖−

1

1− 𝑓
. (21)

Negative ions are held within the radius if the radial
electric field is sufficiently weak. If inequality (21) is
not satisfied, the ions are ejected from the plasma
along the radius. In this interval of 𝑞-values, the non-
neutral plasma is a filter for heavy negative ions with
the masses

𝑀𝑖− >
𝑀𝑒

𝑞 (1− 𝑓)
. (22)

This situation is analogous to the situation that oc-
curs in the Archimedes filter for positive ions [21]. In
this filter, the radial electric field is positive, and
heavy positive ions with masses 𝑀𝑖+ satisfying in-
equalities (22) are not confined within the radius and
ejected from the plasma, thus, being separated from
light ions.

For negative ions, the stationary cyclotron reso-
nance condition (6) can be obeyed only if the signs of
𝑚 and 𝑛 are identical (𝑚𝑛 > 0). The resonance 𝑞𝑖−res-
values at which the stationary cyclotron resonance is
achieved for negative ions in a non-neutral plasma are
as follows:

𝑞 = 𝑞𝑖−res ≡
𝑀𝑒

𝑀𝑖−

4𝑛 (𝑚+ 𝑛)

(𝑚+ 2𝑛)
2

1

(1− 𝑓)

(𝑛 > 0, 𝑚 > 0).

(23)

This expression for 𝑞𝑖−res satisfies inequalities (21) at
all (𝑛,𝑚) > 0, because the coefficient 4𝑛(𝑚+ 𝑛)/
/(𝑚+ 2𝑛)2 < 1.
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Table 3 contains the numerical values of 𝑞𝑖−res, Ω𝑖−,
𝜔𝑖−
rot calculated formulas (23), (20), and (14) for nega-

tive ions under stationary cyclotron resonance condi-
tions (6) for multiplicity 𝑛 = 1 and various values of
the azimuthal number 𝑚. The 𝑞𝑖−res-values in Eq. (23)
and Table 3 differ from the 𝑞𝑒res-values for electrons
in formula (16) and Table 1 by the factor 𝑀𝑒/𝑀𝑖−,
whereas the ratios Ω𝑖−/𝜔𝑐𝑖− and Ω𝑒/𝜔𝑐𝑒 in Tables ex-
actly coincide. Owing to the coefficient 𝑀𝑒/𝑀𝑖−, the
resonance 𝑞𝑖−res-values for negative ions (23) are much
smaller than the resonance 𝑞𝑒res-values for electrons
(16). They also turn out smaller than the resonance
𝑞𝑖+res-values for positive ions (19).

2.5. If, in addition to electrons and positive ions,
there is a small number of positrons (the index 𝛼 =
= 𝑒+) in a non-neutral plasma, the expression for
their resonance frequency Ω𝑒+ looks like

Ω𝑒+ = 𝜔𝑐𝑒+

√︀
1 + 𝑞(1− 𝑓) > 0(︀

𝜔𝑐𝑒+ > 0, 𝜔𝑒+
rot > 0

)︀
.

(24)

Note that for positrons, the Ω𝑒+-value varies from
the minimum value 𝜔𝑐𝑒+, which is reached at 𝑞 = 0,
to the maximum value, which equals only Ω𝑒+ =
= 𝜔𝑐𝑒+

√
2 at the Brillouin value of the parameter

𝑞 for electrons, 𝑞 = 1/(1− 𝑓). At the same time,
the Ω𝑖+-value for positive ions varies from 𝜔𝑐𝑖+ to
Ω𝑖+ ≈ 𝜔𝑐𝑖+

√︀
𝑀𝑖+/𝑀𝑒, which can be hundreds of

times larger than 𝜔𝑐𝑖+.
The stationary cyclotron resonance (6) for posi-

trons can be achieved if 𝑚 and 𝑛 have different signs
(i.e., 𝑚𝑛 < 0). Condition (13) must also be satisfied.
From Eq. (24) and (12), we find the resonance 𝑞-value
for positrons,

𝑞 = 𝑞𝑒+res ≡
(−4𝑛) (𝑚+ 𝑛)

(𝑚+ 2𝑛)
2

1

(1− 𝑓)
,

𝑛 < 0, 𝑚+ 2𝑛 > 0.

(25)

This expression will coincide with the expression for
the resonance 𝑞𝑖+res-value for positive ions (19), if
we make the substitution 𝑀𝑖+ → 𝑀𝑒+ = 𝑀𝑒 in
the latter.

Direct calculations using formula (25) show that,
for 𝑛 = −1 and azimuthal numbers 𝑚 = 3, 4, 5, 6,
the 𝑞𝑒+res-values turn out larger than the maximally
admissible value of the parameter 𝑞 for the equilib-
rium of a non-neutral plasma with an excess of elec-
trons, 𝑞𝑒+res > 1/(1− 𝑓). This fact means that station-

ary cyclotron resonances for positrons at the indi-
cated 𝑚- and 𝑛-values cannot be realized in a non-
neutral plasma with an excess of electrons. Only if
𝑚 ≥ 7, 𝑞𝑒+res-value (25) decreases to an acceptable
value 𝑞𝑖+res < 1/(1− 𝑓), and the stationary resonance
for positrons can be realized.

For arbitrary values 𝑛 < 0, the 𝑞𝑖+𝑟𝑒𝑠-value becomes
smaller than the maximum permissible value for elec-
trons, 𝑞𝑒+res < 1/(1− 𝑓), and the stationary cyclotron
resonance becomes possible for 𝑚-values satisfying
the condition

𝑚 > (4 + 2
√
2) |𝑛| ≈ 6.83 |𝑛|. (26)

Whence it follows that the resonance of a positron
with a static perturbation is possible for sufficiently
large values of the azimuthal number 𝑚. Resonances
of multiplicity 𝑛 = −1, −2, −3, ... are possible only if
𝑚 ≥ +7, +14, +21, ..., respectively.

In Table 4, the numerical values of 𝑞𝑒+res , Ω𝑒+,
and 𝜔𝑒+

rot are shown for positrons under the station-
ary cyclotron resonance conditions (6) at 𝑛 = −1
and various permissible values of the azimuthal num-
ber 𝑚. From formula (25) and Table 4, one can see
that the magnitudes of the resonance 𝑞𝑒+res-values for

Table 3. Numerical values of the parameters 𝑞
𝑖−
res,

Ω𝑖−, and 𝜔
𝑖−
rot for negative ions under conditions

of stationary cyclotron resonance (6) with multiplicity
𝑛 = 1 and various azimuthal numbers 𝑚 > 0.
Calculations were made by formulas (23),
(20) [or (12)], and (14)

𝑚 𝑞𝑖−res Ω𝑖−/𝜔𝑐𝑖− 𝜔𝑖−
rot/|𝜔𝑐𝑖−|

1 (8/9)(𝑀𝑒/𝑀𝑖−)(1− 𝑓) 1/3 1/3
2 (3/4)(𝑀𝑒/𝑀𝑖−)/(1− 𝑓) 1/2 1/4
3 (16/25)(𝑀𝑒/𝑀𝑖−)/(1− 𝑓) 3/5 1/5

Table 4. Numerical values of the parameters
𝑞
𝑒+
res, Ω𝑒+, and 𝜔

𝑒+
rot for positrons under conditions

of stationary cyclotron resonance (6) with multiplicity
𝑛 = −1 and various admissible azimuthal numbers
𝑚 > 0. Calculations were made by formulas
(25), (12), and (14)

𝑚 𝑞𝑒+res Ω𝑒+/𝜔𝑐𝑒+ 𝜔𝑒+
rot/𝜔𝑐𝑒+

7 (24/25)/(1− 𝑓) 7/5 1/7
8 (28/36)/(1− 𝑓) 8/6 1/8
9 (32/49)/(1− 𝑓) 9/7 1/9
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positrons are of an order of the maximum permissible
values for electrons, 𝑞𝑒+res ∼ 1/(1− 𝑓).

3. Drift Motion of Charged Particles
under Cyclotron Resonance Conditions

3.1. Let us determine how the parameters of the tra-
jectory of a particle located in a non-neutral plasma
with an excess of electrons change under the condi-
tions of cyclotron resonance of the general [Eq. (5)]
or stationary [Eq. (6)] form with a potential wave of
small amplitude. In both cases, the law according to
which the elements of the charged particle trajectory
change remains the same.

Note that, in the case of stationary cyclotron reso-
nance, the total transverse energy of a charged parti-
cle, which consists of the kinetic and potential ener-
gies, is conserved in the laboratory reference frame,
because the main electric, 𝐸𝑟, and magnetic, 𝐵,
fields, as well as the E∼ and H∼ fields of static per-
turbation, do not depend on time. Separately, the ki-
netic and potential energies of the particle can change
substantially.

In the field of an axially asymmetric static pertur-
bation, the generalized azimuthal moment 𝑃𝜙 of the
particle changes. Let us use the results obtained in
works [11, 12, 22], while solving the equations of mo-
tion for a charged particle in crossed fields and in the
field of a potential wave with a small amplitude that
travels in the azimuth direction and has the form

𝜑 (𝑟, 𝑚𝜙− 𝜔𝑡). (27)

The solutions were obtained under the cyclotron reso-
nance conditions (5) in the drift approximation. Pro-
vided the stationary cyclotron resonance conditions
(6), the wave potential (27) takes the form 𝜑 (𝑟, 𝑚𝜙),
i.e., the form of a static perturbation.

In the absence of wave (27), the solutions of the
equations of motion of a charged particle in a plane
that is transverse to the magnetic field have the fol-
lowing complex form:

𝑟 exp (𝑖𝜙) =

= exp (𝑖𝜔𝛼
rot𝑡) [𝑅 exp (𝑖𝜃) + 𝜌 exp (𝑖𝜗− Ω𝛼𝑡)]. (28)

In a neutral plasma (𝑓 = 1, 𝜔𝛼
rot = 0, Ω𝛼 = 𝜔𝑐𝛼), the

quantities 𝑅 and 𝜃 are the cylindrical coordinates of
the Larmor center of the particle, 𝜌 is its Larmor ra-
dius, and 𝜃 is the phase of the particle on the Larmor
circle at the initial time moment 𝑡 = 0.

In the general case (𝜔𝛼
rot ̸= 0), the quantities 𝑅, 𝜃

and 𝜌, 𝜗 in Eq. (28) are generalizations of the cylin-
drical coordinates of a charged particle in a neutral
plasma to the case of non-neutral plasma. In a ref-
erence frame rotating with a frequency of 𝜔𝛼

rot, the
quantities 𝑅, 𝜃 and 𝜌, 𝜗 have the same meaning as
for a neutral plasma. This can be seen from Eq. (28).

In the absence of the wave, the quantities 𝑅, 𝜃 and
𝜌, 𝜗 are constants; they are integrals of motion. The
motion of a particle along the radius according to
Eq. (28) occurs within the interval |𝑅− 𝜌| ≤ 𝑟 ≤ 𝑅+
+ 𝜌. The condition that during such motion the par-
ticle will remain within a plasma column of radius 𝑎
has the form 𝑅 + 𝜌 ≤ 𝑎. The line 𝑅 + 𝜌 = 𝑎 cor-
responds to particles that, during their motion (28),
touch the plasma boundary (line 1 in Figs. 1 and 2),
but do not cross it.

In the presence of a small-amplitude wave un-
der cyclotron resonance conditions (5), the trajec-
tory parameters 𝑅, 𝜃 and 𝜌, 𝜗 change slowly. In this
case, the following combination remains unchanged
[11, 12, 22]:

𝜌2

𝑛
− 𝑅2

𝑚+ 𝑛
= const. (29)

This is one of the integrals of the drift motion of a
particle in the field of a potential wave with a small
amplitude (27), which travels in the azimuth direc-
tion, under cyclotron resonance conditions (5). In-
tegral (29) determines the trajectories of the drift mo-
tion of the particle in the 𝑅− 𝜌 plane. Equation (29)
is valid for any resonance frequencies (5), including
the case of stationary cyclotron resonance (6), any
small or large initial values of the particle parameters
𝑅 and 𝜌, any dependence of the wave potential (27)
on the radius 𝑟, and any periodic dependence on the
azimuthal angle 𝜙, for any azimuthal numbers 𝑚 and
resonance multiplicities 𝑛, including 𝑚 = 0 and/or
𝑛 = 0.

Under the action of wave (27), the particles perform
periodic motions along drift trajectories (29). The ex-
tent to which the parameters 𝑅 and 𝜌 change during
the drift process and how far the particle moves from
the initial 𝑅- and 𝜌-values are determined by the drift
equations for �̇�, 𝜃 and �̇�, �̇� [11, 12, 22], and ultimately
by the specific dependence of the wave potential (27)
on the radius 𝑟 and the azimuthal angle 𝜙. These is-
sues are not dealt in this paper. The consideration is
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reduced to the analysis of the particle drift on the
basis of the integral of motion (29).

3.2. For electrons, the stationary cyclotron reso-
nance (6) is achieved under the condition 𝑚 · 𝑛 > 0
(see Section 2.2). In this case, the electron drift tra-
jectory in the 𝑅 − 𝜌 plane (29) is a hyperbolaa with
the asymptote 𝜌 = 𝑅

√︀
𝑛(𝑚+ 𝑛). The electron drift

trajectories in the 𝑅 − 𝜌 plane and the indicated
asymptote are presented in Fig. 1. The tangent of
the asymptote slope (line 3 ) equals

√︀
𝑛(𝑚+ 𝑛) < 1.

Electrons with (𝑅, 𝜌) in the region below this asymp-
tote (i.e., with 𝜌 < 𝑅

√︀
𝑛(𝑚+ 𝑛)), when drifting un-

der the action of wave (27) along hyperbolaas (29),
continue to remain in this region. These electrons do
not encircle the system axis during the Larmor rota-
tion. The corresponding condition looks like 𝜌 < 𝑅
(the region below line 2 in Fig. 1).

Electrons with (𝑅, 𝜌) in the region above the
asymptote (i.e., with 𝜌 > 𝑅

√︀
𝑛(𝑚+ 𝑛)), continue

to remain in this region. In this case, they may en-
circle (if 𝜌 > 𝑅) or not (if 𝜌 < 𝑅) the plasma axis
during the Larmor rotation. Moreover, in the process
of their drift under the action of the wave, they can
transit from one state to the other one, if they cross
the line 𝜌 = 𝑅 (line 2 in Fig. 1).

As can be seen from Fig. 1, all drift trajectories of
electrons inside the plasma (in the region 𝑅 + 𝜌 ≤
≤ 𝑎) cross the plasma boundary, line 1, for which
𝑅+ 𝜌 = 𝑎. This means that electrons located in the
non-neutral plasma in the 𝑅− 𝜌 plane on any trajec-
tory, provided the favorable phases of the wave and
the particle (the angles 𝜃, 𝜗 and the suitable depen-
dence of potential 𝜑 (27) on the radius 𝑟), can cross
the plasma boundary and drift under the wave action
out of the plasma (into the region 𝜌 + 𝑅 > 𝑎), thus
leading to the electron transfer along the radius.

3.3. For positive ions, stationary resonance (6) can
be achieved under the condition (𝑛 < 0,𝑚+ 2𝑛 > 0)
(see Section 2.3). In this case, the drift trajectories of
ions in the 𝑅−𝜌 plane (29) are ellipses with the ratio
of the semiaxes along 𝜌 and 𝑅 equal to

√︀
|𝑛| /(𝑚+ 𝑛)

(Fig. 2). This ellipse is oblate along the 𝜌-axis, since,
according to Eq. (13), |𝑛| < (𝑚+ 𝑛). For example,
for 𝑚 = 3 and 𝑛 = −1, the semiaxis ratio eqauls√︀
|𝑛| /(𝑚+ 𝑛) = 1/

√
2 ≈ 0.7.

For ions at any drift trajectories, there is a funda-
mental possibility of their transition from a state in
which they encircle the plasma axis during the Lar-
mor rotation (𝜌 > 𝑅) to a state in which they do

Fig. 1. Drift trajectories of electrons (hyperbolas) in the 𝑅−𝜌

plane under conditions of cyclotron resonance with multiplicity
𝑛 = 1 with potential wave (27) with azimuthal number 𝑚 = 1.
Straight line 1 denotes the dependence 𝑅 + 𝜌 = 𝑎, where 𝑎 is
the plasma radius, which corresponds to the plasma boundary.
Line 2 denotes the dependence 𝜌 = 𝑅, which separates parti-
cles that encircle and do not encircle the system axis during
the Larmor rotation. Line 3 is the asymptote of the family of
hyperbolasaas 𝜌 = 𝑅

√︀
𝑛/ (𝑚+ 𝑛)

Fig. 2. Drift trajectories of positive ions (ellipses) in the 𝑅−𝜌

plane under conditions of cyclotron resonance with multiplicity
𝑛 = −1 with potential wave (27) with azimuthal number 𝑚 =

= 3. Lines 1 and 2 denote the same as in Fig. 1

not encircle this axis (𝜌 < 𝑅), and vice versa, if they
cross the line 𝜌 = 𝑅 (line 2 in Fig. 2). Only those
positive ions can cross the plasma boundary and quit
the plasma, which are located at the drift trajecto-
ries (ellipses) in the 𝑅 − 𝜌 plane that cross the line
𝜌+𝑅 = 𝑎 (line 1 in Fig. 2). These are ellipses whose
semiaxes along 𝑅 and 𝜌 are larger than 𝑎

√︀
(𝑚+ 𝑛) /𝑛

and 𝑎
√︀
|𝑛| /𝑚, respectively.

Ellipses with smaller semiaxes do not intersect the
line 𝜌 + 𝑅 = 𝑎. When drifting along them, positive
ions approach the plasma surface or move away from
it, without reaching the plasma surface itself.

3.4. For negative ions, as it was for electrons, the
stationary resonance condition (6) can be fulfilled
provided the same sign of 𝑚 and 𝑛, i.e., for 𝑚 > 0 and
𝑛 > 0 (section 2.4). All conclusions of Section 3.2 and

ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 7 457



Yu.N. Yeliseyev

Fig. 1 are also applicable to negative ions. It should
be borne in mind that stationary cyclotron resonances
for negative ions are realized at much smaller values
of the parameter 𝑞 than for electrons (cf. Tables 1
and 3).

The drift trajectories of negative ions in the 𝑅− 𝜌
plane (29) are hyperbolasas with the asymptote 𝜌 =
= 𝑅

√︀
𝑛/(𝑚+ 𝑛) (see Fig. 1). Negative ions located

in the 𝑅 − 𝜌 plane in the region below the asymp-
tote (𝜌 < 𝑅

√︀
𝑛/(𝑚+ 𝑛)) remain in this region when

drifting in the wave field. They do not encircle the
axis of the system during the Larmor rotation.

Negative ions located on the 𝑅 − 𝜌 plane in the
region above the asymptote (𝜌 > 𝑅

√︀
𝑛/(𝑚+ 𝑛)) re-

main in this region when drifting. They can encircle
or not the axis of the system. During the drift pro-
cess, negative ions can transit from one state to the
other one.

Negative ions located at any drift trajectory in the
𝑅 − 𝜌 plane, if they are in favorable phases of the
wave and the particle, can cross the plasma surface
and drift outward under the wave action, which leads
to the transport of particles along the radius.

3.5. For positrons, the condition of stationary res-
onance (6) in a non-neutral plasma can be achieved
under the condition 𝑛 < 0 and 𝑚 >

(︀
4 + 2

√
2
)︀
|𝑛|.

The drift trajectories of positrons in the 𝑅− 𝜌 plane
(29) are ellipses with the ratio of the semiaxes along
𝜌 and 𝑅 equal to

√︀
|𝑛| /(𝑚+ 𝑛). The same semiaxis

ratio is valid for positive ions (see Section 3.3). Ho-
wever, since stationary resonances for positrons are
possible only at larger values of the azimuthal num-
bers 𝑚 (𝑚+ 𝑛 ≫ |𝑛|), these ellipses are more oblate
along the 𝜌-axis than the ellipses in Fig. 2. So, for
𝑛 = −1 and 𝑚 = +7, the ratio of the semiaxes along
𝜌 and 𝑅 is equal to

√︀
|𝑛| /(𝑚+ 𝑛) = 1/

√
6 ≈ 0.41.

All conclusions made in Section 3.3 for positive ions
remain valid for positrons.

4. Conclusions

4.1. It has been shown that a stationary cyclotron
resonance between charged particles in a non-neutral
plasma with an excess of electrons (𝐸𝑟 < 0) and
a static axially asymmetric perturbation of electric
and/or magnetic fields is possible in the laboratory
reference frame. The zero frequency is a resonance
one for all types of charged particles, but this res-

onance is realized at various values of the fields 𝐸𝑟

and 𝐵.
The values of the parameter 𝑞 at which the station-

ary cyclotron resonance is realized for electrons (16),
positive (19) and negative (23) ions, and positrons
(25) have been calculated. For light particles (elec-
trons and positrons), the resonance values of 𝑞 are
smaller, but they remain of the order of the maximum
possible value 1/(1− 𝑓) for a non-neutral plasma
with an excess of electrons. For positive and negative
ions, the resonance values of 𝑞 are much smaller. They
are of the order of (𝑀𝑒/𝑀 𝑖)/(1− 𝑓). For positive
ions, they can be several times larger; nevertheless,
the resonance values of the parameter 𝑞 are still small
for ions, 𝑞𝑖res ≪ 1/(1− 𝑓).

Relationships between the azimuthal number 𝑚
(11) and the resonance multiplicity 𝑛 (13) when the
stationary cyclotron resonance (6) is possible have
been determined.

4.2. The integral of the drift motion equations (29)
is pointed out, which determines the change in the
parameters 𝑅 and 𝜌 of the particle’s transverse tra-
jectory in a non-neutral plasma under the influence
of an electrostatic wave with a small amplitude. The
integral is valid both in the general case of cyclotron
resonance (5) and in the special case of stationary
cyclotron resonance (6).

The drift trajectories of negatively charged parti-
cles (electrons, negative ions) have the form of hyper-
bolaas in the plane of the parameters 𝑅 and 𝜌. The
trajectories of positively charged particles (positive
ions, positrons) have the shape of ellipses. The pa-
rameters of the ellipses and hyperbolas are de-
termined by the azimuthal wave number 𝑚 and
the cyclotron resonance multiplicity 𝑛. The change
(Δ𝑅,Δ𝜌) of the parameters 𝑅 and 𝜌 as a result of
interaction with the wave under cyclotron resonance
conditions can be substantial, even of the order of the
plasma radius 𝑎 itself (Δ𝑅 ∼ 𝑎, Δ𝜌 ∼ 𝑎).

Negatively charged particles (electrons and nega-
tively charged ions) have greater ability to reach the
plasma surface and go beyond its boundaries. Every
hyperbolaa along which they drift in the 𝑅− 𝜌 plane
intersects the line 𝑅 + 𝜌 = 𝑎. In this case, the par-
ticle goes beyond the plasma boundaries during the
Larmor rotation.

Among positively charged particles (positive ions,
positrons), only those particles can reach the plasma
surface and go beyond its boundaries that are located
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in the 𝑅 − 𝜌 plane within ellipses with the semi-
axes along 𝑅 and 𝜌 greater than 𝑎

√︀
(𝑚+ 𝑛) /𝑚 and

𝑎
√︀
|𝑛| /𝑚, respectively.

The considered drift motions under cyclotron reso-
nance conditions may be the origin of the anomalous
transport of particles along the radius (without col-
lisions), which is observed in experiments with the
non-neutral plasma.
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Ю.М.Єлiсеєв

СТАТИЧНИЙ ЦИКЛОТРОННИЙ
РЕЗОНАНС У ЗАРЯДЖЕНIЙ ПЛАЗМI

У роботi розглянуто умову циклотронного резонансу ча-
стинки зарядженої плазми з надлишком електронiв з аксi-
ально несиметричною електромагнiтною хвилею, яка у ла-
бораторнiй системi вiдлiку має нульову частоту. Вирахува-
но значення параметра 𝑞 ≡ 2𝜔2

𝑝𝑒/𝜔
2
𝑐𝑒, при яких виконується

умова статичного циклотронного резонансу для електронiв,
позитивних i негативних iонiв, позитронiв. Визначено спiв-
вiдношення мiж азимутальним числом хвилi 𝑚 i кратнiстю
резонансу 𝑛, при яких може бути досягнутий статичний ци-
клотронний резонанс. Вказано iнтеграл рiвнянь дрейфово-
го руху, що визначає змiни параметрiв траєкторiї частинки
у зарядженiй плазмi пiд дiєю електростатичної хвилi ма-
лої амплiтуди в умовах циклотронного резонансу. Цi змiни
можуть бути суттєвими та вести частинки за межi плазми.
Дрейфовi рухи в умовах статичного циклотронного резо-
нансу можуть бути причиною аномального переносу части-
нок по радiусу в пристроях iз зарядженою плазмою.

Ключ о в i с л о в а: заряджена плазма, циклотронний резо-
нанс, дрейфовий рух.
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