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PHASE DIAGRAMS OF A RELATIVISTIC
SELF-INTERACTING BOSON SYSTEM

Within the Canonical Ensemble, we investigate a system of interacting relativistic bosons
at finite temperatures and finite isospin densities in a mean-field approach. The mean field
contains both attractive and repulsive terms. Temperature and isospin density dependences of
thermodynamic quantities are obtained. It is shown that, in the case of attraction between par-
ticles in a bosonic system, a liquid-gas phase transition develops against the background of the
Bose–Einstein condensate. The corresponding phase diagrams are given. We explain the rea-
sons for why the presence of a Bose condensate significantly increases the critical temperature
of the liquid-gas phase transition compared to that obtained for the same system within the
framework of Boltzmann statistics. Our results may have implications for the interpretation
of experimental data, in particular, how sensitive the critical point of the mixed phase is to
the presence of the Bose–Einstein condensate.
K e yw o r d s: relativistic bosonic system, Bose–Einstein condensation, phase transition.

1. Introduction
It is commonly accepted that QCD exhibits a rich
phase structure at finite temperatures and baryon
densities, for instance, the transition from hadron
gas to quark-gluon plasma, the transition from the
chiral symmetry breaking to the symmetry restora-
tion [1]. The physical motivation to study QCD at a
finite isospin density and the corresponding pion sys-
tem is related to the investigation of compact stars,
isospin asymmetric nuclear matter, and heavy ion col-
lisions. In early studies of dense nuclear matter and
compact stars, it has been suggested that charged
pions and even kaons are condensed at sufficiently
high densities. The knowledge of the phase structure
of the meson systems, in the regime of finite tem-
peratures and isospin densities, is crucial for under-
standing a wide range of phenomena from nucleus-
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nucleus collisions to boson, neutron stars, and cos-
mology. This field is essential to investigations of the
hot and dense hadronic matter, a subject of active
research. Meanwhile, the investigations of the meson
systems have their specifics due to the possibility of
the Bose–Einstein condensation (BEC) of the bosonic
particles. Formation of classical pion fields in heavy-
ion collisions was discussed in Refs. [2–5]. Then the
study of the QCD phase structure was extended to
finite isospin densities and the systems of pions and
K-mesons with a finite isospin chemical potential have
been considered in more recent studies [6–11]. First-
principles lattice calculations provide a solid basis for
our knowledge of the finite-temperature regime. New
results concerning dense pion systems have been ob-
tained recently using lattice methods [12–14].

In the present paper, we will consider an inter-
acting particle-antiparticle boson system at the con-
served isospin (charge) density 𝑛𝐼 and finite tempera-
ture 𝑇 . We name the bosonic particles as “pions” just
conventionally. The preference is made because the
charged 𝜋-mesons are the lightest hadrons that couple
to the isospin chemical potential. On the other hand,
the pions are the lightest nuclear boson particles,
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and, thus, the account for “temperature creation” of
particle-antiparticle pairs is a relevant problem based
on quantum statistics. To account for the interaction
between the bosons, we introduce a phenomenologi-
cal Skyrme-like mean field 𝑈(𝑛), which depends only
on the total meson density 𝑛. We regard such a self-
interacting many-particle system as a toy model that
can help us understand the BEC and phase transi-
tions over a wide range of temperatures and densi-
ties. The mean field 𝑈(𝑛) rather reflects the presence
of other strongly interacting particles in the system,
for instance 𝜌-mesons and nucleon-antinucleon pairs
at low temperatures or gluons and quark-antiquark
pairs at high temperatures, 𝑇 > 𝑇qgp ≈ 160 MeV.

The presented study is part of a sequel [15–18]
that started with the investigation of an interact-
ing particle-antiparticle boson system at 𝜇 = 0.
The next development of the subject was given in
Ref. [19], where the boson system was considered
within the framework of the Canonical Ensemble with
the canonical variables (𝑇, 𝑛𝐼), i.e., at the conserved
isospin (charge) density. In this formulation in [19],
we calculated the temperature characteristics of a
non-ideal hot “pion” gas with a fixed isospin den-
sity 𝑛𝐼 = 𝑛(−) − 𝑛(+) > 0, where 𝑛(∓) are the
particle-number densities of the 𝜋− and 𝜋+ mesons,
respectively. In the present study, we proceed to ex-
ploit the Canonical Ensemble. But now, we focus on
the isospin-density dependencies of thermodynamic
quantities when the temperature is fixed.

In Sect. 2, we very shortly remind the formalism
of the thermodynamic mean-field model [20] to de-
scribe the boson system of particles and antiparticles,
which will be used in the presented calculations. In
Sect. 2.1, we introduce the Skyrme-like parametriza-
tion of the mean field, and the corresponding thermo-
dynamic functions are calculated.

2. The Mean-Field Model
for the System of Particles
and Antiparticles

Our consideration of thermodynamic properties of
the system of interacting bosonic particles and an-
tiparticles at finite temperatures is carried out within
the framework of the thermodynamic mean-field
model, which was introduced in Refs. [21,22] and fur-
ther developed in Ref. [20]. This approach is based on
the representation of the free energy 𝐹 of the particle-

antiparticle system as the sum of two parts: the first
part 𝐹0 is the free energy of the two-component sys-
tem of free particles, and the second part 𝐹int is re-
sponsible for the interaction between all particles,
i.e., 𝐹 = 𝐹0 + 𝐹int. Therefore, it is assumed that,
in general case, the free-energy density of the two-
component system looks like

𝜑 (𝑇, 𝑛1, 𝑛2) = 𝜑
(0)
1 (𝑇, 𝑛1)+𝜑

(0)
2 (𝑇, 𝑛2)+𝜑int (𝑇, 𝑛),

(1)

where 𝜑 = 𝐹/𝑉 with 𝑉 as the volume of the sys-
tem, 𝜑

(0)
1 and 𝜑

(0)
2 are the free energy densities for

the free particles of the first and second components,
respectively, whereas the density of free energy 𝜑int

accounts for the interaction in the system, 𝑛1 and 𝑛2

is the particle-number density of each component and
𝑛 = 𝑛1+𝑛2 is the total particle-number density. Next,
the chemical potential associated with each compo-
nent is calculated as correspondent derivative

𝜇𝑖 =

[︂
𝜕𝜑(𝑇, 𝑛1, 𝑛2)

𝜕𝑛𝑖

]︂
𝑇

, (2)

where 𝑖 = 1, 2. This results in

𝜇
(0)
𝑖 = 𝜇𝑖(𝑇, 𝑛𝑖)− 𝑈(𝑇, 𝑛), (3)

where we define

𝜇
(0)
𝑖 =

𝜕𝜑
(0)
𝑖 (𝑇, 𝑛𝑖)

𝜕𝑛𝑖
, 𝑈(𝑇, 𝑛) ≡ 𝜕𝜑int(𝑇, 𝑛)

𝜕𝑛
. (4)

Similarly, we can write the pressure, 𝑝 = 𝜇1𝑛1 +
+𝜇2𝑛2 − 𝜑, dividing it into free and interacting parts

𝑝 (𝑇, 𝑛1, 𝑛2) = 𝑝
(0)
1 + 𝑝

(0)
2 + 𝑃ex(𝑇, 𝑛), (5)

where 𝑝
(0)
𝑖 = 𝜇

(0)
𝑖 𝑛𝑖 − 𝜑

(0)
𝑖 is the pressure of the ideal

gas created by the 𝑖-th component of the system and

𝑃ex(𝑇, 𝑛) ≡ 𝑛

[︂
𝜕𝜑int(𝑇, 𝑛)

𝜕𝑛

]︂
𝑇

− 𝜑int (6)

is the excess pressure. It is seen that the definitions
of 𝑈(𝑇, 𝑛) and 𝑃ex(𝑇, 𝑛) lead to a differential corre-
spondence between these quantities:

𝑛

[︂
𝜕𝑈(𝑇, 𝑛)

𝜕𝑛

]︂
𝑇

=

[︂
𝜕𝑃ex(𝑇, 𝑛)

𝜕𝑛

]︂
𝑇

. (7)
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We limit our consideration to the case where, at
a fixed temperature, the interacting boson particles
and boson antiparticles are in dynamic equilibrium
with respect to the processes of annihilation and pair-
creation. Due to the opposite signs of the charge, the
chemical potentials of the bosonic particles 𝜇1 and
the bosonic antiparticles 𝜇2 have opposite signs (for
details, see [20]):

𝜇1 = −𝜇2 ≡ 𝜇𝐼 . (8)

Therefore, the Euler relation includes only the isospin
number density, 𝑛𝐼 = 𝑛(−) − 𝑛(+), in the following
way:

𝜀+ 𝑝 = 𝑇 𝑠+ 𝜇𝐼 𝑛𝐼 , (9)

where 𝑛1 → 𝑛(−) is the particle-number density of
bosonic particles, and 𝑛2 → 𝑛(+) is the particle-num-
ber density of bosonic antiparticles, 𝜀 is the energy
density, and 𝑠 is the entropy density 1. In what fol-
lows we will consider the boson particle-antiparticle
system with conserved isospin number density 𝑛𝐼 ,
whereas, in this study, the total particle-number den-
sity is a thermodynamic quantity that depends on 𝑇
and 𝑛𝐼 , i.e., 𝑛(𝑇, 𝑛𝐼)

2.
Exploiting Eq. (5) with formula for the ideal gas in

the Grand Canonical Ensemble the total pressure in
the particle-antiparticle system reads 3

𝑝 = −𝑇

∫︁
𝑑3𝑘

(2𝜋)3
×

× ln

[︃
1− exp

(︃
−
√
𝑚2 + k2 + 𝑈(𝑇, 𝑛)− 𝜇𝐼

𝑇

)︃]︃
−

−𝑇

∫︁
𝑑3𝑘

(2𝜋)3
×

× ln

[︃
1− exp

(︃
−
√
𝑚2 + k2 + 𝑈(𝑇, 𝑛) + 𝜇𝐼

𝑇

)︃]︃
+

+𝑃ex(𝑇, 𝑛), (10)

1 We use the negative total electric charge in the system be-
cause of the predominance of the creation of negative pions
over positive ones in relativistic nucleus-nucleus collisions.

2 The dynamical conservation of the total number of pions in
a pion-enriched system created on an intermediate stage of
a heavy-ion collisions was considered in Refs. [24–26].

3 Here and below we adopt the system of units ~ = 𝑐 = 1,
𝑘B = 1.

where 𝜇
(0)
1 and 𝜇

(0)
2 are altered for (𝜇𝐼 − 𝑈) and

(−𝜇𝐼 − 𝑈), respectively, in accordance with Eq. (3)
and Eq. (8).

The thermodynamic consistency of the mean-field
model can be obtained by comparing two expressions
which must eventually coincide. These expressions,
which determine the isospin density, read

𝑛𝐼 =

(︂
𝜕𝑝

𝜕𝜇𝐼

)︂
𝑇

,

and

𝑛𝐼 =

∫︁
𝑑3𝑘

(2𝜋)3
[︀
𝑓BE

(︀
𝐸(𝑘, 𝑛), 𝜇𝐼

)︀
− 𝑓BE

(︀
𝐸(𝑘, 𝑛),−𝜇𝐼

)︀]︀
,

(11)

where pressure is given by Eq. (10). Here, 𝐸(𝑘, 𝑛) =
= 𝜔𝑘 + 𝑈(𝑇, 𝑛) with 𝜔𝑘 =

√
𝑚2 + k2 and the Bose–

Einstein distribution function reads

𝑓BE

(︀
𝐸,𝜇

)︀
=

[︂
exp

(︂
𝐸 − 𝜇

𝑇

)︂
− 1

]︂−1

. (12)

In order expressions (11) to coincide, as a result, the
following relation between the mean field and the ex-
cess pressure arises as the necessary condition:

𝑛
𝜕𝑈(𝑇, 𝑛)

𝜕𝑛
=

𝜕𝑃ex(𝑇, 𝑛)

𝜕𝑛
. (13)

As we see, this relation coincides literally with rela-
tion (7), which was derived using the definitions of
the mean field 𝑈(𝑇, 𝑛) and excess pressure 𝑃ex(𝑇, 𝑛)
in Eq. (4) and in Eq. (6), respectively. Relation (13)
that provides the thermodynamic consistency of the
model has a natural basis, because there is only one
source for both quantities 𝑈 and 𝑃ex, it is interaction
in the system.

2.1. Parametrization of the mean field

The thermodynamic mean-field model has been ap-
plied to several physically interesting systems includ-
ing the hadron-resonance gas [20] and the pionic gas
[23]. This approach was extended to the case of a
bosonic system at 𝜇𝐼 = 0 which can undergo the Bose
condensation [15,17]. In the present study, a general-
ized formalism given in Section 2 is used to describe
the particle-antiparticle system of bosons, when the
isospin density is finite, 𝑛𝐼 ̸= 0. At the same time,
we assume that the interaction between particles is
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described by the Skyrme-like mean field which de-
pends on the total particle-number density 𝑛. The
latter means that we consider just a strong interac-
tion. For further calculations we adopt the following
form of the mean field

𝑈(𝑛) = −𝐴𝑛+𝐵 𝑛2, (14)

where 𝐴 and 𝐵 are the model parameters, which
should be specified. In accordance with relation (13)
we calculate the excess pressure

𝑃ex(𝑛) = −1

2
𝐴𝑛2 +

2

3
𝐵 𝑛3. (15)

The mean field 𝑈(𝑛) can be thought as some effec-
tive one which includes several contributions. For in-
stance, the investigation of the properties of a dense
and hot pion gas is well inspired by the formation
of the medium with low baryon numbers at midra-
pidity what was proved in the experiments at RHIC
and LHC [27, 28]. By this reason, in our calcula-
tions, we consider a general case of 𝐴 > 0, to study
a bosonic system with both attractive and repul-
sive contributions to the mean field (14). Our main
goal is the study how the relation between repul-
sion and attraction in the system influences the Bo-
se-condensation and thermodynamic properties of the
bosonic system. In the present paper, to investigate
these features, we keep the repulsive coefficient 𝐵 as
a constant, whereas the coefficient 𝐴, which deter-
mines the intensity of attraction of the mean field
(14), will be varied. To do this, it is advisable to
parametrize the coefficient 𝐴 with the help of solu-
tions of equation 𝑈(𝑛) + 𝑚 = 0, similar to para-
metrization adopted in Refs. [15, 17]. For the given
mean field (14) there are two roots of this equation
(𝑛1,2 = (𝐴∓

√
𝐴2 − 4𝑚𝐵)/2𝐵)

𝑛1 =

√︂
𝑚

𝐵

(︁
𝜅−

√︀
𝜅2 − 1

)︁
,

𝑛2 =

√︂
𝑚

𝐵

(︁
𝜅+

√︀
𝜅2 − 1

)︁
.

(16)

where
𝜅 ≡ 𝐴

2
√
𝑚𝐵

.

Then we can parameterize the attraction coefficient as
𝐴 = 𝜅𝐴c with 𝐴c = 2

√
𝑚𝐵. As we will show below,

the dimensionless parameter 𝜅 is the scale parameter

of the model which determines the phase structure of
the system. As it is seen from Eq. (16) for the values
of parameter 𝜅 < 1 there are no real roots. The crit-
ical value 𝐴c is obtained when both roots coincide,
i.e. when 𝜅 = 1, then 𝐴 = 𝐴c = 2

√
𝑚𝐵.

We consider two intervals of the parameter 𝜅. First
interval corresponds to 𝜅 ≤ 1, there are no real roots
of equation 𝑈(𝑛) +𝑚 = 0. We associate these values
of 𝜅 with a “weak” attractive interaction and in the
present study we consider variations in the attraction
coefficient 𝐴 for values of 𝜅 only from this interval. Se-
cond interval corresponds to 𝜅 > 1, there are two real
roots of equation 𝑈(𝑛) + 𝑚 = 0. We associate this
interval with a “strong” attractive interaction. This
case will be considered elsewhere.

3. The Phase Transition
to the Bose–Einstein Condensate

In the mean-field approach the behavior of the
particle-antiparticle boson system, when both com-
ponents in thermal (kinetic) phase, is determined by
the set of two transcendental equations

𝑛=

∫︁
𝑑3𝑘

(2𝜋)3
[︀
𝑓BE

(︀
𝐸(𝑘, 𝑛), 𝜇𝐼

)︀
+ 𝑓BE

(︀
𝐸(𝑘, 𝑛),−𝜇𝐼

)︀]︀
,

(17)

𝑛𝐼 =

∫︁
𝑑3𝑘

(2𝜋)3
[︀
𝑓BE

(︀
𝐸(𝑘, 𝑛), 𝜇𝐼

)︀
− 𝑓BE

(︀
𝐸(𝑘, 𝑛),−𝜇𝐼

)︀]︀
,

(18)

where the Bose–Einstein distribution function
𝑓BE

(︀
𝐸,𝜇𝐼

)︀
is defined in (12) and 𝐸(𝑘, 𝑛) = 𝜔𝑘+𝑈(𝑛),

the degeneracy factor 𝑔 = 1 because the spin of
particles is zero. Equations (17)–(18) should be
solved selfconsistently with respect to 𝑛 and 𝜇𝐼 for
the given canonical variables (𝑇, 𝑛𝐼). Remind, in the
present we consider boson system in the Canonical
Ensemble. In this approach the chemical potential
𝜇𝐼 is a thermodynamic quantity which depends on
the canonical variables, i.e. 𝜇𝐼(𝑇, 𝑛𝐼).

In case of the cross state, when the particles,
i.e. 𝜋−-mesons, are in the condensate phase and an-
tiparticles are still in the thermal (kinetic) phase,
Eqs. (17), (18) should be generalized to include con-
densate component 𝑛

(−)
cond. We should take into ac-

count also that the particles (𝜋− or high-density com-
ponent) can be in condensed state just under the nec-
essary condition
𝑈(𝑛)− 𝜇𝐼 = −𝑚. (19)

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 8 563



V. Gnatovskyy, D. Anchishkin, D. Zhuravel et al.

During decreasing of temperature from high values,
where both 𝜋− and 𝜋+ are in the thermal phase, the
density of 𝜋−-component 𝑛(−)(𝑇, 𝑛𝐼) achieves first
the critical curve at temperature 𝑇cd, where at the
crossing point condition (19) is valid, but the density
of the condensate is zero at this point, i.e., 𝑛cond = 0.
This means that the curve 𝑛lim(𝑇 ), which is defined as

𝑛lim(𝑇 ) =

∫︁
𝑑3𝑘

(2𝜋)3
𝑓BE

(︀
𝜔𝑘, 𝜇𝐼

)︀⃒⃒⃒
𝜇𝐼=𝑚

, (20)

is the critical curve for 𝜋−-mesons or for high-density
component of the gas. As we see function (20) repre-
sents the maximal density of thermal (kinetic) boson
particles of the ideal gas at temperatures 𝑇 ≤ 𝑇cd

because the chemical potential has its maximum al-
lowed value. Hence, we obtain that the critical curve
of the particle-antiparticle boson system calculated
in the mean-field approach coincides with the critical
curve for the ideal gas.

With account for Eqs. (19) and (20) we write the
generalization of the set of Eqs. (17), (18)

𝑛 = 𝑛
(−)
cond(𝑇 ) + 𝑛lim(𝑇 )+

+

∫︁
𝑑3𝑘

(2𝜋)3
𝑓BE

(︀
𝐸(𝑘, 𝑛),−𝜇𝐼

)︀
, (21)

𝑛𝐼 = 𝑛
(−)
cond(𝑇 ) + 𝑛lim(𝑇 )−

−
∫︁

𝑑3𝑘

(2𝜋)3
𝑓BE

(︀
𝐸(𝑘, 𝑛),−𝜇𝐼

)︀
. (22)

Here 𝜇𝐼 = 𝑈(𝑛) + 𝑚. One can see from Eqs. (21),
(22) that the particle-number density 𝑛(+) is pro-
vided only by thermal 𝜋+ mesons. Whereas, the den-
sity 𝑛(−) is provided by two fractions: the con-
densed particles (𝜋− mesons at 𝑘 = 0) with the
particle-number density 𝑛

(−)
cond(𝑇 ), and thermal 𝜋−

mesons at |𝑘| > 0 with the particle-number density
𝑛lim(𝑇 ). Hence, the particle-density sum rule for the
phase of 𝜋− mesons only in the interval 𝑇 < 𝑇cd

reads: 𝑛(−) = 𝑛
(−)
cond(𝑇 ) + 𝑛lim(𝑇 ).

It is necessary to note that expression “particles are
in the condensate phase” is, of course, a conventional
one, because, in the essence, it is a mixture phase,
where, at a fixed temperature, some fraction of par-
ticles, i.e., a fraction of 𝜋−-mesons, belongs to the
thermal phase with momentum |𝑘| > 0, and the other
fraction of 𝜋−-mesons belongs to the Bose–Einstein
condensate, where all 𝜋−-mesons have zero momen-
tum, 𝑘 = 0.

For the further evaluation of the phase diagram,
one needs the value of the pressure. First, we give a
pressure for the state of the system, when both 𝜋−

and 𝜋+ mesons are in the thermal phase. When both
components of the 𝜋−-𝜋+ system are in the thermal
(kinetic) phase, the pressure reads

𝑝 =
1

3

∫︁
𝑑3𝑘

(2𝜋)3
𝑘2

𝜔𝑘

[︀
𝑓BE

(︀
𝐸(𝑘, 𝑛), 𝜇𝐼

)︀
+

+ 𝑓BE

(︀
𝐸(𝑘, 𝑛),−𝜇𝐼

)︀]︀
+ 𝑃ex(𝑛), (23)

where 𝑛(𝑇, 𝑛𝐼) and 𝜇𝐼(𝑇, 𝑛𝐼) are a solution of
Eqs. (17), (18).

For the cross state of the system, i.e., when 𝜋−

mesons are in the condensate phase, but 𝜋+ mesons
are in the thermal phase, with regard for Eqs. (19)
and (20), we write

𝑝 =
1

3

∫︁
𝑑3𝑘

(2𝜋)3
𝑘2

𝜔𝑘

[︀
𝑓BE

(︀
𝐸(𝑘, 𝑛), 𝜇𝐼

)︀
+

+ 𝑓BE

(︀
𝐸(𝑘, 𝑛),−𝜇𝐼

)︀]︀
𝜇𝐼=𝑈(𝑛)+𝑚

+ 𝑃ex(𝑛), (24)

where 𝜇𝐼 = 𝑈(𝑛) +𝑚 and, at this value of the chem-
ical potential, we get 𝐸(𝑘, 𝑛)− 𝜇𝐼 =

√
𝑚2 + 𝑘2 −𝑚.

Here, we account for that the total particle-number
density 𝑛 consists of three pieces, 𝑛 = 𝑛

(−)
cond + 𝑛

(−)
th +

+𝑛(+). Because, in the condensate phase, 𝑛
(−)
th =

= 𝑛lim, we can calculate the density of the conden-
sate as 𝑛

(−)
cond = 𝑛(−) − 𝑛lim. In view of the chemical

potential in the distribution function of 𝜋− mesons,
we get

𝑝 =
1

3

∫︁
𝑑3𝑘

(2𝜋)3
𝑘2

𝜔𝑘

[︀
𝑓BE

(︀
𝜔𝑘,𝑚

)︀
+

+ 𝑓BE

(︀
𝐸(𝑘, 𝑛),−𝜇𝐼

)︀]︀
+ 𝑃ex(𝑛), (25)

where 𝜇𝐼 = 𝑈(𝑛) +𝑚.

3.1. Thermodynamic quantities

In what follows, a value of the repulsive coefficient
𝐵 of the mean field (14), is fixed. At the same time
the coefficient 𝐴, which determines the intensity of
attraction of the mean field (14), will be varied. The
coefficient 𝐵 is obtained from the estimate based on
the virial expansion [29], 𝐵 = 10𝑚𝑣20 with 𝑣0 equal
to four times the proper volume of a particle, i.e.,
𝑣0 = 16𝜋𝑟30/3. We take 𝑣0 = 0.45 fm3 that corre-
sponds to a “particle radius” 𝑟0 ≈ 0.3 fm. The nu-
merical calculations will be done for bosons with mass
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𝑚 = 139 MeV, which we call “pions”. In this case, the
repulsive coefficient is 𝐵/𝑚 = 2.025 fm6, and it is
kept constant through all present calculations.

At high temperatures, i.e. 𝑇 ≥ 𝑇cd, both compo-
nents of the bosonic particle-antiparticle system are
in the thermal phase, and thermodynamic properties
of the system are determined by the set of Eqs. (17)
and (18). Solving this set for given values 𝑇 and 𝑛𝐼 ,
we obtain the functions 𝜇𝐼(𝑇, 𝑛𝐼) and 𝑛(𝑇, 𝑛𝐼) and
then other thermodynamic quantities.

With decreasing the temperature, the particle den-
sity 𝑛(−)(𝑇 ) crosses the critical curve at the point,
which corresponds to the value 𝑇 = 𝑇cd, see Fig. 1 (on
the graph, 𝑇cd is denoted as 𝑇c). The dependence of
𝜋−-meson density on the temperature is depicted as
blue solid line 1, the dependence of 𝜋+-meson density
as blue dashed line 2, and the total density 𝑛 = 𝑛tot

as black solid line.
During a further decrease in the temperature in the

interval 𝑇 < 𝑇cd, the 𝜋−-mesons start to “drop down”
into the condensate state, which is characterized by
the value of momentum 𝑘 = 0 4. In the limit, when
𝑇 = 0, all particles of the high-density component,
i.e., 𝜋−-mesons, will be in the condensate phase. At
the same time, the density of the low-density compo-
nent or 𝜋+ mesons, which are in the thermal phase,
decreases with decreasing the temperature, and it be-
comes zero at 𝑇 = 0. For the temperatures less than
the critical one, i.e., 𝑇 < 𝑇cd, the thermodynamic
properties of the system are determined by Eqs. (21),
(22), where we take into account that 𝜇𝐼 = 𝑈(𝑛)+𝑚
for all temperatures of this interval unless the high-
density component 𝑛(−) is in condensed state.

Equation (21) can be used to determine the critical
temperature 𝑇cd. Indeed, let us consider that, at the
crossing point with the critical curve, the density of
the condensate is zero, so far, 𝑛

(−)
cond

(︀
𝑇cd

)︀
= 0, and

the density of thermal 𝜋− particles becomes equal
to 𝑛(−)

(︀
𝑇cd

)︀
= 𝑛lim

(︀
𝑇cd

)︀
. Then, at this tempera-

ture 𝑇 = 𝑇cd on the l.h.s. of Eq. (21), we have
𝑛 = 2𝑛lim

(︀
𝑇cd

)︀
− 𝑛𝐼 , and now, at this temperature

point on the critical curve, Eq. (21) with respect to
𝑇 reads as:
𝑛lim(𝑇 )− 𝑛𝐼 =

=

∫︁
𝑑3𝑘

(2𝜋)3
𝑓
(︀
𝐸(𝑘, 𝑛),−𝜇𝐼

)︀⃒⃒⃒
𝜇𝐼=𝑈(𝑛)+𝑚

(26)

4 We apply our consideration to the pion gas with 𝑛𝐼 = 𝑛(−) −
−𝑛(+) > 0.

Fig. 1. Temperature dependence of the particle-number densi-
ties of 𝜋− mesons, 𝑛(−) (blue solid lines 1 ), and of 𝜋+ mesons,
𝑛(+) (blue dashed lines 2 ), for the interacting 𝜋+-𝜋− pion gas
at 𝜅 = 0.1 and 𝑛𝐼 = 0.041, 0.065, 0.1 fm−3. The red dashed
line 3 is the critical curve that fixes the particle density of a
single-component ideal gas at 𝜇 = 𝑚𝜋 . The shaded area, la-
beled BEC, indicates the region, where the 𝜋− mesons develop
the Bose–Einstein condensate

with

𝐸(𝑘, 𝑛) = 𝜔𝑘 + 𝑈(2𝑛lim − 𝑛𝐼).

Solving Eq. (26) at 𝑛𝐼 = 0.1 fm−3, for 𝜅 = 0.5 and
𝜅 = 1.0, we obtained 𝑇cd = 128.8 MeV and 𝑇cd =
= 251 MeV, respectively.

Hence, it turns out that the temperature 𝑇
(−)
cd de-

termines the phase transition to BEC for whole pion
system, because the antiparticles (𝜋+-mesons) are
completely in the thermal state for all temperatures
and, thus, the condensate is created just by the par-
ticles of high-density component 𝑛(−)(𝑇 ). Then, the
total density of the condensate in the two-component
pion system at “weak” attraction, i.e., at 𝜅 ≤ 1, is cre-
ated by 𝜋−-mesons only, i.e., 𝑛cond = 𝑛

(−)
cond, and this

particle-number density plays the role of the order
parameter.

In what follows, we will investigate the phase struc-
ture of the particle-antiparticle system with respect
to the canonical variable 𝑛𝐼 . As the first step, it is
reasonable to obtain the dependencies of the densi-
ties 𝑛(−), 𝑛(+) and mean field 𝑈 with respect to 𝑛𝐼 ,
when we fix 𝑇 . Every isotherm crosses two different
phases; thus, for each particular phase, we have to
solve the relevant set of equations: 1) when both com-
ponents of the pion gas are in the thermal (kinetic)
states, it is necessary to solve Eqs. (17), (18); 2) when
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a b
Fig. 2. On both panels the dashed area marked as BEC represents the condensate states of the interacting 𝜋+-
𝜋− pion gas in the mean-field model. The mean field 𝑈(𝑛) versus isospin density 𝑛𝐼 at 𝜅 = 0.1 and 𝑇 = 80,
101.7, 127 MeV (a). The particle-number densities 𝑛(+), 𝑛(−) and 𝑛tot = 𝑛(+) + 𝑛(−) versus isospin density 𝑛𝐼

at 𝑇 = 80 MeV and 𝜅 = 0.1 (b). Here 𝑛
(−)
th and 𝑛

(−)
cond is the particle density of the thermal and condenssed 𝜋−

mesons, respectively

𝜋−-component of the pion gas has a condensate con-
tribution we solve Eqs. (21), (22).

For the chosen isotherm 𝑇 , the point 𝑛𝐼 = 𝑛Ic di-
vides 𝑛𝐼 -axis into two pieces. When 𝑛𝐼 ≤ 𝑛Ic, 𝜋−-
and 𝜋+-mesons are in the thermal phase. While, for
𝑛𝐼 > 𝑛Ic, 𝜋−-mesons have condensate contribution,
but 𝜋+-mesons are still completely in the thermal
phase.

The dependence of the mean field on 𝑛𝐼 for three
values of temperature, 𝑇 = 40, 80, 100 MeV, is shown
in Fig. 2 on the left panel. It is seen that the dif-
ference in the curves associated with different tem-
peratures is very weak after the minimum of the
function 𝑈

(︀
𝑛(𝑇, 𝑛𝐼)

)︀
. At the point 𝑛𝐼 = 𝑛I0, where

𝑈(𝑛I0) = 0, the mean field changes its sign and be-
comes completely repulsive, at 𝜅 = 0.1. We obtained
𝑛I0 ≈ 0.14 fm−3.

The results of calculations of the particle-number
densities 𝑛(−), 𝑛(+) and 𝑛 ≡ 𝑛tot = 𝑛(−) + 𝑛(+) as
functions of the isospin density 𝑛𝐼 at 𝑇 = 101.7 MeV,
𝜅 = 0.1 are depicted in Fig. 2 on the right panel.

It is seen that the density of 𝜋+ mesons de-
creases for small 𝑛𝐼 with increasing 𝑛𝐼 and then be-
comes approximately constant. In fact, this behavior
is quite understood. Indeed, in accordance with self-
consistent Eqs. (17), (18) or Eqs. (21), (22) (it does
not matter what pair of equations we take) we have
𝑛(+) = (𝑛−𝑛𝐼)/2. But, as we see, the raise of the to-

tal particle density 𝑛 at the beginning is much lower
than 𝑛𝐼 . That is why, with increasing 𝑛𝐼 , the particle
density of 𝜋+ mesons goes down at the beginning and
then becomes approximately constant.

4. The Phase Diagram
of the Boson Particle-Antiparticle System

In order to analyze the phase structure of the particle-
antiparticle system, we look for the dependence of
the pressure 𝑝(𝑇, 𝑛𝐼) on the isospin density 𝑛𝐼 at a
fixed temperature 𝑇 . That is, we study the behav-
ior of the pressure on the isotherm. At the begin-
ning, as the first step, we test an ideal gas of 𝜋−-
𝜋+ mesons as a reference point. The phase structure
of the system in this case is depicted in the two up-
per panels in Fig. 4 for the dependencies 𝑝 = 𝑝(𝑣𝐼)
and 𝑝 = 𝑝(𝑛𝐼), where 𝑣𝐼 = 1/𝑛𝐼 . In this figure,
the isotherm 𝑇qgp = 160 MeV separates the states
of quark-gluon plasma (QGP), and the blue shaded
area marked BEC represents the states of the Bose–
Einstein condensate. We see that there is no liquid-
gas phase transition, and the pressure of an ideal gas
naturally increases with 𝑛𝐼 in the thermal phase, but
becomes constant in the condensed phase. This ef-
fect arises because, in a multiparticle system without
interaction, pressure exists only due to the kinetic
movement of thermal particles with nonzero momen-
tum, 𝑘 ̸= 0. When we increase the particle density
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a b
Fig. 3. Phase diagrams in the ideal 𝜋−-𝜋+ gas. Pressure versus inverse isospin density 𝑣 = 1/𝑛𝐼

(a) and versus isospin density 𝑛𝐼 (b). The 𝑇 = 160 MeV isotherm is the approximate beginning of
the QGP phase. The red dashed curve 𝑝lim indicates the pressure of an ideal gas at 𝜇 = 𝑚 and
separates thermal phase from the BEC phase

a b
Fig. 4. Phase diagrams of the 𝜋−-𝜋+ system with repulsion only between particles, i.e., 𝜅 = 0 (the
same notations as in the former Fig. 3)

from zero and go along a specific isotherm 𝑇 , we
come to the point 𝑛cd on the critical curve 5. At this
point we reach the maximum density of the thermal
particles. The further increase of the particle density
is due only to increase of the density of condensate
particles. At the same time, in the condensate phase,
with an increase in 𝑛𝐼 , the total density of particles
in the system increases only due to an increase in the
density of condensed particles with 𝑘 = 0, which does
not contribute to the pressure.

5 The values 𝑇cd and 𝑛cd corresponds to the same point on the
critical curve 𝑛lim(𝑇 ). The notation 𝑇c is reserved for the
critical isotherm in the description of the liquid-gas phase
transition.

On the next step, the system with only repulsion
between particles, i.e., 𝜅 = 0, was examined. The
phase structure of the system in this case is depicted
on two lower panels in Fig. 4. In each panel, we see
three different phases: 1) “Thermal phase” – par-
ticles and antiparticles are both in thermal states;
2) “BEC” – the subsystem of particles have the
Bose–Einstein condensate contribution and the sub-
system of antiparticles, 𝜋+-mesons, is in thermal
phase; 3) “QGP” – the phase, where the quark-
gluon plasma occurs. This phase is separated by the
isotherm 𝑇 = 𝑇qgp = 160 MeV (we assume a melting
of all pion states at temperatures 𝑇 > 𝑇qgp). The line
𝑝lim is the pressure of 𝜋− mesons on the critical curve
𝑛lim. As it is evidently seen in the “condensate” area
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a b
Fig. 5. Phase diagrams: pressure versus inverse isospin density 𝑣 = 1/𝑛𝐼 (a) and versus isospin density 𝑛𝐼 (b) in 𝜋−-𝜋+

interacting system at 𝜅 = 0.2. The isotherm 𝑇qgp = 160 MeV separates the QGP phase. The red dashed curve 𝑝lim indicates the
pressure of an ideal gas at 𝜇 = 𝑚 and separates thermal phase from the BEC phase. The grey dashed “triangle” represents the
mixed phase of the gas and liquid, which is almost in the 𝜋−-meson condensate

the behavior of isotherms is different in comparison
to isotherms in ideal gas: the pressure increases with
the isospin density. This effect is due to the presence
of positive excess pressure 𝑃ex(𝑛) as an additional
contribution along with the kinetic pressure in the
system.

If there is an attraction between particles, then the
isotherms for temperatures from the interval 𝑇 < 𝑇c

show a “sinusoidal” behavior in the finite interval of
𝑛𝐼 . According to the standard thermodynamic ap-
proach, this specific isotherm behavior can be con-
sidered as a liquid-gas phase transition. To solve the
problem, we apply Maxwell’s generalized rules (see
the Appendix A), which, unlike the textbook pre-
sentation of Maxwell’s design, deal with the isospin
(charge) density rather than the total particle den-
sity. As it follows from the generalized Maxwell’s
rules, the pressure associated with the isotherms,
which cross the mixed liquid-gas phase, has a con-
stant value, as well as the chemical potential. As a
result, we obtain the binodal, which determines the
region of the liquid-gas phase transition in a similar
way as was done in Ref. [30]. The resulting phase di-
agram is shown in Fig. 5. The mixed liquid-gas phase
(shaded gray area) appears to be almost entirely in
the condensate phase (labeled GAS + LIQ+ BEC).
Remind that the density of condensate in the two-
component pion system is created by 𝜋− mesons
only, i.e., 𝑛cond = 𝑛

(−)
cond. This means that a cer-

tain part of 𝜋− mesons consists of particles with
𝑘 = 0. At the same time, the thermal 𝜋− mesons

together with 𝜋+ mesons create the mixture of a gas
and a liquid.

4.1. The liquid-gas phase transition
in the quantum particle-antiparticle
system of bosons

We return to discussion of the interacting 𝜋+-𝜋− sys-
tem. If we consider the quantum statistics, when deal-
ing with the liquid-gas phase transition, then, due to
the appearance of the condensate, the situation be-
comes different from that which was in the case of the
Boltzmann statistics. It turns out that the presence
of the condensate strongly affects the position of the
local maximum of pressure. Indeed, this maximum
is localized now on the curve 𝑝lim(𝑛𝐼), which repre-
sents the pressure in the system that is determined
by the states belonged to the critical curve 𝑛lim(𝑇 )
of the 𝜋−-meson subsystem. Remind, only this sub-
system of mesons develops the Bose-condensate in
the case of the weak attraction with 𝑛(−)

⃒⃒
crit. curve

=
𝑛lim(𝑇 ). The states (𝑇, 𝑛lim(𝑇 )) determine the total
density of particles 𝑛 = 2𝑛lim(𝑇 )−𝑛𝐼 . Thus, the total
pressure at these states reads

𝑝lim(𝑛𝐼) = 𝑝kin(𝑇, 𝑛𝐼) + 𝑃ex(𝑛), (27)

where the kinetic pressure at the states (𝑇, 𝑛lim(𝑇 ))
looks like

𝑝kin =
1

3

∫︁
𝑑3𝑘

(2𝜋)3
k2

𝜔𝑘

[︀
𝑓BE(𝜔𝑘,𝑚)+

+ 𝑓BE

(︀
𝐸(𝑘, 𝑛),−𝜇𝐼

)︀]︀
(28)
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a b
Fig. 6. Phase diagrams: the pressure versus isospin density in the interacting 𝜋−-𝜋+ system at 𝜅 = 0.1 (a) and 𝜅 = 0.3 (b).
Below the critical isotherm 𝑇c = 101.7 MeV the liquid-gas phase transition takes place. The isotherm 𝑇 = 160 MeV is the limit
of the QGP phase. The red dashed curve 𝑝lim separates thermal phase from the BEC phase (a). The virtual critical isotherm
𝑇c = = 163 MeV, calculated at 𝜅 = 0.3, lies in the QGP phase, which is bounded by the isotherm 𝑇c = 160 MeV (b)

with 𝐸(𝑘, 𝑛) = 𝜔𝑘 + 𝑈(𝑛) and 𝜇𝐼 = 𝑈(𝑛) +𝑚. The
curve 𝑝lim(𝑛𝐼) separates the pressure that correspond
to the condensate states (shaded area marked as
BEC) from the pressure that correspond to the the
thermal states of the boson system, see Figs. 4–6.

Next, we are going to prove two features that are
inherent to the behavior of the pressure in the con-
densate phase. The first feature: the kinetic pressure
along each isotherm in the condensate phase is ap-
proximately constant

𝑝kin(𝑇, 𝑛𝐼)
⃒⃒
𝑇=const

≈ const. (29)

a) This will be an exact equality in the absence of
interaction between particles, when 𝑝 = 𝑝kin + 𝑃ex

reduces to 𝑝 = 𝑝kin(𝑇, 𝑛𝐼). The pressure of the two-
component ideal gas is depicted in Fig. 3. We see the
constant pressure in the condensate phase (shaded
blue area). The effect, which is indicated in Eq. (29),
arises, because the increase of the variable 𝑛𝐼 in the
condensate phase occurs only due to the increase of
condensed particles, whereas the density of thermal
particles remains constant along isotherm. But, the
increase of the number of particles in the system
with zero momentum 𝑘 = 0 do not contribute to
the kinetic pressure. Here, we discuss the pressure of
𝜋− mesons, which develop the condensate states. The
partial pressure of 𝜋+ mesons on the same isotherm
𝑇 is calculated for 𝜇 = 𝑚, and it is created only by

thermal particles, whose density is also constant in
the condensate phase. By this, we prove the rigorous
validity of Eq. (29) in the ideal 𝜋− - 𝜋+ meson system.

b) In the system with interaction, equality (29) is
approximately valid. As it is seen from Eq. (28), the
first contribution of pressure, i.e., the kinetic partial
pressure of 𝜋− mesons, which contributes 98% to 𝑝kin,
is still constant, when we increase 𝑛𝐼 , because 𝑈(𝑛)−
𝜇𝐼 = −𝑚 in the condensate phase. The kinetic par-
tial pressure of 𝜋+ mesons, which are in the thermal
phase, is suppressed, because the distribution func-
tion looks like 𝑓BE = 1/{exp [(𝜔𝑘 + 2𝑈(𝑛) +𝑚)/𝑇 ]−
− 1}, and the contribution of 𝜋+ mesons to the ki-
netic pressure is not more than 2%. Hence, we can
adopt that, in the condensate phase, the kinetic pres-
sure in 𝜋−-𝜋+ meson system is constant with a good
accuracy, and Eq. (29) is approximately valid.

The second feature: The pressure has the follow-
ing structure, 𝑝 = 𝑝kin + 𝑃ex. It is obvious that the
kinetic pressure is always positive, 𝑝kin > 0, and the
excess pressure is not, its sign depends primarily on
the density 𝑛𝐼 . As can be seen in Fig. 2 on the left
panel, the excess pressure 𝑃ex is negative (𝑈(𝑛), and
𝑃ex have the same sign). Due to this, with increasing
𝑛𝐼 , the pressure on each isotherm 𝑇 < 𝑇c begins to
go down in the condensate phase after crossing the
line 𝑝lim(𝑛𝐼). This decreasing of the pressure is go-
ing on up to the point of the local minimum, as it is
shown in Fig. 7, a. In this figure, we present the re-
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a

b

c
Fig. 7. Pressure contributions vs isospin density in the 𝜋−-𝜋+

interacting system at 𝑇 = 80 MeV and 𝜅 = 0.1. A local maxi-
mum at the edge of the condensate region and a local minimum
that is due to metastable and unphysical pressure segments are
shown in the small window. Shaded area indicates the Bose–
Einstein condensate (BEC) states (a). Critical temperature
𝑇c of the liquid-gas phase transition vs attraction parameter 𝜅

(b). Critical temperature 𝑇c of the liquid-gas phase transition
vs isospin critical density 𝑛Ic (c)

sults of calculation of the kinetic pressure 𝑝
(−)
kin of the

𝜋(−) mesons, 𝑝(+)
kin of the 𝜋(+) mesons, and the excess

pressure 𝑃ex.
The liquid-gas phase transition occurs, when the

pressure in the system possesses firstly a local max-
imum and then a local minimum, when the isospin
density 𝑛𝐼 increases. Let us consider the structure of
the pressure in the condensate region. For the deriva-
tive of the total pressure after some algebra (see Ap-
pendix B), we get

𝜕𝑝(𝑇, 𝑛𝐼)

𝜕𝑛𝐼
=

(︂
1− 2𝑛(+)

𝑛

)︂
𝜕𝑃ex(𝑛)

𝜕𝑛

𝜕𝑛

𝜕𝑛𝐼
= 0. (30)

Here, we use 𝜕𝑝
(−)
kin (𝑇, 𝑛𝐼)/𝜕𝑛𝐼 = 0, For a positive

value of the bracket (1 − 2𝑛(+)/𝑛) > 0, where 𝑛 =
= 2𝑛(+) + 𝑛𝐼 , Eq. (30) leads to

𝜕𝑃ex(𝑛)

𝜕𝑛
= 0 → 𝑛(−𝐴+ 2𝐵 𝑛) = 0, (31)

where, for the second equation, we use the explicit
form of 𝑃ex given in Eq. (15).

Therefore, the minimum of the pressure is in the
point

𝑛(min) =
𝐴

2𝐵
= 𝜅

√︂
𝑚

𝐵
, (32)

where 𝐴 = 2𝜅
√
𝑚𝐵. Indeed, it is a minimum, because

the sign of the second derivative at this point is pos-
itive, 𝜕2𝑃ex(𝑛)

𝜕𝑛2 = 𝐴 > 0. For the temperature 𝑇 = 𝑇c,
i.e., on the critical isotherm, this total particle den-
sity obtained in Eq. (32), or the point

(︀
𝑇c, 𝑛

(min)
)︀
,

determines the critical point. Actually, one can make
transform:

(︀
𝑇c, 𝑛

(min)
)︀
→
(︀
𝑇c, 𝑛

(min)
𝐼

)︀
, thus, it will

be determined a critical point in (𝑇, 𝑛𝐼)-plane.
The critical temperature can be found as a solution

of the equation, when 𝑝max coincides with 𝑝min

𝑝max(𝑇c) = 𝑝min(𝑇c). (33)

However, in the case of a presence of the condensate,
it is not possible to determine the maximum of the
pressure using the equation 𝜕𝑝(𝑇, 𝑛𝐼)/𝜕𝑛𝐼 = 0, be-
cause the isotherm is not a smooth function on the
edge of the condensate. In accordance with the text-
book procedure: to find the maximum and minimum
of the smooth function in the region with the edges,
one has to compare the values of the pressure given
by solutions of Eq. (30) with the values of the pres-
sure on the edges of the region. As we argued above,
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Eq. (30) determines only a local minimum of the pres-
sure, whereas a local maximum is on the edge of the
condensate region that is to the left of a local min-
imum, see Fig. 7, a. In the plots of the phase dia-
grams, see Fig. 6, the edge between the thermal phase
and the condensate phase is indicated as the pressure
𝑝lim(𝑛𝐼), which corresponds to the states (𝑇, 𝑛lim(𝑇 ))
on the critical curve 𝑛lim(𝑇 ), see the red dashed line in
Fig. 1. Hence, the local maximum of every isotherm
𝑇 ≤ 𝑇c belongs to the curve 𝑝lim(𝑛𝐼).

We are going now to discuss the algorithm for cal-
culation of the critical temperature 𝑇c. The total den-
sity of particles in the particle-antiparticle system
reads

𝑛(𝑇 ) = 𝑛(−)(𝑇 ) + 𝑛(+)(𝑇 ). (34)

For the states on the critical curve, where the con-
densate disappears, for any temperature, one has
𝑛(−)(𝑇 ) = 𝑛lim(𝑇 ). Because the density of 𝜋(−) me-
sons at the critical temperature 𝑇c belongs also to the
critical curve, we get 𝑛(−)(𝑇c) = 𝑛lim(𝑇c). Hence, at
the critical temperature, one can rewrite Eq. (34) as

𝑛(𝑇c) = 𝑛lim(𝑇c) + 𝑛
(+)
th (𝑇c), (35)

where 𝑛
(+)
th is the density of the thermal 𝜋+

mesons. As we argued, the density 𝑛(𝑇c), determined
in Eq. (35), corresponds to the local maximum of the
isotherm pressure. In the liquid-gas phase transition
the critical isotherm crosses the point, where the lo-
cal maximum coincides with the local minimum of the
pressure, that is, the isotherm temperature equals to
the critical temperature 𝑇c. Thus, if, in the place of
𝑛(𝑇c) in Eq. (35), we put the density 𝑛(min) from
Eq. (32), we come to equation that determines 𝑇c:

𝑛lim(𝑇c) + 𝑛
(+)
th (𝑇c) = 𝑛(min). (36)∫︁

𝑑3𝑘

(2𝜋)3
1

exp [(𝜔𝑘 −𝑚)/𝑇c]− 1
+

+

∫︁
𝑑3𝑘

(2𝜋)3
1

exp
{︁[︀
𝜔𝑘 + 2𝑈(𝑛(min)) +𝑚

]︀
/𝑇c

}︁
− 1

=

= 𝑛(min), (37)

where 𝑛(min) = 𝐴/2𝐵 = 𝜅
√︀
𝑚/𝐵, and we use the

definition of the 𝑛lim given in Eq. (20). Solution of
this equation determines the curve 𝑇c(𝜅), which is de-
picted in Fig. 7, b. We account for that the second in-
tegral of Eq. (37) that represents 𝑛(+)

th is small in com-
parison to the first term. Therefore, we neglects it.

4.2. Discussion

We can compare the characteristics of the liquid-gas
phase transition in the classical and quantum inter-
acting boson systems. The interaction in both sys-
tems was studied in the framework of the mean-field
model with the mean field 𝑈(𝑛) = −𝐴𝑛 + 𝐵𝑛2, at
the same values of attractive coefficient 𝐴 and re-
pulsive coefficient 𝐵. As a result, we obtain that the
presence of the condensate, which is due to the quan-
tum Bose statistics, sufficiently increases the value of
the critical temperature of the liquid-gas phase tran-
sition. Indeed, at the attraction parameter 𝜅 = 0.2
for the classical gas, we get the critical temperature
𝑇c = 2.8 MeV (𝑇c = 𝐴2/8𝐵) and, for the quantum
system, we get 𝑇c = 139 MeV. Let us discuss this
phenomena.

It is necessary to point out that the quantum
bosonic system possesses the increasing of 𝑇c with
an increase of the attractive parameter 𝐴. In fact,
for 𝜅 = 0.1 it was obtained 𝑇c = 101 MeV and for
𝜅 = 0.3 it was obtained 𝑇c = 163 MeV, see (compare)
left and right panels in Fig. 6. The increase in 𝑇c is
caused primarily by the peculiarities of the pressure
behavior in the condensate phase. An additional con-
tribution is made by “turning on” quantum statistics
in the boson system.

Indeed, in a quantum system, the Bose-statistics
“generates” an effective attraction between particles,
whereas the Fermi statistics “generates” an effec-
tive repulsion. Hence, a “switching on” of the Bose-
statistics in the system results in the effective increas-
ing of the attraction between particles or leads to an
effective increasing of the attraction coefficient 𝐴 in
the mean field 𝑈(𝑛). Indeed, the statistically induced
interaction potential 𝑉 (𝑟) for the first order quantum
correction reads

𝑉 (𝑟) = −𝑇 ln
[︁
1∓ 𝑒−2𝜋𝑟/Λ2

]︁
, (38)

where 𝑟 is the distance between particles, Λ =
=
√︀
2𝜋/𝑚𝑇 is the thermal wave length, and the up-

per sign corresponds to the Fermi statistics, whereas,
the lower sign to the Bose statistics. Evidently, this
two-particle effective potential possesses the attrac-
tive behavior in the case of the Bose statistics and
the repulsive behavior in the case of the Fermi statis-
tics (the correction is valid, when 𝑟 ≫ Λ). Hence,
the transit from the classical gas to the quantum
one is twofold. First, the effective attraction between
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particles goes up, and, second, the condensate that
is presented now in the system determines the in-
crease of the critical temperature. We emphasize that
a presence of the condensate that is due to the quan-
tum statistics and the interplay of attraction and
repulsion between particles make this “jump up” of
the critical temperature. The main reason for this is
that, the kinetic pressure in the condensate is almost
constant.

At the same time, we can name the opposite effect
which is due to the Fermi statistics. As was shown in
Ref. [31], the quantum van der Waals equation that
was applied to the description of the nuclear matter
gives, for the liquid-gas phase transition, the critical
temperature 𝑇c = 19.7 MeV. This value of the criti-
cal temperature is close to the experimental estimates
given in Refs. [32, 33]. On the other hand, the clas-
sical van der Waals equation gives, for the liquid-gas
phase transition, the value 𝑇c = 29 MeV. As we have
discussed in this section and in view of Eq. (38), the
Fermi statistics effectively amplifies the repulsion be-
tween particles what means an effective decreasing
of the attraction between particles. This quantum-
statistical effect of the decreasing of the attraction
in the system can be explanation of the decreasing of
the critical temperature from the value 𝑇c = 29 MeV
to the value 𝑇c = 19.7 MeV when moving from the
classical description of the liquid-gas phase transi-
tion in the nuclear matter to the quantum-statistical
one [31].

5. Discussion and Concluding Remarks

The article presents a thermodynamically consistent
approach for description of the Bose–Einstein and
liquid-gas phase transitions in a dense self-interacting
bosonic system at a conserved isospin (charge) den-
sity 𝑛𝐼 . As an example, we have considered the sys-
tem of meson particles with 𝑚 = 𝑚𝜋 and zero
spin; we name these bosonic particles as “pions” just
conventionally. This choice was made, because the
charged 𝜋-mesons are the lightest nuclear particle and
the lightest hadrons that couple to the isospin num-
ber. For the same reason, a “temperature creation” of
the particle-antiparticle pairs in the temperature in-
terval 𝑇 ≤ 200 MeV becomes a common problem for
the quantum-statistical methods. Description of ther-
modynamic properties of the system was carried out
using the Canonical Ensemble formulation, where the
chemical potential 𝜇𝐼 is a thermodynamic quantity

which depends on the canonical variables (𝑇, 𝑛𝐼). To
obtain phase diagram, which reflects the liquid-gas
phase transition, we calculated the dependence of the
pressure with respect to the isospin density for dif-
ferent isotherms. Then we modified the pressure de-
pendence in accordance with the generalized Maxwell
rules (see Appendix).

It should be noted that the electrical charge of the
condensate is negative in the case where the total
charge of the system is negative. Vice versa, the elec-
tric charge of the condensate would be positive, if the
total charge of the bosonic system is positive. It is
shown that, at a fixed temperature, the dependencies
of the particle densities 𝑛(−)(𝑇, 𝑛𝐼), and 𝑛tot(𝑇, 𝑛𝐼)
with respect to 𝑛𝐼 are almost linear and close to one
another for 𝑛𝐼 > 𝑛𝐼𝑐. This happens, since, for ev-
ery fixed 𝑇, the value of particle number density 𝑛

(−)
th

of thermal (kinetic) 𝜋−-mesons does not change [19],
and the value of 𝑛(+) is small and approximately con-
stant (see Fig. 2, b). Because only 𝜋− mesons undergo
the phase transition to the Bose–Einstein condensate,
the increase of the densities 𝑛(−) and 𝑛 = 𝑛tot for
𝑛𝐼 > 𝑛𝐼𝑐 is almost due to an increase of the density
of condensate.

Phase diagrams were introduced in Fig. 4. The
scale parameter of the model 𝜅 = 𝐴/(2

√
𝑚𝐵), which

is itself a combination of the mean-field parameters
𝐴 and 𝐵 (𝑈(𝑛) = −𝐴𝑛 + 𝐵𝑛2) and the particle
mass, determines the different possible phase sce-
narios which occur in the particle-antiparticle bo-
son system. However, when the attraction coefficient
𝐴 = 𝜅𝐴𝑐 is zero (i.e., 𝜅 = 0), the system can be in
the thermal or condensate phase, but cannot develop
a liquid-gas phase transition.

In the case of 𝜅 > 0, the liquid-gas phase tran-
sition occurs in the system, and a transition from
the thermal phase to the condensate one is possible
both with the liquid-gas phase transition, if 𝑇 < 𝑇c,
and without it when 𝑇 ≥ 𝑇c. In other words, there is
a region in the phase diagram, where the BEC and
the mixed liquid-gas phase exist simultaneously (grey
area on the left panel in Fig. 6). A similar situation is
described in [30], where the Bose–Einstein condensa-
tion and the liquid-gas phase transition in 𝛼-matter
were investigated. The area above the isotherm 𝑇 =
= 𝑇qgp = 160 MeV (QGP) is the phase, where the
quark-gluon plasma occurs. We assume this to be a
limitation of our model, since a melting of all pion
states at temperatures higher than 𝑇qgp.
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a b

c d
Fig. 8. Pressure versus inverse isospin density 1/𝑛𝐼 in the interacting 𝜋+-𝜋− pion system in the framework of the mean-field
model: in two top panels at 𝜅 = 0.1 (a and b) and in two bottom panels at 𝜅 = 0.2 (c and d). Onset of the liquid-gas phase
transition is determined under the Maxwell rule

The role of neutral pions is left beyond the scope of
the present paper. The present analysis can be impro-
ved by addressing these issues in more detail and also
by generalizing the calculation to nonzero contribu-
tion to the mean field which depends on 𝑛𝐼 . Authors
plan to consider these problems elsewhere.
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APPENDIX A.
Liquid-Gas Phase Transition:
the Maxwell Rules in the System
with Conservation of the Charge

To determine the points 𝑣 = 1/𝑛𝐼 which correspond to the
Maxwell rule one needs to solve the system of two equations
with respect to the points 𝑣𝑥1 = 1/𝑛𝐼2 and 𝑣𝑥2 = 1/𝑛𝐼1 (note,
we obtain the pressure as function of 𝑛𝐼 , i.e. 𝑝(𝑛𝐼)). In case of
the homogeneous system for isothermal process 𝑇 = const we
have

𝑑𝑝 = 𝑠𝑑𝑇 + 𝑛𝐼𝑑𝜇𝐼 → 𝑑𝑝 = 𝑛𝐼𝑑𝜇𝐼 . (A1)

Then (1):

𝑑𝜇𝐼 = 0 → 𝑑𝑝 = 0 →
2∫︁

1

𝑑𝑝 = 0 → 𝑝1 = 𝑝2. (A2)
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a b

c d
Fig. 9. Pressure versus isospin density 𝑛𝐼 in the interacting 𝜋+-𝜋− pion system in the framework of the mean-field model: in
two top panels at 𝜅 = 0.1 (a and b) and in two bottom panels at 𝜅 = 0.2 (c and d)

Then (2):
1

𝑛𝐼
𝑑𝑝 = 𝑑𝜇𝐼 , 𝑑𝜇𝐼 = 0 →

2∫︁
1

1

𝑛𝐼
𝑑𝑝 = 0. (A3)

We write these two equations (A2), (A3) as a set with respect
to 𝑣1 and 𝑣2,

𝑝 (1/𝑣1) = 𝑝 (1/𝑣2), (A4)
𝑣2∫︁

𝑣1

𝑑𝑣 𝑝 (1/𝑣) = (𝑣2 − 𝑣1) 𝑝 (1/𝑣1), (A5)

where last equation can be read as
𝑣2∫︁

𝑣1

𝑑𝑣
[︀
𝑝 (1/𝑣)− 𝑝 (1/𝑣1)

]︀
= 0. (A6)

Then, after we get solution one can determine the values 𝑛𝐼1 =

1/𝑣2 and 𝑛𝐼2 = 1/𝑣1.
The graphical examples of the application of this algo-

rithm are depicted in Figs. 8–9 for the set of temperatures
𝑇 = 40, 80, 100 MeV and two variations of the parameter
𝜅 = 0.1 and 𝜅 = 0.2.

APPENDIX B.
Derivative of the Pressure
in the Condensate Phase

Here we present the details of calculation of the derivative of
the pressure in the condensate phase. As was mentioned before,
for the pressure in the interacting system one has 𝑝 = 𝑝kin +

𝑃ex. For the derivative of the kinetic contribution we get

𝜕𝑝kin(𝑇, 𝑛𝐼)

𝜕𝑛𝐼
=

𝜕𝑝
(−)
kin (𝑇, 𝑛𝐼)

𝜕𝑛𝐼
+

𝜕𝑝
(+)
kin (𝑇, 𝑛𝐼)

𝜕𝑛𝐼
,

𝜕𝑝
(−)
kin (𝑇, 𝑛𝐼)

𝜕𝑛𝐼
= 0.

(B1)

From Eq. (10) it follows

𝑝
(+)
kin (𝑇, 𝑛𝐼) = −𝑇

∫︁
𝑑3𝑘

(2𝜋)3
×

× ln

[︃
1− exp

(︃
−
√
𝑚2 + k2 + 2𝑈(𝑛) +𝑚

𝑇

)︃]︃
, (B2)
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We calculate derivative of this partial pressure:

𝜕𝑝
(+)
kin (𝑇, 𝑛𝐼)

𝜕𝑛𝐼
=

= −
∫︁

𝑑3𝑘

(2𝜋)3
1

exp

(︂√
𝑚2+k2+2𝑈(𝑛)+𝑚

𝑇

)︂
− 1

×

× 2
𝜕𝑈(𝑛)

𝜕𝑛

𝜕𝑛

𝜕𝑛𝐼
. (B3)

Hence, we get

𝜕𝑝kin(𝑇, 𝑛𝐼)

𝜕𝑛𝐼
= −2𝑛(+)(𝑇, 𝑛𝐼)

𝜕𝑈(𝑛)

𝜕𝑛

𝜕𝑛

𝜕𝑛𝐼
. (B4)

Now using Eq. (7) one can write

𝜕𝑝(𝑇, 𝑛𝐼)

𝜕𝑛𝐼
= −2𝑛(+)(𝑇, 𝑛𝐼)

𝜕𝑈(𝑛)

𝜕𝑛

𝜕𝑛

𝜕𝑛𝐼
+

𝜕𝑃ex(𝑛)

𝜕𝑛

𝜕𝑛

𝜕𝑛𝐼
=

=

(︃
1−

2𝑛(+)(𝑇, 𝑛𝐼)

𝑛(𝑇, 𝑛𝐼)

)︃
𝜕𝑃ex(𝑛)

𝜕𝑛

𝜕𝑛

𝜕𝑛𝐼
= 0. (B5)

With account for 𝑛 = 2𝑛(+)(𝑇, 𝑛𝐼) + 𝑛𝐼 one obtains that
2𝑛(+)/𝑛 < 1 for finite isospin densities, 𝑛𝐼 > 0. Thus, for a
positive value of the bracket (1− 2𝑛(+)/𝑛) > 0, equation (B5)
leads to

𝜕𝑃ex(𝑛)

𝜕𝑛
= 0. (B6)
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В. Гнатовський, Д.Анчишкiн,
Д.Журавель, В.Карпенко

ФАЗОВI ДIАГРАМИ РЕЛЯТИВIСТСЬКОЇ
САМОВЗАЄМОДIЮЧОЇ БОЗОННОЇ СИСТЕМИ

У рамках формалiзму канонiчного ансамблю та моделi се-
реднього поля дослiджується система взаємодiючих реля-

тивiстських бозонiв при скiнченних температурах i скiн-
ченних густинах iзоспiну. Середнє поле мiстить як притя-
гальну, так i вiдштовхувальну складовi. Отримано зале-
жностi термодинамiчних величин вiд температури та гу-
стини iзоспiну. Показано, що у разi наявностi притягання
мiж частинками в такiй бозоннiй системi, на фонi бозе-
айнштайнiвської конденсацiї додатково виникає фазовий
перехiд рiдина–газ. Наведено вiдповiднi фазовi дiаграми.
Пояснено причини, чому наявнiсть бозе-конденсату зна-
чно пiдвищує критичну температуру фазового переходу
рiдина–газ у порiвняннi з температурою, отриманою для
тiєї ж системи в рамках статистики Больцмана. Отриманi
результати можуть застосовуватися при iнтерпретацiї екс-
периментальних даних, зокрема у питаннi, наскiльки кри-
тична точка змiшаної фази чутлива до присутностi конден-
сату Бозе–Айнштайна.

Ключ о в i с л о в а: релятивiстська бозонна система, кон-
денсацiя Бозе–Айнштайна, фазовий перехiд.
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