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AXION HALO AROUND
A BINARY SYSTEM OF DWARF STARS 1

The gravitational field of a clump of ultralight axion like particles (ALPs) in its core with a
rotating binary system of dwarf stars is computed. It is established that the induced quadrupole
mass moment of the clump is controlled parametrically by the 𝑀𝑎/𝑀 mass ratio of the axion
clump and the binary core.
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1. Introduction
Evidence of the existence of stars composed from
gravitating light scalar particles represents durable
challenge to astrophysical research [1, 2]. Various as-
pects of stationary equilibrium configurations where
gravitational attraction is compensated by the ki-
netic pressure of the constituents were investigated
by many authors [3–9]. Dynamics of the scalar star
formation has been explored by the kinetic simula-
tion of ensembles of gravitationally interacting free
particles [10].

Particularly interesting is the research direction
where the galactic halo formed by ultralight con-
stituents is built from superpositions of quantum
waves. In this case, the kinetic pressure compensating
the gravitational attraction has quantum origin, and
it would represent a quantum coherent phenomenon
on the largest known scale. The original proposition
[11] has been baptised as 𝜓𝐷𝑀 by Schive et al. [12]
emphasizing the role of quantum uncertainty counter-
ing gravitation below the Jeans scale. Applying this
balance requirement to dwarf spheroidal galaxies, a
lower limit for the mass of the superlight dark matter
particles was deduced. More recently, some progress
has been achieved in self-consistent determination of
the quantum superposition reproducing the observed
dark matter halo density profile of dwarf spheroidal
galaxies [13–15].
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With the advent of black hole observations research
has intensified on overdensities of axion like parti-
cles (ALP) producing primordial black holes (BH)
in an era preceding the inflation. Such objects would
not evaporate till today, if their mass is larger than
10−15 𝑀⊙. In the gravitational collapse of axions
also the emergence of BH pairs has non-zero chance
[16]. Around this kind of binary BH centers of grav-
itational force the surrounding axion minihalo might
further condensate, eventually producing a scalar
star [17].

The equilibrium ALP configuration around a sin-
gle BH is spherically symmetric. In the case of non-
relativistic motion of the halo particles the gravita-
tionally bound axion clump forms a so-called gravita-
tional atom. Higher energy configurations with non-
zero angular momentum might also arise dynami-
cally. One scenario considers a second BH falling on
a gravitational atom, which resonantly induces tran-
sitions to configurations of nonzero quadrupole (and,
possibly, also higher) moments [18, 19]. Such transi-
tions would produce characteristic observable effects
in the gravitational waves emitted by the system.

In this note I wish to discuss the interaction of
ALPs with another gravitationally bound compact
system, binaries of dwarf stars. Systematic search for
brown dwarfs has been started in the 1990s with
observing transiting light curves arising during the
passage of brown dwarfs in front of light emitting
stars. Very soon binary systems consisting of an ordi-

1 This work is based on the results presented at the XII
Bolyai–Gauss–Lobachevskii (BGL-2024) Conference: Non-
Euclidean Geometry in Modern Physics and Mathematics.
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nary white dwarf star and an accompanying brown
dwarf were discovered. About 5–6% of the known
brown dwarfs has a lighting star companion [20].
From statistical analyses, one estimates the separa-
tion of the partners in the range of 1.5–1000 au.
The mass ratio of the members peaks around unity.
The even more difficult observation of a system con-
sisting of two brown dwarfs with ∼1 au separation
has been announced very recently [21]. The masses
of the partners were estimated to lie in the interval
of 8–20 𝑀Jupiter. The period of the rotation lies be-
tween 5 to 9 years. The corresponding power of grav-
itational radiation is ≈1011 erg/s by a simple text-
book estimate [22], hoplessly low for present instru-
ments. More encouraging is a very spectacular recent
report on a rather massive (𝑀𝐵𝐷 ≈ 80 𝑀Jupiter)
brown dwarf transiting in front of a low mass star
(𝑀* ≈ 0.13 𝑀⊙). They are very tightly bound with
a period of ∼2 hours [23]. The Keplerian separation
is less than the size of our Sun. In this case, the sim-
ple estimate of the intensity of gravitational radia-
tion gives nearly 4% of the electromagnetic radiation
power of the Sun. These discoveries motivate us to
investigate the structure and dynamical features of
ALP clumps around a binary brown dwarf core.

In our analysis presented below, the orbiting binary
gravitational system will be treated as a pointlike
source characterized by the lowest (possibly, time-
dependent) multipoles of its density distribution. An
obvious condition for this is that the Compton wave-
length of ALPs should be much larger than the size
of the binary core. The latest brown dwarf discoveries
offer a realistic ALP mass range for this to be satis-
fied. The radius of the Sun is 𝑅⊙ ∼ 106 km, 1 au ∼
108 km. For an ALP of mass 10−𝑛 eV the Compton
wavelength (1/𝑚) is at least 100 times larger than
the characteristic size of the source in the first case
for 𝑛 ≥ 18, in the second for 𝑛 ≥ 20. This mass range
corresponds to the class of ultralight ALPs. After de-
termining the density distribution produced by the
binary source and the gravitational self-interaction of
the axionlike particles, one has to check also, if the
condition that the clump size 𝑅 exceeds the Comp-
ton wavelength of the particle 1/𝑚, e.g., 𝑚𝑅 > 1 is
fulfilled.

Below, we shall determine the profile function of
the ALP clump in an approximation, where one trun-
cates the multipole expansion of the gravitational
field of the (pointlike) binary core at its quadrupole

moment. The particle distribution will be composed
from the lowest energy configurations of the 𝑙 = 0, 2
angular momentum channels. For the gravitational
binding energy estimates, a variational strategy [9]
will be applied (see also [24, 25]). The quadrupole
deviation of the ALP profile function from spheri-
cal symmetry will be determined to linear order. The
temporal variation of the elements of the quadrupole
tensor of the binary brown dwarf system induces time
dependence into the quadrupole piece of the ALP pro-
file. The resulting additional gravitational radiation
might offer further insight into the nature of the hy-
pothetical ultralight constituents of matter.

2. Determination of the Axion Halo Profile

Our simplified model for the binary system of two
brown dwarfs consists of two 𝑀/2 mass objects or-
biting with angular velocity 𝜔 along a circle of ra-
dius 𝑑 and located in diametrically opposite posi-
tions. The gravitational potential will be truncated
at quadrupole order

𝑉𝑁 (x) = −𝐺𝑁𝑀

2

(︂
1

|x− d|
+

1

|x+ d|
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𝑀 +
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, (1)

Θ2𝑚 =
4𝜋

5
𝑀𝑑2𝑌2,−𝑚(d̂(𝑡)).

In natural units (~ = 𝑐 = 1) the quadrupole mo-
ment has inverse mass scaling dimension. Choosing
the plane of the orbit for the (𝑥, 𝑦)-plane, only in-
dices 𝑚 = 0, 2,−2 contribute to the above sum over
𝑚. The time dependence of d leads to the time depen-
dence of Θ2,±2. One can exploit that 𝑌 *

22 = 𝑌2,−2 and
𝑌2𝑚(−d̂) = 𝑌2𝑚(d̂),𝑚 = 0, 2,−2. The unit vector
d̂(𝑡) points to one of them from the origin, x̂ points to
the direction of the observation. (The detailed struc-
ture of the binary dwarf beyond the data 𝑀,Θ2𝑚

does not play any role in the discussion below.)
The energy of the axion “halo” around the binary

core is given by

𝐻 =

∫︁
𝑑3𝑥

1

2

[︀
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]︀
+

+

∫︁
𝑑2𝑥𝜌𝑎(x, 𝑡)𝑉𝑁 (x, 𝑡)−

− 𝐺𝑁

2

∫︁
𝑑3𝑥

∫︁
𝑑3𝑦

𝜌𝑎(x, 𝑡)𝜌𝑎(y, 𝑡)

|x− y|
. (2)
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The second line of the above expression gives the en-
ergy of particles of mass density 𝜌𝑎 moving in the
gravitational potential 𝑉𝑁 , while the last term corre-
sponds to the energy of the gravitational attraction
among the ALPs constituting the halo.

The assumption for a non-relativistic motion of the
particles is reflected in the following parametrisation
of the axion field:

𝑎(x, 𝑡) =
1√
2𝑚

(︀
𝜓(x, 𝑡)𝑒−𝑖𝑚𝑡 + 𝜓*(x, 𝑡)𝑒𝑖𝑚𝑡

)︀
. (3)

The slowly varying function 𝜓 is normalized to the
number of particles the halo consists of:∫︁
𝑑3𝑥|𝜓(x, 𝑡)|2 = 𝑁𝑎, (4)

which implies 𝜌𝑎(x, 𝑡) = 𝑚|𝜓(x, 𝑡)|2. Because of the
assumed slow variation of 𝜓(x, 𝑡) only the first time
derivative is retained in its equation of motion:

�̇�(x, 𝑡) = − 1

2𝑚
△𝜓(x, 𝑡) + 𝑉𝑁𝑚𝜓(x, 𝑡)−

−𝐺𝑁𝑚
2

∫︁
𝑑3𝑦

|𝜓(y, 𝑡)|2

|x− y|
𝜓(x, 𝑡). (5)

The quadrupole part of (1) induces a piece into the
profile funcion ∼ 𝑌2𝑚. This piece will be determined
perturbatively to leading order, therefore it will be
proportional also to the dimensionless combination
𝑚Θ2𝑚. In the ansatz chosen for the approximate so-
lution of (5) a coefficient function is introduced in
both angular momentum channels depending on the
radial coordinate scaled by a characteristic size pa-
rameter 𝑅

𝜓(x, 𝑡) = 𝑒𝑖𝜇𝑡(𝜓0(x) + Δ𝜓0(x)) =

= 𝑒𝑖𝜇𝑡𝑤(𝐹0(𝜉) + 𝐹2𝑚(𝜉)𝑚Θ2𝑚(𝑑)𝑌2𝑚(x̂)), (6)

𝜉 =
𝑟

𝑅
, x̂ =

x

𝑟
, 𝑟 = |x|.

The 𝑅 parameter characterising the size of the axion
clump will be determined variationally. 𝑤 is a con-
stant to be found from the normalisation (4).

In the calculation described below, one adopts an
approximation scheme, where the quadrupole piece of
the gravitational potential acts perturbatively on the
profile of the axion clump relative to the spherically
symmetric part of the interaction. This assumption

means that in (4) we work to linear order in Δ𝜓. Then
the normalization reads as

𝑤2𝑅3

(︂
4𝜋

∫︁
𝑑𝜉𝜉2𝐹 2

0 (𝜉)

)︂
≡ 𝑤2𝑅3𝐶2 = 𝑁𝑎. (7)

The radial dependence of the quadrupole part of the
profile will be the same for all values of 𝑚: 𝐹2𝑚 = 𝐹2.

Our goal is to compute the additional piece of the
gravitational potential of the binary star created by
the ALP halo far beyond of its extension. One arrives
at its expression by the following sequence of equali-
ties (below, 𝜂 = 𝑦/𝑅):

Δ𝑉𝑁 (x) = −𝐺𝑁

∫︁
𝑑3𝑦

𝜌𝑎(y)

|y − x|
≈

≈ −𝐺𝑁𝑚𝑤
2

∫︁
𝑑3𝑦

1

|y − x|
×

×
[︁
𝐹 2
0 (𝜂) + 2𝐹0(𝜂)𝐹2(𝜂)𝑚Θ2𝑚(𝑑)𝑌2𝑚(ŷ)

]︁
=

= −𝐺𝑁𝑚𝑤
2
[︁1
𝑟

∫︁
𝑑3𝑦𝐹 2

0 (𝜂)+

+
8𝜋𝑅5

5𝑟3

∫︁
𝑑𝜂𝜂4𝐹0(𝜂)𝐹2(𝜂)𝑚Θ2𝑚𝑌2𝑚(r̂)

]︁
. (8)

From the very last line, one reads off the contribution
of the ALP-halo to the quadrupole moment of the
system. The complete moment is the sum of this and
the original:

Θ𝑠𝑢𝑚
2𝑚 = Θ2𝑚

(︂
1 +

8𝜋𝑁𝑎(𝑚𝑅)
2

5𝐶2

∫︁
𝑑𝜂𝜂4𝐹0(𝜂)𝐹2(𝜂)

)︂
.

(9)

Clearly, the square of the expression in the bracket
will multiply the power of the gravitational radia-
tion. Therefore, the parametric dependence of 𝐹2 on
the dimensionless quantities 𝑁𝑎,𝑚𝑅,𝐺𝑁𝑚

2 will be
decisive in estimating the effect of the halo on the
gravitational power.

3. Determination of 𝐹2

In this section, we determine 𝐹2 which is the 𝑙 = 2 ad-
mixture to the spherically symmetric profile function
𝐹0(𝜉) under the action of the quadrupole part of the
gravitational potential. First, we write the operator
on the right hand side of (5) as a sum:

𝐻 = 𝐻0 +𝐻𝐼 , 𝐻0 = − 1

2𝑚
△− 𝐺𝑁𝑀𝑚

𝑟
,
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𝐻𝐼 = −𝐺𝑁𝑚

𝑟3
Θ2𝑚𝑌2𝑚(d̂(𝑡))−

−𝐺𝑁𝑚
2

∫︁
𝑑3𝑦

|𝜓(𝑦)|2

|x− y|
. (10)

The eigenvalue problem of 𝐻0 is the gravitational
analog of the hydrogen atom of quantum mechan-
ics. The corresponding eigenvalue-eigenfunction pairs
in the 𝑙 = 0, 2 channels are denoted as 𝜇0, 𝐹0 and
𝜇2, 𝐹2𝑌2𝑚, respectively. (Be careful: the function 𝐹2

is not the admixture 𝐹2, we are after!)
The second term of 𝐻𝐼 corrects the value of 𝜇0 in

the first order of perturbation theory. In its evalua-
tion, one can neglect, in the kernel of the operator,
the 𝑙 = 2 admixture of 𝜓0 which is perturbatively
of higher order. Then the following expression can be
readily obtained:

𝜇0𝑁𝑎 = 𝑤2

∫︁
𝑑3𝑥

[︃
1

2𝑚
(∇𝐹0(𝜉))

2 − 𝐺𝑁𝑀𝑚

|x|
𝐹 2
0 (𝜉)−

−𝐺𝑁𝑤
2𝑚2

∫︁
𝑑3𝑦

𝐹 2
0 (𝜂)

|x− y|
𝐹 2
0 (𝜉)

]︃
, (11)

where the quantities 𝑤, 𝜂, 𝜉 were introduced in the
previous section. This expression displays a more
transparent dependence on the characteristic dimen-
sionless parameter combinations 𝑁𝑎,𝑚𝑅 and 𝐺𝑁𝑚

2,
when one writes the integrals in terms of the scaled
variables 𝜂, 𝜉:

𝜇0𝑁𝑎 = 𝑚𝑁𝑎
1

𝐶2

[︂
𝐷2

2

1

(𝑚𝑅)2
−

− 𝐺𝑁𝑚
2

𝑚𝑅

(︂
𝐵4

𝐶2
𝑁𝑎 +

𝑀

𝑚
𝐶1

)︂]︂
, (12)

where the following integrals of the profile function
appear:

𝐶𝑛 = 4𝜋

∞∫︁
0

𝑑𝜉𝜉𝑛𝐹 2
0 (𝜉), 𝐷𝑛 = 4𝜋

∞∫︁
0

𝑑𝜉𝜉𝑛𝐹 ′2
0 (𝜉),

𝐵4 = 32𝜋2

∞∫︁
0

𝑑𝜉𝜉𝐹 2
0 (𝜉)

𝜉∫︁
0

𝑑𝜂𝜂2𝐹 2
0 (𝜂).

(13)

In similar steps, one finds the expression of 𝜇2 with
first perturbative order accuracy:

𝜇2 =
𝑚

𝐼2

[︂
1

2(𝑚𝑅)2
(𝐾2 + 6𝐼0)−

− 𝐺𝑁𝑚
2

𝑚𝑅

(︂
𝑀

𝑚
𝐼1 +

𝑁𝑎

𝐶2
𝐼𝐽1

)︂]︂
, (14)

with

𝐼𝑛 =

∞∫︁
0

𝑑𝜉𝜉𝑛𝐹 2
2 (𝜉), 𝐾2 =

∞∫︁
0

𝑑𝜉𝜉2 (𝐹 ′
2(𝜉))

2
,

𝐼𝐽1 = 4𝜋

∞∫︁
0

𝑑𝜉𝜉

𝜉∫︁
0

𝑑𝜂𝜂2
[︀
𝐹 2
2 (𝜉)𝐹

2
0 (𝜂) + 𝐹 2

2 (𝜂)𝐹
2
0 (𝜉)

]︀
,

(15)

Here, we use the same radial profile function 𝐹2(𝜉)
for all 5 components of the quadrupole eigenfunction,
which is chosen 𝑤𝐹2(𝜉)𝑌2𝑚(x̂), for formal uniqueness.

The best estimate for the eigenvalue 𝜇0 corrected
by the nonlinear term of 𝐻𝐼 with a conveniently
chosen zeroth order profile function 𝐹0(𝜉) is found
by minimizing the right hand side of (12) with re-
spect to 𝑚𝑅 and keeping 𝑁𝑎, 𝐺𝑁𝑚

2, 𝑀/𝑚 fixed
[9, 24, 25]. The optimal estimates for 𝑚𝑅 and 𝜇0 are
the following:

(𝑚𝑅)opt = 𝐷2

[︂
𝐺𝑁𝑚

2

(︂
𝐵4

𝐶2
𝑁𝑎 + 𝐶1

𝑀

𝑚

)︂]︂−1

,

𝜇0,opt = − 𝑚

2𝐶2𝐷2

[︂
𝐺𝑁𝑚

2

(︂
𝐵4

𝐶2
𝑁𝑎 + 𝐶1

𝑀

𝑚

)︂]︂2
.

(16)

Although, in principle, one can optimize 𝜇2 indepen-
dently, we will be satisfied using the same scale 𝑅 also
for 𝐹2.

Let us discuss the consistency of the applied ap-
proximations against the parameter range presented
in the introduction. Choosing 𝑚 ∼ 10−17 eV, one
finds, with 𝑀 ∼𝑀Jupiter, the following order of mag-
nitude of the values

𝐺𝑁𝑚
2 ∼ 10−90,

𝑀

𝑚
∼ 1080. (17)

The order of magnitude of the combination of
profile function integrals (e.g. 𝐷2𝐶1) is at most
𝒪(102). Therefore

(𝑚𝑅)opt ∼ 𝒪(10−2)1010, |𝜇0opt| ∼ 10−16 𝑚. (18)

The consistency conditions 𝑚𝑅 > 1 and |𝜇0| ≪ 𝑚
are thus fulfilled. The mass contained in the halo
around a Jupiter-size brown dwarf binary is well
approximated therefore as 𝑁𝑎𝑚. Choosing 𝑁𝑎 the
same order of magnitude as 𝑀/𝑚 leads to 𝑀halo ∼
∼ 𝑀Jupiter. One can quickly check that the consis-
tency conditions are satisfied even for the high mass
(∼102𝑀Jupiter) transiting brown dwarf candidate an-
nounced in Ref. [23].
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The first term of the operator 𝐻𝐼 which corre-
sponds to the quadrupole part of the gravitational
field of the binary core has nonzero matrix element
between 𝐹0 and 𝐹2𝑌2𝑚:

⟨𝑙 = 2,𝑚|𝐻𝐼 |0⟩ = 𝑤2

∫︁
𝑑3𝑦𝐹2(𝜂)𝑌

*
2𝑚(ŷ)×

×
(︂
−𝐺𝑁𝑚

|y|3
Θ2𝑝𝑌2𝑝(ŷ)

)︂
𝐹0(𝜂). (19)

Therefore it generates the first order perturbative cor-
rection of the lowest energy ALP configuration. The
leading quadrupole correction of the profile function
Δ𝜓0 is determined using the (familiar from quantum)
first order perturbative relation

Δ𝜓0(x) =
𝑤𝐹2(𝜉)𝑌2𝑚(x̂)

𝜇0 − 𝜇2

⟨𝑙 = 2,𝑚|𝐻𝐼 |0⟩
⟨𝑙 = 2,𝑚|𝑙 = 2,𝑚⟩

=

= −𝑤𝐺𝑁𝑚
2

(𝑚𝑅)3
𝐼
(−1)
20

𝐼2

𝑚

𝜇0 − 𝜇2
𝑚Θ2𝑝(d̂)𝑌2𝑝(x̂)𝐹2(𝜉) ≡

≡ 𝑤𝐹2𝑚(𝜉)𝑚Θ2𝑝(𝑑)𝑌2𝑝(x̂) (20)

with

𝐼
(𝑛)
20 =

∞∫︁
0

𝑑𝜂𝜂𝑛𝐹2(𝜂)𝐹0(𝜂). (21)

4. Discussion of the Result

In this note, we computed the gravitational potential
of an axion cloud with its quadrupole distortion in-
duced by a rotating binary dwarf star system in its
core:
Δ𝑉𝑁 = −𝐺𝑁𝑁𝑎𝑚

𝑟
− 𝐺𝑁

𝑟3
Θ2𝑝𝑌2𝑝 ×

× 8𝜋

5𝐶2

𝐼
(−1)
20 𝐼

(4)
20

𝐼2

𝑚

𝜇0 − 𝜇2

𝑁𝑎𝐺𝑁𝑚
2

𝑚𝑅
. (22)

The first term is the contribution of the axion clump
to the Newton potential outside the compact ob-
ject. Adding the second term to the quadrupole piece
of the gravitational field of the core, we easily find
the “amplification” factor of the quadrupole potential
due to the axion halo:

𝑍axion = 1− 8𝜋

5𝐶2

𝐼
(−1)
20 𝐼

(4)
20

𝐼2

𝑚

𝜇0 − 𝜇2

𝑁𝑎𝐺𝑁𝑚
2

𝑚𝑅
. (23)

If one would optimize both Schrödinger-like eigen-
values 𝜇0 and 𝜇2, one would find parametrically

𝜇2−𝜇0 ∼ (𝑚𝑅)−2. The same parametric dependence
is suggested by the analogy with the Balmer-formula
of the hidrogen atom. Then we can write parametri-
cally

𝑍axion = 1 + const× (𝑚𝑅)𝑁𝑎(𝐺𝑁𝑚
2), (24)

which by the optimized expression of 𝑚𝑅 leads to

𝑍axion = 1 + const× 𝑁𝑎𝑚

(𝐵4/𝐶2)𝑁𝑎𝑚+ 𝐶1𝑀
. (25)

We can conclude that the amplification of the
quadrupole moment parametrically depends mainly
on the ratio 𝑀𝑎/𝑀 = (𝑁𝑎𝑚)/𝑀 . If the mass of the
axion clump reaches that of the core then it con-
tributes to the gravitational radiation of the system
parametrically the same amount as the core itself.

In order to present a quantitative estimate for the
size of the extra gravitational power originating from
the axion halo around the binary brown star system,
one has to evaluate (15) and (21) with some well mo-
tivated choice of the profile functions 𝐹0 and 𝐹2. A
physically appealing choice offered by the close for-
mal analogy of the lowest energy configurations of the
gravitational “atom” with the 1𝑠 and 3𝑑 levels of the
hydrogen atom. Then the approach in Refs. [26, 27]
can be followed choosing for the profile functions the
following trial expressions:

𝐹0(𝜉) = 𝑄0𝑒
−𝜉, 𝐹2(𝜉) = 𝑄2𝜉

2𝑒−𝜉/3. (26)

The arbitrary normalisation coefficients 𝑄0, 𝑄2 do
not appear in any physically meaningful quantity.
Straightforward elementary integrations yield ex-
plicit values for the coefficients, but do not of-
fer any deeper insight. This excercise is left for the
readers.

This contribution to the Proceedings of the Bolyai–
Gauss–Lobachevsky 2024 conference is a modest way
to express solidarity with all physicists of Ukraine try-
ing to maintain research activities under the present
horrifying war conditions. This research has been
supported by grant K-143460 of NKFIH Science
Fund.
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А.Паткош

АКСIОННЕ ГАЛО НАВКОЛО ПОДВIЙНОЇ
СИСТЕМИ КАРЛИКОВИХ ЗIРОК

Розраховано ґравiтацiйне поле згустку надлегких аксiоно-
подiбних частинок (ALP) з обертовою подвiйною системою
карликових зiрок у його ядрi. Встановлено, що iндукований
квадрупольний момент маси згустку визначається параме-
тром вiдношення мас 𝑀𝑎/𝑀 згустку аксiонiв i бiнарного
ядра.

Ключ о в i с л о в а: надлегкi аксiоноподiбнi частинки, ак-
сiонне гало, карликова зiрка.
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