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SYMMETRY AND VALUE OF THE ORDER
PARAMETER IN 2D NEMATIC SUPERCONDUCTORS

We derive equations for the superconducting nematic order parameter and chemical potential
for the hexagonal lattice by accounting for nearest- and next-nearest-neighbor hoppings of elec-
trons. By analyzing the energy of the superconducting ground state, we have found that the
symmetry of the order parameter and some other superconducting properties of the system
strongly depend on the sign and the magnitude of the next-nearest neighbor hopping. As we
will demonstrate, both extended s- and d-pairings significantly contribute to the pairing in the
system, that be tuned by changing the hopping parameters. We discuss a possible connection of
the obtained results to the properties of several doped monolayer superconductors — graphene
and transition metal dichalcogenides.
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1. Introduction

The possibility of superconductivity in low-dimensio-
nal (1D or 2D) physically and technologically impor-
tant “relativistic” systems, like graphene, recently be-
came a hot topic of research [1-12]. This interest ex-
perienced a further jump with discovery of supercon-
ductivity in twisted bi-layer graphene, where, as it
was shown, at certain twist angles the system demon-
strates pronounced superconducting features (for a
review, see Ref. [13]). As it was proposed by sev-
eral authors, the dominating mechanism of pairing
in the twisted graphene is the pairing in the nematic
channel, where electrons predominantly attract them-
selves when they occupy nearest sites in different sub-
lattices and are separated by vector that can be de-
fined as the “director” one, i.e., tending to form pairs
with a preferable in space orientation.

Currently, the relation between the symmetry of
the crystal structure and symmetry of the su-
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perconducting order parameter is a topic of in-
tense debate. The 2D systems with hexagonal, or
its particular case — honeycomb, lattices are among
the most studied (see, for example, works [7, 14—
17]), due to experimental realization of such systems
(e.g., graphene, MoS,, etc.) that show a potential or
demonstrate superconductivity with doping. In par-
ticular, in Ref. [7], the mounting theoretical evidences
for the existence of a chiral d-wave superconducting
state in graphene are reviewed, where it is argued that
the appearance of the chiral d-wave superconductiv-
ity in graphene is intimately linked to the hexagonal
crystal lattice. In a related study [14], a theoretically-
found mixed chirality d-wave superconducting state
(with topological chiral d+ id-wave symmetry in one
Dirac valley, and d— id-wave symmetry in the other
one) in the coexistence region between antiferromag-
netic (AFM) and superconducting states in lightly
doped honeycomb materials was reported.
Dynamical Mean—Field Theory analysis of the ex-
tended Hubbard model (with on-site U and nearest-
neighbor (NN) V interactions) of graphene showed
[15] that, at small U and V or a small doping, the
system prefers the pairing with the real (nonchiral)
triplet p-wave symmetry favored for small V', while,
at large U and V or a small doping, the system is
in superconducting regime with the chiral order pa-
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rameter combination p + ip. Importantly, it was also
found that the singlet superconductivity (extended s-
wave or d-wave) is either absent or non-dominant. For
another related system — monolayer MoSs — it was
found theoretically [16] that, at a low doping, the
odd-parity pairing with f-wave Mo NN structure is
dominating. Near the van Hove singularity filling, the
system favors a ferromagnetic (FM) state, and it was
shown that, near this filling, the triplet pairing is
driven by FM fluctuations. On the other hand, for
a model of correlated doped quantum spin-Hall insu-
lators on honeycomb lattice without inversion sym-
metry, it was found [17] that, for some range of the
parameters, the superconductivity with co-existing
spin-singlet d+id and spin-triplet p+ ip-wave pairing
takes place. Thus, hexagonal structures can demon-
strate the variety of symmetries of the superconduct-
ing pairing.

The type of the model is very important in this
sense, in particular, the effect of mext-nearest-
neighbor (NNN) hopping can play a rather impor-
tant, or even a dominant role [18-29]. Thus, in work
[20], it was found that, on honeycomb-lattice Hub-
bard lattice with spin- and charge-fluctuation medi-
ated superconductivity at doping levels of 0.02-0.2
and only local repulsion U, a spin-singlet d,2_,» +
+ idyy-wave pairing is dominating (similarly, the d-
wave pairing at a low doping was found in work
[21]). In this case, the gap is a mixture of the NN and
NNN pairings. By moving the offset of the energy
level between the two sublattices above the critical
value, the authors found the spin-triplet f-wave pair-
ing that mainly consists of the NNN pairing. Mo-
reover, it was found that the NNN Coulomb inter-
action V is also in favor of the spin-triplet f-wave
pairing. In Ref. [23], it was demonstrated for the Hub-
bard model on honeycomb lattice that the second-
and third-N N hopping amplitudes have a strong ef-
fect on the d+id-wave pairing symmetry. In a related
study [24], it was argued that, in many lattices, the
NN and NNN pairings do not spontaneously mix
with each other due to the lattice symmetry restric-
tions, while the honeycomb lattice, due to its unique-
ness, provides a possibility to analyze the mixture of
the NN and NN N pairing components (in this work,
a mixing of different d-components was analyzed). In
Ref. [25], an analysis of the pairing in doped MoSs
showed a spin-triplet pairing, with f-wave pairing for
a wide range of doping.

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 8

Going beyond hexagonal structures, it was demon-
strated for the square lattice and Kagome (model-
ing system AV3Sbs) lattice model [26] that there are
strong evidences of competing instabilities at higher-
order van Hove filling with an SU (Ny) flavor degener-
acy (Ny is a number of flavors/types of fermions). In
this work, it was found that systems demonstrate rich
phase diagrams with FM, AFM superconducting and
Pomeranchuk orders. In theoretical studies of other
systems, like topological superconductor with hexag-
onal structure Cu,BisSes, signs of nematic supercon-
ductivity were found [27,28], while, for hole-doped tri-
angular lattice, in the Hubbard model of tin atoms on
a silicon substrate it was found [29] that an extended
Hubbard interaction is crucial to yield the triplet
pairing (f-wave (p-wave) for moderate (higher) hole
doping).

There are also experimental evidences of a possi-
bility of the chiral superconductivity in highly doped
graphene [30]. Namely, at a high doping, when the
van Hove singularity in the 7 band is occupied the
system can move to an exotic ground state as a re-
sult of the many-body interactions. It was shown in
Ref. [30] that, with a doping, graphene can be driven
through the Lifshitz transition, where the Fermi sur-
face topology evolves from two electron pockets into
one large hole pocket.

Below, a possibility of a ground-state nematic su-
perconductivity in a 2D system with honeycomb lat-
tice will be analyzed, paying a special attention to
the role of the NNN hopping in the symmetry of
the possible order parameters. We will show that
the pairing channel in this system is very sensi-
tive to the sign and the magnitude of this param-
eter, and, therefore, systems with the same lattice
structure can show different symmetries of the su-
perconducting state, depending on the tight-binding
parameters.

We dedicate this work to 115" anniversary of an
outstanding theoretical physicists, one of the founders
of the theory of superconductivity, Mykola Bogolyu-
bov. It is well known that, in his works, he considered
a Cooper pairing with an isotropic order parameter,
without focus on the origin of the attraction between
two charge carriers (two electrons or two holes). Our
goal in this work is an analysis of the local anisotropic
pairing that, in the simplest case, corresponds to a
pairing of particles on the NN sites. Such pairs can
be regarded as “nematic” elements that, in general,
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Fig. 1. Crystal structure and unit cells (green) of the honey-
comb lattice. The NN and NN N bonds are shown in blue and
red, correspondingly

can generate superconducting condensate with both
isotropic and anisotropic global order parameters.

2. Hamiltonian

The honelycomb lattice and included NN and NNN
hopping processes in the system are shown in
Fig. 1. The tight-binding Hamiltonian of the system
in the case of the NN and NN N hoppings and NN
attraction with singlet pairing can be written in the
following form:

H=—tnn Z

(n, m)o’

—tINNN Z (0 @mo + bfiybmo + hoc.) +
({n,m)),o
attr Z A

+MZ anoanU + bnob

where tyy and tynyy are the NN and NNN hop-
pings (see Fig. 1), and Vg, is the NN attraction. The
operator

at bmo + bEaang) —

nma )

. A 1
+ AT
Anm - An,n—i—p - \/§ (anTme

ani,me> (2)
in Eq. (1) is the NN spin-singlet creation operator
of the superconducting pairs, where p are NN vec-
tors. The choice of NN attraction was made for the
following reasons. When two electrons with the same
spin occupy nearest sites, one of them cannot hope to
the neighboring site due to the Pauli principle, thus,
there is no effective attraction between them. On the
other hand, when one electron has opposite spin to
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the other, it can hope on the occupied site and then
move back (due to Coulomb on-site repulsion with
energy U) that reduces the pair energy by the or-
der of the exchange constant value %, /U and re-
sults in the NN electron-electron attraction, in some
sense phenomenologically included into Hamiltonian
(1). In fact, the last term in Eq. (1) is similar to
the resonance valence bond (RVB) interaction with
Vattr ~ Jexen ~ tan /U. In this way, we indirectly
adopt that, in the system, if it can be described by
an effective Hubbard model, the inequality tyny < U
that excludes double occupancy of the sites is satisfied
(the case tyn ~ U requires a separate study).

In order to use the mean-field approximation, let us
introduce, as it was done by Bogolyubov, the average
of the superconducting the order parameter operator
Apm: )

Anm = 7 ((anybmt) = (antbm,)). 3)

Then, in the momentum representation, Hamiltonian
(1) becomes

H:*iNNZ(

k,a,0

—tNNN Z (ka[ia (ko _|_elkpﬁb+ bko"'hc)
k.8,0

Y (000 + 0, bo) —
72 {Aaeikpa (aka Kl +ak¢b kT) +hc}

ZIA ” (4)

where N is the number of k-points in the Brillouin
zone (BZ), po (= 1,2,3) are NN vectors, pg (8=
=1,...,6) are NNN vectors and

Ay = An,n+pa (5)

are three 2D space-different order parameters (it is
assumed that the system is translationally invariant,
so, the order parameters do not depend on the explicit
site number n on the sublattice).

In order to diagonalize the kinetic energy part of
Hamiltonian (4), we make the following transforma-
tion of the fermionic operators:

ko o i Cko + dka (6)
bxo ) /2 \e¥* (cko — dio) )
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Fig. 2. Band dispersion (7) at tyn = 1 €V and different values of ¢ty (in €V). The momenta are given in units 27 /3a, where

a is the lattice parameter

where cy, is the annihilation operator in the lower
band with energy (—e(k)+ p), dxo, is the anni-
hilation operator in the upper band with energy
(e (k) 4+ p). The corresponding bands dispersion is

e(k) = |tnn Z e®Pe L inNN Z ePs|, (7)
a 3

Spectrum (7) at different values of the NNN hop-
ping is shown in Fig. 2. As it follows from this
figure, when there is no NNN hopping, the mini-
mum of the spectrum is in K and K’ (Dirac) points
(blue minima in the bottom figure of the central col-
umn). With increase of the modulus of the NNN
hopping, the minima of the energy shift form the cen-
ter of the BZ and become elongated forming Fermi
pockets of similar form, most extended at large posi-
tive tynn(=0.5 V).
In Eq. (6),

¢K = arg (tNN Z 6““’") (8)

(0%

is the angle of the complex number tyy >, ekpa
with respect to the real axis.
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In new operators, Hamiltonian (4) acquires the
form

H=-Y ek a0+ k) di, o+
k,o k,o

+ 1Y (o + i dio) +
k,o
+ Z Ay (k) (CITCJ—rkL - d:¢dtkT) +
k
+ 3 Ao 0 (i cty, — ) +
k

N
+2—— Y AL, 9)

V;ttr

where

Aoy (k) = Z A, cos (kpo — ¢x) (10)

is the intra-band spin-singlet (even-parity) order pa-
rameter, and

Agaa (k) =i Aysin (kpa — @) (11)

is the inter-band spin-singlet (odd-parity) one.
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The Bogolyubov transformation in Eq. (9) gives
the quasi-particle spectrum (momentum indices on
the right-hand side are dropped):

E(K) = +£1/e2 4+ 12 + |Ace|* + [Aoaa* £ 4], (12)

where*
A? = 42212 + 2| Aoaa|? (252 + |Aev|2> +
—|—A2 A*ﬁd + A Aodd

When the inter-band pairing is suppressed (Agqq =
= 0), the spectrum has familiar Bardeen—Cooper—
Schrieffer (BCS) form

B 1) =%/ (e + )" +1a

3. Symmetry of the Order Parameters

One can obtain the following finite-temperature equa-
tions for the order parameters:

Ay = V?\?r lcos(kpa — i) cos(kpg — i) x
k,8
tanh % tanh =0
{ﬂdm+ﬁ]%ﬂdm—ﬂ}+
+ sin(kps — k) sin(kps — px) X
sinh 7-
- 2u cosh E(k)'w COSh E(k) “] Be (13)

where the first part in the square brackets is the reg-
ular BCS term for two bands.

In such a case, Eq. (13) can be written in a matrix
form:

1 (A A B B\ /A
Ay | = (B A B)(ay)
Vattr A3 BBA A3

where the following notations are used:

(14)

tanh &)

=5 Z [cos (kpa — ©x) {[(k)‘*‘/*] +

tanh S

. 2[<k>—m} e 0 -
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sinhL
(k)+u cosh E(k) “

X
2u cosh £

1
B = N zk: [cos (kpa — ¢x) cos (kpg — i) %

tanh SU+u
X{ﬂ<m+m

+ sin (kp, —

tanh U=
+ﬂdmm}+

i) sin (kps — i) X

sinhi
( ) L cosh & (k) ©

In Eq. (15), « has any of three values, and, in
Eq. (16), a and f are any two different values.

X

(16)

2u cosh £

4. Main Equations

The eigenvalues of Eq. (14) are
er = A+2B -V,

g9 = A—B-V,L.

(17)
(18)

Now, substitution of eigenvalues (17) and (18) into
Eq. (14) gives the eigenvectors, i.e., the order pa-
rameter components A; — Az, which together with
Eq. (13) defining the momentum dependence, and,
hence, the symmetry of the order parameter. Below,
we consider two solutions in detail.

1. From Eq. (17), it can be seen that its solution
can be represented in the form

)1 (1
(&)~ ()

This solution and Eq. (10) result in even-parity order
parameter

Agy (k) ~ Z cos (kpo — vK).

(19)

(20)

i.e., we have obtained that this order parameter has
an extended s-symmetry.
On the other hand, for the inter-band pairing with

such a symmetry from Eq. (14) it follows that
Aoaq (k) = 0. (21)

2. The solution for (18) is two-fold degenerate and
has form

AL (A (A (Y
()~ ()50
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Using these results and Eq. (10), one can easily find
that
2cos (kp1 — px) — cos (kpa — k) —

—cos (kps — vk),
cos (kpa — i) — cos (kps — vi),

Ay (k) ~ (23)

or more exactly, this order parameter has an exten-
ded d-symmetry.

For the inter-band pairing with extended s-sym-
metry, one gets

Aodd (k)

— p-symmetry. It can be simply shown that, in the
case of intra-band pairing only, the d-symmetry or-
der parameter appears and is formed at higher criti-
cal temperature T¢. In the following, we consider the
case of the intra-band pairing only (i.e., we ignore
Aoda (k)), and consider only dominating terms with
e (k) — p in Egs. (15), (16). Such simplifications do
not lead to a significant change in the physical re-
sults and allow us to analyze the role of the NNN
hoping in a transparent way.

For the s-wave solution, the value of T, is deter-
mined from Eq. (17), which (if we put ey = 0, or
when the superconducting gap disappears) has the
form

1 2
1= Vamﬁ zk: [cos (kp1 — o)+

(24)

K)—
tanh %
2(e (k) —p)

while in the d-wave channel, Eq. (18), it is

+ 2cos (kp1 — ¢k) cos (kpa — k)] . (25)

1
1= Vamﬁ Z [cos2 (kp1 — k) — cos (kp1 — pK) X
(k)—
tanh %
2(e (k) — p)

(for definiteness, we used the explicit values for the
lattice vector numbers, o = 1, 8 = 2). Since the main
contribution to the sum comes from small momenta,
and, for these momenta, ¢y is small, to simplify the
analysis, we put ¢x = 0 in the calculations. To ac-
count for a possible change in the doping, we solved
Egs. (25) and (26) self-consistently with the particle
number equation

1 k) —
nf:NZ[l—tanhE(;T )
k c
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x cos (kp2 — px)] (26)

(27)

5. Solutions

Solutions for the critical temperature in both chan-
nels as function of the attraction and the ratio
tnnv/tyny = 0.05 and doping 0.5 are shown in
Fig. 3. As it follows from this figure, the d-cannel
gives a major contribution to superconductivity. This
property remains qualitatively the same, as one
changes the NNN hopping (Fig. 4). As it follows
from Fig. 4, the pairing in the d-channel has a few
times larger critical temperature. However, the roles
of the NN N hopping in both channels are very differ-
ent. Most notably, at positive values of this hopping,
s-superconductivity is rapidly suppressed as the hop-
ping increases leading to a pure d-pairing at tyyn
larger than approximately 0.1ty .

One can tune the ratio of the relative contributions
of the s- and d-pairs into the condensate by changing
the ratio ty NN /En N, as it follows from Fig. 5. In par-
ticular, while the d-pairing depends relatively weakly
on the NNN hopping, the s-channel shows a sharp
increase of superconductivity when the NNN hop-
ing approximately satisfies —0.5tyy < tynvny <O.
This can be partially explained by modification of the
Fermi surface shown in Fig. 2. Namely, the Fermi sur-
face becomes extremely deformed and shifted from K
valleys at tynn /tnn ~ —0.3. We also give other ar-
guments on the why this happens in the next Section.

6. The Origin of the Opposite
Roles of tnyny N in s- and d-Channels

Let us consider two solutions (19) and (23) separately
by expanding the critical temperature equations (25)

I I | |
— s-channel
—— d-channel

vattrl tNN

Fig. 3. Critical temperature in different channels as function
of the attraction at ¢t ynyn = 0.05¢5n and a doping of 0.5
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Vo tan=5

1
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15 -

tNNNItNN

4 T | | I |\‘
Vateltan=3 d-channel
3 -

tNNNI tNN

Fig. 4. Critical temperature in different channels as function of the NNN hopping at different values of

attraction and a doping of 0.5

4 |- d-channel /\ -

T /tan

s-channel (x4)

0 1 1 1
-2 -1 0
tNNNItNN

Fig. 5. Critical temperature in the d- and s- (multiplied by 4)
channels as a function of the NN N hopping at Vastr /tnn = 3
and a doping of 0.5

and (26) in the linear approximation in ¢y n. In the

s-channel, Eq. (25), for kp; = %kma + @kya, kp, =

_ 1 _ V3 e
= 5kza — 5 kya gives:

1 kra k,V3a
1— = 2 (Na 2 (Fyvoa)
VattrN a [2 cos ( 5 )cos ( 5 )
1. .
— 5 sin (kza)sin (ky\@a) -

(oo ()0 (557))

e(k)—p
tanh —5r

X 77
2(e (k) — )
while, in the d-channel, Eq. (26) transforms into

1 kza k,V3a
1= — 2) 2 [z 22y Vo7
Vatt N Ek [ cos < 5 )COS ( 5 )
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(28)

1. .
— 5 sin (kga) sin (ky\/§a> +

+2 <1 — cos? (%“) — cos? (ky\f"»] x

tanh 75(12(%_

S - p) (29)
Comparison of these two equations shows that
the term (1 — cos? (kya /2) — cos? (k,\/3a /2)) in the
symmetry factor of the equations has different signs
in different channels and is multiplied by 2 in the d-
channel. Since this term is positive in the d-channel,
it results in a higher critical temperature. To under-
stand different dependencies of the critical tempera-
ture on the NNN hopping, one can expand the re-
maining (last) factor in Eq. (29) in linear order in
tynn- Since ty vy enters the dispersion, let us write
down explicit expression for it in the linear order:

e(k) ~

~2tN N, | cos? (ky\2/§a> +cos <31€21a> cos <\/§>2kya> +

+ 2N NN lcos (V3kya) +2cos <3k$“> cos <\/§kya>1

2 2
(30)

The last term has the following momentum depen-
dence at small momenta:

9
2INNN |:3 — 1 ((kxa)2 + (kya)Z)} ~GtNNN-

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 8



Symmetry and Value of the Order Parameter

Thus, the multiplication of such a term by different
factors in different channels

— (1 — cos? (kpa /2) — cos? (ky\/ga /2))
and
2 (1 — cos? (kya /2) — cos? (ky\/ga /2)),

leads to different contributions of the NN N to the su-
perconducting pairing (basically, modifying the sym-
metry of the pairing).

7. Summary

We have analyzed the role of the NNN hopping on
the superconducting properties of the honeycomb-
lattice model with NN attraction. It is found that
the d-channel gives a major contribution to the super-
conducting condensate at any value of tyyN, while,
at —0.5tyny < tynn < 0, there is a significant con-
tribution from the s-channel. The rapid decrease of
superconductivity with the growth of ¢ ynyn needs to
be studied in more details. Naturally, it is not pos-
sible to tune separately the NNN component of the
hopping matrix, and we just explored the role of this
part of the hopping in the superconducting proper-
ties of the system with a honeycomb lattice (e.g., in
graphene and 2D transition metal dichalcogenides).

As we mentioned above, the role of the NNN car-
rier hoping in the superconductivity of 2D systems
is barely analyzed. However, besides the obvious case
of the electronic spectrum, this parameter defines the
attraction between the electrons, or, more accurately,
it makes this attraction different in different channels,
when the pairs are formed on NN sites (nematic su-
perconductivity). The last effect is, to some extent,
an unexpected result of this work. We also would
like to note that the effect can be especially relevant
to cuprate high-temperature superconductors with
a different, square-type, lattice. Though this prob-
lem requires a separate quantitative/numerical study,
even without such an analysis, it is obvious that, in
cuprates, a competition between the s- and d-wave
channels may come from a nonzero tyyy only. Be-
sides, an important problem, overlooked by theo-
rists and experimentalists so far, is crossover from
(actually local) nematic pairs to large Cooper pairs
with doping increasing. The study above is the first
step toward solving these interesting and important
problems.
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CUMETPIA TA BHAYEHHSA
ITAPAMETPA TIOPAJKY ¥V JIBOBMMIPHNX
HEMATNYHUX HAJAITPOBIIHNKAX

V wiit poboTi Mu BUBeJIM PiBHSIHHSI JJIsl HAIIPOBITHOrO HEMATH-
YHOI'O IapaMeTpa IMOPSJAKY Ta XiMiYHOrO HOTeHIiaJsly JJis Te-
KCAroHaJIBbHOI I'DATKH 3 ypaXyBaHHSIM IIEPECKOKY €JIEKTPOHIB
Ha HaWOJIM>K4l 1 HaCTyIHI mic/s HAMGIMKYNX By3/IU. 3 aHAJIIZY
eHepril OCHOBHOI'O HAAIIPOBITHOIO CTaHy OyJI0 BCTAHOBJIEHO, IO
CHMeTpid napameTrpa IOPAJKY Ta JAesKi IHII HaJIpoBigHi BIa-
CTUBOCTi CUCTEMHU CHJIBHO 3aJIe?KaTh BiJl 3HAKa Ta MOYJIS ITapa-
MeTpa MePeCKOKY Ha HACTYIIHI Mic/s HaWOJIMmKInX By3au. Ak
[I0Ka3aHO, CIIAPIOBAHHS 3 PO3IINPEHOIO S- 1 d-CUMeTPI€Io 1alTh
3HAYHMUII BHECOK Yy HAJIIPOBi/IHE CIApIOBaHHS B CHUCTEMI, sIKe
MOXKHA 3MIHIOBaTH, Bapiloo4un mapaMeTpu nepeckoky. O6roso-
PEHO MOXKJIMBHI 3B’SI30K OTPHUMAaHUX Pe3yJIbTaTiB i3 BIacTUBO-
CTSIMH JIEeSIKUX OJHOIIAPOBUX JOIIOBAHUX HAIIPOBIIHUKIB (rpa-
deny i AUXaIbKOreHIAIB NepexifHuX MeTaJiB).

Kuatwvwoei c.ao6a: Teopist HagnposigHocTi, 2D cucremu, He-
MaTUYHICTD.
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