
SURFACE PHYSICS

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 8 611

https://doi.org/10.15407/ujpe69.8.611

L.I. MALYSHEVA
Bogolyubov Institute for Theoretical Physics,
Nat. Acad. of Sci. of Ukraine
(14b, Metrologichna Str., Kyiv 03680, Ukraine; e-mail: malysh@bitp.kiev.ua)

ON ZERO-TEMPERATURE CURRENT
THROUGH AN ATOMIC CHAIN SUBJECTED
TO A UNIFORMLY VARYING FIELD:
GREEN’S FUNCTION FORMALISM

On the basis of the tight-binding formalism and Green’s function technique, we obtain all matrix
elements of Green’s functions for a biased chain with linear variations of the electron on-site
energy. Their dependence on system parameters is analyzed in the context of through-molecule
electron transport.
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1. Introduction

During the last decades, the process of fabrica-
tion of various molecular contacts of the “metal–
molecular system–metal” type has received the im-
pressive experimental development allowing high-
precision measurements of electric current through
single molecules, nanotubes, self-assembled monolay-
ers, and nanometer-size dielectric and semiconduc-
tor films. However, the interpretation of these exper-
iments based on the Landauer concept of conductance
requires, as a rule, the use of computational simula-
tions of molecular electronic structures. These studies
often give quite limited and method-dependent infor-
mation, which stimulates the development of analytic
approaches to the investigation of the electric prop-
erties of molecular contacts.
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In the present paper, we use the analytic deriva-
tion of the transmission coefficient 𝑇 (𝐸, 𝑉 ), the ratio
of the transmitted electron flux to incident flux for
a given energy 𝐸 and applied voltage 𝑉 , in terms
of the coupling function matrix [1–10]. This matrix
is determined by the Green functions of ideal leads
and molecule-lead interaction matrix. We will apply
the formulation used in [7], which exactly describes
molecular contacts with the use of realistic model Ha-
miltonians. Thus, we use the exact analytic expres-
sion for the transmission coefficient obtained for a
three-dimensional lead modeled by a cubic semiinfi-
nite lattice with an arbitrary number of atoms on the
surface and in subsurface layers interacting with the
molecule [3].

In the 1960s, Wannier introduced the concept of
electron energy quantization in solids subjected to
the action of constant homogeneous electric fields
[11, 12]. Actually, his concept was formulated for an
infinite monatomic chain described in the Wannier
tight-binding approximation. It can be considered as
the theory of Stark effect for a chain of interact-
ing single-level atoms. Therefore, the obtained elec-
tron spectrum was called a Wannier–Stark ladder or
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Fig. 1. Fragments of semiinfinite (in the 𝑛𝑥 direction) left and right leads with a molecular chain
in between. The binding atoms of the chain are in the on-top position. The energies of electron
transfer between adjacent atoms are 𝛽 in the leads, 𝛽cont in the molecular chain, and 𝛾 on the
electrode-molecule interface (a). One-dimensional case, 𝑁𝑦 = 𝑁𝑧 = 1 (b)

the WS quantization of the electron energy, namely,
𝐸𝜇 = 𝜇𝜀, where 𝜇 is an integer. The field parameter
𝜀 (−𝜀) determines the variations of the electron po-
tential energy from an atom to the next atom along
(against) the field.

Numerous accurate explicit expressions showing
the electric-field effects on the chain electron spec-
trum were derived in [7, 13–21]. The polynomial rep-
resentation of the exact solution to the spectral prob-
lem for the field-affected 𝒩 -atom long tight-binding
chain [22] was obtained in the context of through-
molecule transport.

In what follows, we present all explicit expressions
for the matrix elements of the Green functions for
a biased chain with linear variations of the electron
on-site energy derived from the exact characteristic
equation for the Hamiltonian matrix of the 𝒩 -length
atomic chain. The obtained results are used to deduce
an explicit expression for the transmission coefficient
of electrons through a spatially finite tilted band. It
reveals the resonance structure of the transmission
spectrum and its dependence on the characteristic pa-
rameters of the system.

2. Transmission Coefficient

We consider a metal wire connected to a scattering
region, but, otherwise, ideal in a sense that, in the ab-
sence of imperfections, electrons can flow freely along
the wire. Assume that, as shown in Fig. 1, a, there
is a molecule coupled in a certain way with the left
and right parts of the wire (the left and right leads)
playing the role of imperfection. Within the frame-
work of the Landauer–Büttiker theory [23–25], the
transmission probability is directly related to the cur-
rent-voltage relation. For the efficient computation
and analytic description of the transmission coeffi-
cient, the Green function technique proves to be es-

pecially useful for the development of reliable compu-
tational schemes. In [26], it was proposed to describe
the tunnel current in metal–insulator–metal hetero-
structures by using the Green-function language. La-
ter, their treatment was reformulated in numerous
physical contexts to examine, in particular, the quan-
tum conductance of molecular wires [3, 13–17].

Within the framework of the Green-function for-
malism, 𝑇 (𝐸, 𝑉 ) can be expressed in terms of the
Green functions related to the noninteracting left
and right leads and the scattering region. To find
𝑇 (𝐸, 𝑉 ), we make our model more specific as follows:
In the bra-ket notation, |n⟩ ≡ 𝑎+n |0⟩ = 𝑎+𝑛𝑥

𝑎+𝑛𝑦
𝑎+𝑛𝑧

|0⟩,
⟨n|n′⟩ = 𝛿n,n′ , the Hamiltonian of the system “left
lead-molecular contact-right lead” depicted in Fig. 1
takes the form

�̂� = �̂�L + �̂�cont + �̂�R + �̂� int. (1)

Figure 1 explains the model parameters and shows
the potential profile on the electron way from the left
electrode to the right one. We assume that, in the
absence of interaction between the left/right leads
and the contact, the eigenstates Ψ𝜇 of the Hamil-
tonian operators �̂�𝜇 of the leads and the contact
(𝜇 = L,R, and contact, respectively) can be expanded
in a series in the respective basis set of atomic orbitals
Ψ𝜇 =

∑︀
n∈n𝜇

𝜓𝜇
n|n⟩. We also treat the Hamiltonians

�̂�L and �̂�R used to describe the leads, as free electron
Hamiltonians of semiinfinite cubic lattices with the
hopping integral between the nearest-neighbor atoms
denoted by −𝛽 (𝛽 > 0). Thus, the energy of trans-
mitted waves is

𝐸(𝑘𝑗𝑦,𝑗𝑧 ) = 6𝛽 − 2𝛽[cos(𝑘𝑗𝑦,𝑗𝑧 )+

+ cos(𝜉𝑦) + cos(𝜉𝑧)],

𝜉(𝑦,𝑧) ≡
𝜋𝑗(𝑦,𝑧)

𝑁(𝑦,𝑧)+1 , 𝑗(𝑦,𝑧) = 1, ..., 𝑁(𝑦,𝑧),

(2)
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where 𝑘𝑗𝑦,𝑗𝑧 is real (imaginary) for propagating (eva-
nescent) modes.

The left-to-right drop of the applied potential 𝑒𝑉
is taken into account as a shift of the site energies of
each atom by the field parameter 𝜀 = 𝑒𝐹𝑎/𝛽, where
𝑒 is the absolute value of the electron charge, 𝐹 is
the electric-field strength, and 𝑎 is the lattice con-
stant. Thus, we have assumed that the potential dif-
ference between the left and right electrodes linearly
decreases inside the contact: 𝑒𝑉 = 𝜀(𝒩 +1), and the
Hamiltonian of molecular chain takes the form

�̂�cont =

𝒩∑︁
𝑛=1

{︁
(𝜀cont − 𝑛𝜀) 𝑎+𝑛 𝑎𝑛 −

−𝛽cont
[︀
(1− 𝛿𝑛,1) 𝑎

+
𝑛−1 + (1− 𝛿𝑛,𝒩 ) 𝑎+𝑛+1

]︀
𝑎𝑛

}︁
. (3)

We consider a simplified model of metal-molecular
interaction, which involves only two atoms in the en-
tire collection of molecule atoms: these binding atoms
have the coordinates 𝑛 = 1 and 𝑛 = 𝒩 . The interac-
tion operator is then given by

�̂� int = 𝛾
∑︁
n∈nL

|1⟩⟨n|+ 𝛾
∑︁
n∈nR

|𝒩 ⟩⟨n|, (4)

i.e., the parameter 𝛾 determines the difference be-
tween the electron transfer rates from the contact to
the electrodes and backward.

By definition, the transmission coefficient is equal
to the ratio of the transmitted electron flux to the in-
cident flux. The procedure of derivation of the trans-
mission coefficient is well known [1–3, 7]. Due to the
simplifying model assumptions, this principal quan-
tity can be obtained in the fully analytic form by solv-
ing the Lippman–Schwinger equation with the Hamil-
tonian �̂�. Here, we use 𝑇 (𝐸, 𝑒𝑉 ) in the following
form:

𝑇 (𝐸, 𝑒𝑉 ) = 4Im(𝐴L)Im(𝐴R)(𝐺
cont
1,𝒩 )2

⃒⃒⃒(︀
1−𝐴L𝐺

cont
1,1

)︀
×

×
(︀
1−𝐴R𝐺

cont
𝒩 ,𝒩

)︀
−𝐴L𝐴R(𝐺

cont
1,𝒩 )2

⃒⃒⃒−2

, (5)

where 𝐺cont
𝑛,𝑛′ are the Green functions for Hamiltonian

(3), the coupling functions 𝐴L and 𝐴R are given by
the formulas

𝐴(L,R) = 𝛾2
∑︁

n,n′∈n(L,R)

𝐺
(L,R)
n,n′ ,

and the Green functions of the left and right leads for
𝑛𝑥 = 𝑛𝑥′ = 1 are as follows:

𝐺
(L,R)
1,𝑛𝑦,𝑛𝑧 ;1,𝑛′

𝑦,𝑛
′
𝑧
= − 1

𝛽

4

(𝑁𝑦 + 1)(𝑁𝑧 + 1)
×

×
𝑁𝑦∑︁

𝑗𝑦=1

𝑁𝑧∑︁
𝑗𝑧=1

𝑒
𝑖𝑘

(L,R)
𝑗𝑦,𝑗𝑧 sin(𝜉𝑦𝑛𝑦) sin(𝜉𝑧𝑛𝑧)×

× sin(𝜉𝑦𝑛
′
𝑦) sin(𝜉𝑧𝑛

′
𝑧). (6)

To find the transmission coefficient for the model
specified by the Hamiltonian operator in Eq. (3), it is
necessary to know the matrix elements of the Green
functions appearing in Eq. (5). They are found in the
next section. In what follows, the model parameters
𝜀cont, 𝛽cont, 𝛾, and 𝜀 are expressed by using 𝛽 as the
unit of energy.

3. Green’s Functions for a Tilted
Chain in the Tight-Binding Model

The system of equations for finding the required
Green functions has the form(︀
𝐸 − 𝜀cont + 𝑛𝜀

)︀
𝐺

cont
𝑛,𝑛′ = −𝛽cont[(1− 𝛿𝑛,1)𝐺

cont
𝑛−1,𝑛′ +

+(1− 𝛿𝑛,𝑁 )𝐺
cont
𝑛+1,𝑛′ ] + 𝛿𝑛,𝑛′ , (7)

where 𝑛, 𝑛′ = 1, ...,𝒩 . To find all matrix elements
𝐺

cont
𝑛,𝑛′ , it is convenient to use the method of gener-

ating functions. We define the generating function as
follows:

𝒢𝑛′(𝜙) =

𝒩∑︁
𝑛=1

𝐺
cont
𝑛,𝑛′(𝐸, 𝑒𝑉 ) 𝑒𝑖𝑛𝜙. (8)

It can be shown by direct substitution that 𝒢𝑛′(𝜙)
satisfies the following differential equation:

(𝐸 − 𝜀cont + 2𝛽cont cos𝜙)𝒢𝑛′(𝜙)− 𝑖𝜀
𝑑𝒢𝑛′(𝜙)

𝑑𝜙
=

= 𝑒𝑖𝑛
′𝜙 + 𝛽cont𝐺

cont
1,𝑛′ + 𝛽cont𝑒𝑖(𝒩+1)𝜙𝐺

cont
𝒩 ,𝑛′ . (9)

Solving this linear differential equation allows us to
express the solution of (7) in terms of the Bessel func-
tions of the first and second kinds 𝐽𝜈(𝑧) and 𝑌𝜈(𝑧).
Namely, the solution has the form

𝐺
cont
𝑛,𝑛′(𝐸, 𝑒𝑉 ) =

= − 𝜋

𝜀
[︀
𝐽𝜈(𝑧)𝑌𝜈−𝒩−1(𝑧)− 𝐽𝜈−𝒩−1(𝑧)𝑌𝜈(𝑧)

]︀ ×
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×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[︀
𝐽𝜈−𝑛(𝑧)𝑌𝜈−𝒩−1(𝑧)− 𝐽𝜈−𝒩−1(𝑧)𝑌𝜈−𝑛(𝑧)

]︀
×

×
[︀
𝐽𝜈(𝑧)𝑌𝜈−𝑛′(𝑧)− 𝐽𝜈−𝑛′(𝑧)𝑌𝜈(𝑧)

]︀
, 𝑛 ≥ 𝑛′,

𝑛↔ 𝑛′, 𝑛 ≤ 𝑛′, 𝑧 =
2𝛽cont

𝜀
,

𝜈 = −(𝐸 − 𝜀cont)
𝒩 + 1

𝑒𝑉
= −(𝐸 − 𝜀cont)

1

𝜀
.

(10)

For the particular values of 𝑛, 𝑛′ = 1, 𝒩 , Eq. (10)
gives the expressions for the Green functions used
in the definition of the transmission coefficient
𝑇 (𝐸, 𝑒𝑉 ):

𝒟𝐺(𝐸, 𝑒𝑉 )𝐺
cont
1,1 (𝐸, 𝑒𝑉 ) =

= 𝐽𝜈−1(𝑧)𝑌𝜈−𝒩−1(𝑧)− 𝑌𝜈−1(𝑧)𝐽𝜈−𝒩−1(𝑧) ≡ �̃�1,1,

𝒟𝐺(𝐸, 𝑒𝑉 )𝐺
cont
𝒩 ,𝒩 (𝐸, 𝑒𝑉 ) =

= 𝐽𝜈(𝑧)𝑌𝜈−𝒩 (𝑧)− 𝑌𝜈(𝑧)𝐽𝜈−𝒩 (𝑧) ≡ �̃�𝒩 ,𝒩 ,

𝒟𝐺(𝐸, 𝑒𝑉 )𝐺
cont
1,𝒩 (𝐸, 𝑒𝑉 ) =

1

𝜋

𝜀

𝛽cont
≡ �̃�1,𝒩 ,

𝑄(𝐸, 𝑒𝑉 ) = 𝒟𝐺(𝐸, 𝑒𝑉 )
{︁
𝐺

cont
1,1 (𝐸, 𝑒𝑉 )𝐺

cont
𝒩 ,𝒩 (𝐸, 𝑒𝑉 )−

−
[︀
𝐺

cont
1,𝒩 (𝐸, 𝑒𝑉 )

]︀2}︁
=

=
−1

𝛽cont
[𝐽𝜈−1(𝑧)𝑌𝜈−𝒩 (𝑧)− 𝑌𝜈−1(𝑧)𝐽𝜈−𝒩 (𝑧)],

(11)

and

𝒟𝐺(𝐸, 𝑒𝑉 ) = −𝛽cont[𝐽𝜈(𝑧)𝑌𝜈−𝒩−1(𝑧)−

−𝑌𝜈(𝑧)𝐽𝜈−𝒩−1(𝑧)]. (12)

Note that, for 𝒩 = 1, by using the well-known
relations for the Bessel functions

𝐽𝜈−1(𝑧)𝑌𝜈−2(𝑧)− 𝑌𝜈−1(𝑧)𝐽𝜈−2(𝑧) =
2

𝜋𝑧
,{︂

𝐽
𝑌

}︂
𝜈−1

(𝑧) +

{︂
𝐽
𝑌

}︂
𝜈+1

(𝑧) =
2𝜈

𝑧

{︂
𝐽
𝑌

}︂
𝜈

(𝑧),

in Eqs. (11) and (12), we obtain the following evident
relation:
𝐺

cont
1,1 (𝐸, 𝑒𝑉 ) =

1

𝐸 − (𝜀cont − 𝑒𝑉/2)
. (13)

Relations (10) give analytic expressions for the
Green functions for a biased linear chain which can be
used for analytic modeling in a great number of ap-
plications. Substituting Eqs. (11) in Eq. (5), we can
find the transmission coefficient for the system pre-
sented in Fig. 1. In the next section, we will use these
results to derive 𝑇 (𝐸, 𝑒𝑉 ) for the case 𝑁𝑦 = 𝑁𝑧 = 1,
i.e., for an atomic chain depicted in Fig. 1, b.

4. One-Dimensional Case

4.1. Transmission coefficient

For the case 𝑁𝑦 = 𝑁𝑧 = 1, our model corresponds to
the atomic chain shown in Fig. 1, b. The site energy
along the chain is equal to 2 (to recall, in 𝛽 units) for
𝑛𝑥 ≤ 0, to 2 − 𝑒𝑉 for 𝑛𝑥 > 𝒩 , and to 2 − 𝜀𝑛, 𝜀 =
= 𝑒𝑉/(𝒩 + 1) for 𝑛 ∈ 1,𝒩 in the left and right elec-
trodes and in the contact, respectively. The eigenen-
ergies (2) for Hamiltonian (1) are simplified in this
case to

𝐸 = 2
(︀
1− cos 𝑘L

)︀
= 2

(︀
1− cos 𝑘R

)︀
− 𝑒𝑉, (14)

0 ≤ 𝑘L, 𝑘R ≤ 𝜋, with the wave vectors in units of the
inverse interatomic distance 𝑎−1. Relation (5) can be
now rewritten as follows:

𝑇 (𝐸, 𝑒𝑉 ) = 4𝛾4 sin 𝑘L sin 𝑘R(𝐺
cont
1,𝒩 )2 ×

×
⃒⃒⃒⃒
1 + 𝛾2

(︁
𝑒𝑖𝑘

L

𝐺
cont
1,1 + 𝑒𝑖𝑘

R

𝐺
cont
𝒩 ,𝒩

)︁
+

+ 𝛾4𝑒𝑖(𝑘
L+𝑘R)

[︂
𝐺

cont
1,1 𝐺

cont
𝒩 ,𝒩 −

(︁
𝐺

cont
1,𝒩

)︁2
]︂⃒⃒⃒⃒−2

. (15)

By using relations for the Green functions (11), after
some algebra, we get

𝒟𝑇𝑇 (𝐸, 𝑒𝑉 ) = 4𝛾4 sin 𝑘L sin 𝑘R�̃�2
1,𝒩 ,

𝒟𝑇 ≡
[︁
𝒟𝐺 + 𝛾2

(︁
cos 𝑘L�̃�1,1 + cos 𝑘R�̃�𝒩 ,𝒩

)︁
+

+ 𝛾4 cos
(︀
𝑘L − 𝑘R

)︀
𝑄(𝐸, 𝑒𝑉 )

]︁2
+

+ 𝛾4
[︁
sin 𝑘L�̃�1,1 −− sin 𝑘R�̃�𝒩 ,𝒩 +

+ 𝛾2 sin
(︀
𝑘L − 𝑘R

)︀
𝑄(𝐸, 𝑒𝑉 )

]︁2
+

+4𝛾4 sin 𝑘L sin 𝑘R�̃�2
1,𝒩 .

(16)

The condition of transmission without backscatter-
ing, 𝑇 (𝐸, 𝑒𝑉 ) = 1, directly follows from Eq. (16):[︁
𝛾−2𝒟𝐺 + cos 𝑘L�̃�1,1 + cos 𝑘R�̃�𝒩 ,𝒩 +

+ 𝛾2 cos
(︀
𝑘L − 𝑘R

)︀
𝑄(𝐸, 𝑒𝑉 )

]︁2
+

+
[︁
sin 𝑘L�̃�1,1 − sin 𝑘R�̃�𝒩 ,𝒩 +

+ 𝛾2 sin
(︀
𝑘L − 𝑘R

)︀
𝑄(𝐸, 𝑒𝑉 )

]︁2
= 0. (17)
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In the particular case, 𝛽cont = 1 and 𝑒𝑉 = 0 (and,
hence, 𝑘L = 𝑘R = 𝑘), Eq. (16) repeats the result
obtained in [7]:

𝑇 (𝐸, 0) = 4𝛾4sin4 𝑘
{︁[︁
sin(𝒩 +1)𝑘−2𝛾2cos 𝑘 sin𝒩𝑘+

+ 𝛾4 sin[(𝒩 − 1)𝑘]
]︁2

+ 4𝛾4 sin4 𝑘
}︁−1

. (18)

For the single-atom contact 𝒩 = 1, we easily get
𝜀 = 𝑒𝑉/2, �̃�1,1 = 1, and 𝒟𝐺 = 𝐸 − 2 + 𝑒𝑉/2. Then
Eq. (16) can be represented in the explicit form

𝑇 (𝐸, 𝑒𝑉 ) = 2𝛾4𝑅
{︁
2(𝐸 − 2 + 𝑒𝑉/2)2(1− 2𝛾2)+

+ 𝛾4 [4 + (2− 𝐸)(2− 𝐸 − 𝑒𝑉 ) +𝑅]
}︁−1

,

𝑅 ≡
√︀
𝐸(4− 𝐸)

√︀
(𝐸 + 𝑒𝑉 )(4− 𝐸 − 𝑒𝑉 ),

𝑇 (𝐸, 0) =
𝛾4𝐸(4− 𝐸)

(𝐸 − 2)2(1− 2𝛾2) + 4𝛾4
.

(19)

For 𝒩 ≥ 2, the analogues of Eqs. (19) are too cum-
bersome to be presented.

Expression (16) is much simpler than Eq. (5), but
still remains quite complicated. However, in the case
of small potential difference, 𝑒𝑉 ≪ 1, it can be signif-
icantly simplified with the help of an approximation
similar to that used in [20]. Namely, for any coupling
parameter 𝛾 and any 𝒩 , the transmission coefficient
𝑇 (𝐸, 𝑒𝑉 ) can be approximated as follows:

𝑇 (𝐸, 𝑒𝑉 ) ≈ 4𝛾4
{︂
4𝛾4 + (1− 𝛾4)2 ×

× sin2
[︂
𝑝+

𝒩 + 1

2

(︂
𝐸 − 2 +

𝑒𝑉

2

)︂]︂}︂−1

, (20)

where

𝑝 ≡ 𝜋

4
[(−1)𝒩 + 1].

In the next subsection, we apply the obtained re-
sults to find the volt-amper characteristics of the con-
sidered “left lead-contact-right lead” system.

4.2. Volt-amper characteristics

Following the Landauer–Büttiker theory [23, 24], we
express the current-voltage relation via the transmis-
sion coefficient in the form

𝐼(𝑒𝑉 ) =
2𝑒

ℎ

min(2,4−𝑒𝑉 )∫︁
max(0,2−𝑒𝑉 )

𝑇 (𝐸, 𝑒𝑉 )𝑑𝐸. (21)

The limits of integration [2− 𝑒𝑉, 2], 0 ≤ 𝑒𝑉 ≤ 2 and
[0, 4 − 𝑒𝑉 ], 2 ≤ 𝑒𝑉 ≤ 4 correspond to the nonzero
values of the transmission coefficient specified by the
Pauli exclusion principle.

The volt-ampere characteristics presented in
Figs. 2–4 are computed by using the exact expres-
sion for the transmission coefficient (16). In all pre-
sented plots, the energies are expressed in the units
of 𝛽 (the absolute value of the hopping integral be-
tween the nearest-neighbor atoms of the leads). Wi-
thin the framework of the nearest-neighbor tight-
binding model, the bandwidth is 12𝛽 and 4𝛽 in three
dimension and one dimension, respectively. Then if
the metallic bandwidth is assumed to be of an
order of 10 eV, we can use 𝛽 ∼ 1 eV for the
three-dimensional model of the leads depicted in
Fig. 1, a and 𝛽 ∼ 2.5 eV in the one-dimensional case
(Fig. 1, b).

The choice of the dimensionless parameters 𝛾
(metal-contact interaction) and 𝛽cont (interaction in
the tilted chain) depends on the specific molecular
system. For our calculations, we chose the following
two sets of parameters: 𝛽cont = 1 with several values
of 𝛾 (Figs. 2 and 4), and 𝛽cont = 𝛾 (Fig. 3). Thus,
the first set can be used, in particular, to describe
the electron transport in the one-dimensional case, if
the hopping integral between the atoms of molecular
chain is of an order of 2.5 eV, which is typical, e.g.,
of the graphene-based chain. The second set can be
applicable to the estimation of the conduction prop-
erties of single molecule junction (see, e.g., [8]) or
terminated alkane chains (see, e.g., [10]).

The top panel row in Fig. 2 shows the I–V char-
acteristics for contacts with the numbers of atoms
𝒩 = 1, 9, 49, which are perfectly (𝛾 = 1) and weakly
(𝛾 = 0.5, 0.25) coupled with the emitter and the col-
lector. The bottom panel row represents 𝐼(𝑒𝑉 ) for
𝒩 = 3, 5, 7 and 𝛾 = 1, 0.25, 0.1.

The volt-ampere characteristic plotted in Fig. 2,
which corresponds to 𝒩 = 49, and 𝛾 = 1, has the
shape of an isosceles triangle. For 𝒩 . 10, the per-
fect triangular I–V shape is deteriorated only slightly
and basically remains unchanged. The difference be-
tween the I–V characteristics of contacts with lengths
9 . 𝒩 . 49 becomes negligible, while, for 𝒩 & 49,
the dependence of 𝐼 on 𝑒𝑉 does not change for all
accessible levels of the accuracy of numerical integra-
tion. This conclusion is equally valid for the odd and
even numbers of atoms in the contact.
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Fig. 2. I–V characteristics of contacts of lengths 𝒩 = 1, 9, 49 (top panel row) and 𝒩 = 3, 5, 7 (bottom panel row) for different
values of 𝛾 and 𝛽cont = 1. The left side of perfect isosceles triangle (𝒩 = 49, 𝛾 = 1) corresponds to the volt-ampere characteristic
𝐼 = 2𝑒2

ℎ
𝑉 , ℎ/(2𝑒2) = 12.9𝑘Ω

Fig. 3. I–V characteristics of contacts of lengths 𝒩 = 1, 9, 49 (left and middle panels) and 𝒩 = 3, 5, 7 (right panel) for different
values of 𝛾 and 𝛽cont = 𝛾. The curve for 𝑁 = 49 in the middle panel is marked with red color for clarity

Weak coupling exemplified in Fig. 2 for 𝛾 = = 0.5,
0.25, and 0.1, qualitatively changes the volt-ampere
characteristics of perfectly coupled atomic wire. First,
for contacts with any number of atoms, the shape of
I–V curves has nothing common with the triangle. Se-
cond, for each particular value of 𝑁 < 10, the depen-
dence 𝐼(𝑒𝑉 ) is unique. The only common feature is

that the ohmic current can be observed for a small
range of potential differences.

In Fig. 2, we can easily see that, for 𝒩 & 9 and
𝛾 . 0.5, the volt-ampere characteristic acquires the
well-resolved shape of a ladder occupying the interval
0 < 𝑒𝑉 < 2. The appearance of the first step in the
current (or conductance) ladder of contacts with an
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Fig. 4. Left panel: The exact dependence 𝐼(𝑒𝑉 ) given by Eq. (21) is depicted by solid lines while its approximation (22) is
displayed by dotted lines calculated for 𝒩 = 49, 𝛽cont = 1 and 𝛾 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 1.0. Central panel: Enlarged
dependences shown in the left panel. Right panel: The same dependences for 𝑁 = 3 (black), 𝑁 = 5 (red), and 𝛾 = 0.2, 0.5,
and 0.7

odd number of atoms is associated with the state in
the center of the contact spectrum 2−𝑒𝑉/2, i.e., with
the central peak in the transmission spectrum and
the only peak for which the transmission coefficient
is equal to one for 𝐸 = 2 − 𝑒𝑉/2. The next steps
in the ladder correspond to a pair of side resonances
(i.e., two new states) appearing in the current window
and, therefore, they are two times higher than the
first step. In the transmission spectra of contacts with
even numbers of atoms, the central peak is absent
and, hence, all ladder steps have the same height. The
presence-absence of the first and the lowest step in
the conductance ladder serves as an indication of the
odd-even effect on the conductance of weakly coupled
contacts.

Similar features of the volt-ampere characteristics
in the case 𝛽cont = 𝛾 can be observed in Fig. 3 (ob-
viously, the curves for 𝒩 = 1 do not depend on
𝛽cont). As can be seen by comparing the correspond-
ing plots, the maximum values of currents are rather
similar, i.e., they are mainly controlled by the values
of the coupling parameter. The principal distinction
between the cases 𝛽cont = 1 and 𝛽cont = 𝛾 is the
position of maxima, namely, for 𝛽cont = 𝛾 . 0.5,
the maxima are noticeably shifted toward lower val-
ues of 𝑒𝑉 .

4.3. Low potential difference

For the condition 𝑒𝑉 ≪ 1, the obtained approxima-
tion of the transmission coefficient (20) admits the
exact integration. Namely, we get an explicit expres-
sion for the current as a function of the potential dif-

ference, 𝛾, and 𝒩 :

𝐼(𝑒𝑉 ) =
2𝑒

ℎ

8𝛾2

(𝒩 + 1)(1 + 𝛾4)
×

× arctan

{︂
1 + 𝛾4

2𝛾2
tan

[︂
𝑝+

(𝒩 + 1)𝑒𝑉

4

]︂}︂
, (22)

if 𝑒𝑉 . 1. As shown in Fig. 4, this approximation
works reasonably well for 0 < 𝑒𝑉 . 1. Thus, the sim-
ple analytic approximation (22) satisfactory repro-
duces the current-voltage dependences for the molec-
ular contact depicted in Fig. 1 as functions of the cou-
pling parameter and contact length for the potential
differences varying from zero to several electron-volts.

Note that, setting 𝛾 = 1 in the argument of arctan,
we get a rough but reasonable approximation

𝐼(𝑒𝑉 ) ≈ 2𝛾2

1 + 𝛾4
2𝑒2

ℎ
𝑉, 𝑒𝑉 . 1. (23)

In particular, this gives the same result 𝐼(𝑒𝑉 ) =

= 2𝑒2

ℎ 𝑉 for 𝛾 = 1, which follows from Eq. (22). Ho-
wever, Eq. (23) does not reflect the ladder-type shape
of I–V characteristics shown in Fig. 4, where the pre-
dictions of approximate equations are compared with
the data of exact calculations.

The left and central panels in Fig. 4 accentuate the
fact that the conductance ladder in long contacts can
be observed if the contact region is weakly coupled
with the emitter and collector. Two different current
scales are used to demonstrate that the experimental
observation of the conductance quantization requires
to have the adequate sensitivity of current measure-
ments. We also note that, for the potential difference
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of interest (0.1–10 eV), the temperature effects are
negligible up to the room temperature.

Unlike the contacts with large number of atoms,
the I–V characteristics of short contacts shown in the
right panel, have a structureless form. Two of these
represent contacts 𝒩 = 3, 5, 𝛾 = 0.2, and exhibit
a pronounced trend to saturation following the ini-
tial current growth. However, in the larger interval
of potential difference, the I–V characteristics of the
same contact pair 𝒩 = 3–5, in the bottom-mid panel
in Fig. 2, exhibit noticeably different behavior. These
and other examples discussed above demonstrate that
even the simplest contact designs on the atomic level
suggest a great variety of the electronic characteris-
tics of nanosize devices.

5. Conclusions

In conclusion, we note that the exact and approx-
imate expressions for the transmission coefficient
and the current-voltage relations are found for the
Wannier–Stark ladder of interacting levels. The ana-
lytic expressions for the transmission coefficient are
obtained for the zero-temperature current through
atomic wires. The constructed I–V characteristics are
exact and accompanied by sufficiently accurate ex-
plicit approximate expressions.

Since atomic wires of different lengths are now real
objects [27, 28], the reported properties of the I–V
behavior are supposed to be observed in the course of
experimental investigations of molecular contacts of
the “metal-molecular chain-metal” type.

The author is grateful to the referee whose valuable
suggestions helped to significantly improve the origi-
nal version of the paper.
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Л.I.Малишева

ПРО ЕЛЕКТРИЧНИЙ СТРУМ
ПРИ НУЛЬОВIЙ ТЕМПЕРАТУРI ЧЕРЕЗ АТОМНИЙ
ЛАНЦЮЖОК ПIД ДIЄЮ ПОЛЯ, ЩО ЗМIНЮЄТЬСЯ
РIВНОМIРНО: ФОРМАЛIЗМ ФУНКЦIЙ ГРIНА

На основi формалiзму теорiї сильного зв’язку та технiки
функцiй Грiна одержано усi матричнi елементи функцiй
Грiна для ланцюжка пiд дiєю поля, що змiнюється рiвно-
мiрно. Проаналiзовано їх залежнiсть вiд параметрiв систе-
ми у контекстi електронного транспорту через молекулярнi
системи.

Ключ о в i с л о в а: електронний транспорт, функцiї Грiна,
коефiцiєнт пропускання.
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