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DEVELOPMENT AND ANALYSIS OF NOVEL
INTEGRABLE NONLINEAR DYNAMICAL SYSTEMS
ON QUASI-ONE-DIMENSIONAL LATTICES.
TWO-COMPONENT NONLINEAR SYSTEM

WITH THE ON-SITE AND SPATIALLY
DISTRIBUTED INERTIAL MASS PARAMETERS

1. Introduction

The main principles of developing the evolutionary nonlinear integrable systems on quasi-one-
dimensional lattices are formulated in clear mathematical and physical terms discarding the
whimsical mathematical formulations and computer-addicted presentations. These basic prin-
ciples are substantiated by the actual development of novel semi-discrete integrable nonlinear
system, whose auziliary spectral and evolutionary operators are given by 4 x 4 square ma-
trices. The procedure of reduction from the prototype monlinear integrable system with twelve
field functions to the physically meaningful nonlinear integrable system with four field func-
tions is described in details prompted by our previous cumulative experience. The obtained
ultimate semi-discrete nonlinear integrable system comprises the two subsystems of essentially
distinct physical origins. Thus, the first subsystem is the subsystem of the Toda type. It is char-
acterized by the on-site (spatially local) mass parameter and the positively defined elasticity
coefficient. In contrast, the second subsystem is characterized by the spatially distributed mass
parameters and the negatively defined elasticity coefficient responsible for the low-amplitude
instability. We believe our scrupulous consideration of all main steps in developing the semi-
discrete nonlinear integrable systems will be useful for the researchers unfamiliar with the
numerous stumbling blocks inevitable in such an interesting and prospective scientific field as
the theory of semi-discrete nonlinear integrable systems.
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The contribution of Krylov—Bogolyubov—-Mytropol-
skyy school to the theoretical investigation of nonlin-
ear dynamical problems concerning the diverse types
of oscillations in a variety of mechanical, physical, and
technical systems by the asymptotic analytic methods
is widely acknowledged [1-4]. In turn, the numerical
study of dynamical problems in the chains of nonlin-
early coupled oscillators appears to be initiated by
Fermi, Pasta, Ulam, and Tsingou [5]. Evidently, both
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these approximate approaches have been extremely
valuable for the subsequent development of exactly
integrable analytic dynamical models of nonlinear os-
cillators on quasi-one-dimensional lattices inspired by
Toda [6-8].

In the present paper, we suggest the novel in-
tegrable two-component nonlinear system of stable
and unstable displacement fields on a quasi-one-
dimensional lattice. One of its subsystems is char-
acterized by the spatially distributed inertial mass
parameters shared between each pair of neighbor-
ing lattice sites. This rather unusual property gives
rise to the unexpectedly curious set of semi-discrete
(i.e. continuous in time variable 7 and discrete in
space variable n) nonlinear equations for the whole
system. The preliminary analysis of the obtained es-
sentially nondissipative semi-discrete equations shows
that they seem to be treated beyond the standard
dynamical procedure of Lagrangian or Hamiltonian
formalism.

2. Basic Principles for Developing

the Quasi-One-Dimensional Semi-Discrete
Nonlinear Systems Integrable

in the Lax Sense

Though the basic principles for developing the quasi-
one-dimensional integrable semi-discrete nonlinear
systems are widely exposed in the scientific literature
[9-17], however, their concise formulation, supple-
mented by some important but usually undeservedly
ignored observations, will be appropriate for scien-
tists disliking the intricacies of chimerical mathemat-
ical notations.

The first step consists in inventing some square
spectral matrix L(n|z), whose matrix elements
Lji(n|z) have to be chosen as some Laurent or Tay-
lor polynomials with respect to time-independent
spectral parameter z. The spectral-independent co-
efficients of such polynomials should be treated as
the prototype field functions of continuous time vari-
able 7 and discrete space variable n in a future set
of nonlinear evolutionary equations. For the sake of
definiteness we assume the discrete space variable n
to span over all integers from minus infinity to plus
infinity.

The second step is to construct the proper evo-
lution square matrix A(n|z), whose matrix elements
Ajr(n|z), sought as Laurent or Taylor polynomials
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with respect to time-independent spectral parame-
ter z, would be recoverable from the semi-discrete
matrix-valued equation

LLn]z) = Aln +112)L(n2) — Linl2) A(n]2). (2.1)
This equation is claimed to be the semi-discrete zero-
curvature representation for the future successfully
developed semi-discrete nonlinear system.

Provided both these two steps have been success-
fully overcome, and the spectrally independent parts
of evolutionary matrix have been isolated, the same
matrix-valued condition (2.1) yields additionally the
set of nonlinear semi-discrete equations for the pro-
totype field functions. Here, we would like to stress
that the above described procedure is not so simple
in practice, and it can be performed only in some
lucky cases among numerous unsuccessful attempts,
followed sometimes by the unexpected insight during
a sleepless night.

The third step is to simplify or reduce the obtained
prototype set of nonlinear semi-discrete equations to
the nonlinear semi-discrete equations written in terms
of physically meaningful field variables. Though this
step is dictated by the scrupulous analysis of obtained
prototype evolutionary equations, but, as a rule, it
can be substantially facilitated by means of the uni-
versal local conservation law

d

o In[det L(n|z)] = SpA(n + 1|z) — SpA(n|z) (2.2)
appearing as a simple contraction of system’s zero-
curvature representation (2.1).

Once the explicit uncontradictory forms of the
spectral L(n|z) and evolution A(n|z) matrices have
been found, the matrix-valued equation (2.1) auto-
matically acquires the status of compatibility condi-
tion (referred to as the semi-discrete zero-curvature
condition [10, 18]) between two auxiliary matrix-
valued linear equations

X(n+1|z) = L(n|z) X (n|z2), (2.3)
%X(n|z) = A(n|z)X (n|z) (2.4)

for the auxiliary matrix-function X (n|z). The ranks
of all three involved square matrices L(n|z), A(n|z)
and X (n|z) are assumed to be the same. The set of
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matrix-valued linear equations (2.3)—(2.4) itself is re-
ferred to as auxiliary linear problem for the developed
semi-discrete nonlinear system. As a consequence,
early claimed notion of semi-discrete matrix-valued
equation (2.1) as the semi-discrete zero-curvature rep-
resentation for the developed semi-discrete nonlinear
system becomes truly justified.

The existence of system’s zero-curvature represen-
tation (2.1) in combination with the respective auxil-
iary linear problem (2.3)—(2.4) establishes the integra-
bility of a semi-discrete nonlinear system in the Lax
sense. Moreover, as a rule, it gives the green light for
the integrability of a semi-discrete nonlinear system
in the Liouville sense [18].

In conclusion of this Section we would like to pro-
vide the detailed logical scheme leading from the aux-
iliary linear problem (2.3)—(2.4) to the zero-curvature
condition (2.1). First of all, the set of auxiliary linear
equations (2.3)—(2.4) is overdetermined. To achieve
the compatibility of this overdetermined set, the oper-
ation of differentiation with respect to the time vari-
able 7 and the operation of shifting along the spa-
tial variable n as applied to the auxiliary matrix-
function X (n|z) within the auxiliary linear set (2.3)—
(2.4) must commutate, i.e. [9]

xela] -8

m=n+1

X(n+12). (2.5)

Then the zero-curvature condition (2.1) arises from
the auxiliary linear set of linear equations (2.3)—(2.4)
as the immediate consequence of such a commutative
procedure.

3. Semi-Discrete Nonlinear
Integrable System in Terms
of Prototype Field Functions

As a particular successful realization of the roadmap,
sketched in the previous second Section, we adopt the
ansétze for the spectral L(n|z) and evolution A(n|z)
operators to be in the forms of following 4 x 4 square
matrices

L(n|z) =
0 tlQ(”) 513(71 z 0
_ ta1(n) tao(n) uaz(n)z=t  sa4(n)z
uz1(n)z=!  s32(n)z t3(n) tsa(n)
0 U42(n -1 t43(n) 0
(3.1)
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and
A(n|z)
0 biz2(n) aiz(n )z 0
= b21(n) b22(n) C23( )Z (124(’/7,)2
cs1(n)z™  asa(n)z bss(n)  bsa(n)
0 caz(n)z" baz(n) 0

(3.2)

The direct substitution of these ansitze (3.1)—(3.2)
into the zero-curvature equation (2.1) establishes the
following ten relations:
aiz(n +1) s32(n) = s13(n) asz
s32(n) age(n) = asa(n + 1) sa4(n)
bia(n + 1) ugez(n) = t12(n) co3
32(n) ba1(n) = asa(n+1
23(n) baa(n) = caz(n + 1)t

)
)

»

<

)
)21
)t

uz3(n) c31(n) = 023(n + 1) uzi(n),

caa(n + 1) ugz(n) = uga(n) caz(n), (3.10
azz2(n + 1) ugz(n) = s3a2(n) caz(n), (3.11
coz(n + 1) s32(n) = uasz(n) asa(n) (3.12

between the ten spectrally independent ingredients
a13(n), az4(n), asz(n), biz2(n), b21(n), bsa(n), bas(n),
ca3(n), cz1(n), cs2(n) of evolution matrix A(n|z)
and the ten prototype field functions s13(n), s24(n),
s32(n), t12(n), t21(n), tza(n), taz(n), uzz(n), usi(n),
ug2(n) of spectral matrix L(n|z). The rest of martix
elements baa(n) and bss(n), referred to as the sam-
pling functions, remains to be free for the time being.

As for the promised semi-discrete nonlinear system,
generated by the semi-discrete matrix-valued zero-
curvature equation (2.1) on the suggested spectral
and evolution matrices (3.1)—(3.2), its the most gen-
eral (prototype) form is given by the set of twelve
semi-discrete nonlinear equations

$13(n) = a1z(n + 1) tsz(n) — s13(n) bss(n), (3.13)
ts1(n) = bgg(n + 1) uz1(n) — tzz(n) cs1(n), (3.14)
S24(n) = baz(n + 1) s24(n) — taa(n) aza(n), (3.15)
Ga2(n) = caa(n + 1) taa(n) — uga(n) baz(n), (3.16)
t12(n) = biz(n + 1) taa(n) — t12(n) baa(n), (3.17)
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to1(n) = bao(n + 1) ta1(n) — tas(n) ba1(n), (3.18)
t34(n) = baz(n + 1) tza(n) — t33(n) baa(n), (3.19)
taz(n) = baz(n + 1) tz3(n) — t43(n) 33(n), (3.20)
$32(n) = as2(n + 1)t22(n) + baz(n + 1) s32(n) —

— 832(n) baz(n) — t33(n) as2(n), (3:21)
t23(n) = bag(n + Dugg(n) + caz(n + 1) tz3(n) —

—taa(n) ca3(n) — uzz(n) (3.22)

( bsz(n),
t92(n) = ba1(n + 1) t12(n) + baa(n + 1) taa(n) +
+coz(n+1) s32(n) + aga(n + 1) usa(n) —
—t91(n) bia(n) — tag(n) boa(n) —
—u23(n) as2(n) — s24(n) caz(n),

t33(n) = cz1(n + 1) s13(n) + aza(n + 1) ugz(n) +
+bsz(n + 1) taz(n) + bsa(n + 1) taz(n) —

(3.23)

—ug1(n) a13(n) — s32(n) c23(n) —

— tgg(n) bgg(n) - t34(n) b43 (n) (324)

The overdot in each of above-written formulas (3.13)—
(3.24) stands for the differentiation with respect to
the time variable 7.

4. Amazing Metamorphoses
of Prototype Field Functions

Having analyzed the subset of ten prototype semi-
discrete nonlinear equations (3.13)—(3.22) with the
use of two somewhat curious relations (3.11)—(3.12)
between two ingredients asz(n), ca3(n) of evolution
matrix and two prototype functions sza(n), uss(n)
we come to the following five shrunken equations:

L nfsaa(n) win(n)] = boa(n + 1) ~bsn),  (41)
infusa(n) s1s(n)] = bas(n + 1) ~bssn),  (42)
o (n) 1 ()] = boa(n+ 1)~ boam), (43)
infes(n) as()] = bss(n+1) — bas(n),  (44)
L infsso(n) uas(n)] =

— bya(n + 1) + bag(n + 1) — bas(n) — by(n).  (45)
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In addition, the universal local conservation law (2.2)
yields

% In[s13(n) uaz(n) — ti2(n) taz(n)] +

+ d%— In[sa4(n) us1(n) — tza(n) a1 (n)] +

=bya(n+1) + bgz(n+1) — boz(n) —bsz(n).  (4.6)

The analytic structures of six above-written equa-
tions (4.1)—(4.6) prompt us to fix the sampling func-
tions baa(n) and bssz(n) by eliminating a presumable
spatial dependence in each of them. Thus, we have

ba2(n) = bag, (4.7)
bzz(n) = bsz. (4.8)

As a consequence, the just mentioned shrunken
semi-discrete equations (4.1)—(4.6) are transformed
into six differential constraints upon the ten involved
prototype functions. Precisely, the list of these con-
straints acquires the form

saalm) uaa(m)] =0, (4:9)
L fusa () s (m)] = 0, (4.10)
ftaa () s ()] = (4.11)
%[t34(n) tas(n)] = 0, (4.12)
%[532(71) uss(n)] = 0, (4.13)
et
ot STSER

These constraints (4.9)—(4.14) are convertible into
the sheer identities by means of the following
parametrization formulas

S24(n) = s24 exp[+q_(n)], (4.15)
ug2(n) = ugz exp[—q_(n)], (4.16)
uz1(n) = uzy exp[—q+(n)], (4.17)
s13(n) = s13 exp[+q4(n)] (4.18)
ta1(n) = t21 exp[—q4(n) — r(n)], (4.19)
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tia(n) = tiz exp[t+qy.(n) +r(n)], (4.20)
ts4(n) = tss exp[+q_(n) +r(n)], (4.21)
tag(n) = tag exp[—q—(n) —r(n)], (4.22)
s32(n) = s32 exp[+qo(n)), (4.23)

(4.24)

ug3(n) = uz3 exp[—qo(n)].

Here, each of the spatially independent parameters
S24, W42, U31, S13, l21, t12, T34, t43, S32, U23 are as-
sumed to be time-independent without any loss of
generality.

In order to reconcile the field function go(n) with
the two relationships (3.11)—(3.12) between the field
functions ssa(n), uez(n) and the spectrally indepen-
dent ingredients aga(n), cos(n) of the evolution ma-
trix, we are obliged to introduce the auxiliary field

function w(n|n — 1) by means of the equality
go(n) =w(n+ 1jn) + w(njn — 1). (4.25)

The explicit result of the announced reconcilement
reads:

s32(n) = ssz exp[+w(n + 1|n) + w(n|n — 1)}, (4.26)
up3(n) = ugz exp[—w(n + 1|n) —w(nln — 1)}, (4.27)
as2(n) = Bszz exp[+2w(n|n — 1)], (4.28)
ca3(n) = Buas exp[—2w(n|n — 1)), (4.29)

where  is a spatially independent parameter, which
can be taken as an arbitrary function of time.

The quantities ¢g_(n), g(n), r(n), w(n + 1|n),
taa(n), t33(n) can be treated as the intermediately
reduced field functions, inasmuch as some of them
will be shown to undergo an unexpected additional
reduction.

Now, relying upon the explicit formulas (4.28) and
(4.29) for the spectrally independent ingredient func-
tions asz2(n) and ca3(n) having been applied to the
equations (3.3)—(3.10) for determining the rest of in-
gredient functions, we obtain
a3 (’/l + 1) =
= Bsizexp[—w(n+1|n) +w(nln—1)+ ¢4 (n)], (4.30)
(124(71) =
= Bsagexp[+w(n+1n) —w(njn—1)+q_(n)], (4.31)
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bia(n+ 1) = Btya X

x exp[+w(n+1[n) —w(n|n—1)+q. (n)+r(n)], (4.32)
ba1(n) = Btoy X

x exp[+w(n+1n)—w(njn—1)—q4(n)—r(n)], (4.33)
b3a(n) = Ptgg X

x exp[—w(n+1|n)+w(nn—1)+q_(n)+r(n)], (4.34)
bas(n + 1) = Btag ¥

% exp[—w(n+1n)+w(nln—1)—q_(n)—r(n)], (4.35)
s (n) =

= Busy exp[—w(n+1[n) +w(njn—1) —q4(n)], (4.36)
car(n+1) =

= Buys exp[+w(n+1n) —w(n|n—1)— q_(n)]. (4.37)

5. Semi-Discrete Nonlinear
Integrable System in Terms
of Intermediately Reduced
Field Functions

The elementary manipulations with the set of proto-
type semi-discrete nonlinear equations (3.13)—(3.24)
supported by the parametrization formulas (4.15)—
(4.22), (4.26)—(4.27), and (4.28)—(4.37) for the spec-
trally independent parts of the spectral and evolution
matrices give rise to the following set of semi-discrete
nonlinear integrable equations in terms of intermedi-
ately reduced field functions:

§_ (1) = bas — Btaa(n) exp [+w(n-+1jn) — w(nln—1)],
(5.1)

G+ (n)=pPtsz(n) exp [—w(n+ 1|n) + w(n|n — 1)] — bss,
(5.2)

7(n) = bag — baa +

+ Btao(n) exp[+w(n + 1|jn) — w(n|n — 1)] —

— fBtaz(n) exp[—w(n + 1|n) + w(n|n — 1)], (5.3)

w(n+1n) + w(njn — 1) = bzz — boa +

+ Btaz(n) exp[+w(n + 1|n) — w(n|n —1)] -

— Btsz(n) exp[—w(n + 1|n) + w(n|n — 1)], (5.4)
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t'QQ (’ﬂ)

x expl=qq(n+1) + g (n) —r(n+1) +r(n)] +

= Btortrz expl+w(n +2[n + 1) — w(n + 1|n)] x
+ Bsaaugz exp[+w(n 4 2in + 1)
q-(n)] -
w(n —1|n —2) +w(njn — 1)] x
—r(n)] -
w(n —1|n —2) + w(nfn — 1)] x

— w(n + 1[n)] x
x exp[+q_(n+1) —
— Btortys exp[—
x exp[+q4(n —1) = q+(n) +r(n —1)
— Bsa4uy2 exXp[—
x exp[—q-(n —1) + ¢-(n)], (5.5)
t33(n)

x exp[+q_(n+1) —

w(n+2n+1) +w(n+1n)] x
() +
w(n+2n+1) +w(n + 1n)] x

= Btaytss exp[—
q—(n) +r(n+1)
+ Buz $13 exp|—
x exp[—qt(n+1) + q4(n)] —

— Btsatas expl+w(n — 1n — 2) — w(njn — 1)] x
r(n)] -
—w(n|n — 1) x

x exp[—g_(n—1)+g-(n) —r(n—1)+
— Busis13 exp[+w(n — 1jn — 2)
X explbas (n— 1) — g1 ()], (56)

This set of equations admits the shifted set of some
field functions given by the expressions

Q-(n) = g—(n) — Bao, (5.7)
Q+(n) = q+(n) + Bss, (5.8)
R(n) = r(n) + Bay — Bas, (5.9)
2W(n + 1|n) = 2w(n + 1|n) + Baa — Bss, (5.10)
2W (n|n — 1) = 2w(n|n — 1) + Bay — Bas, (5.11)
where

Bay = bao, (5.12)
Bss = bas. (5.13)

The above shift procedure prompts us to eliminate
the parameters byo and bzz without the loss of gener-
ality. Thus, we safely assume
b22 =0= b33 (514)
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in the first four equations (5.1)—(5.4) of our semi-
discrete nonlinear system (5.1)—(5.6).

On the other hand, the time-independent preexpo-
nential parameters s3 and usg are seen to be canceled
from the intermediate set of semi-discrete nonlinear
equations (5.1)—(5.6). Thus, without the loss of gen-
erality, we equalize each of them to unity

S32 = 1= uU23. (515)

Moreover, it is possible to introduce the rescaled
time variable 7 by means of differential equality

= Bdr. (5.16)

This observation allows us to specify the parameter
B by the simple equality

B=1 (5.17)

in each of equations related to the obtained semi-
discrete nonlinear system (5.1)—(5.6).

6. Ultimate Reduction of Field Functions

The first four equations (5.1)—(5.4) of the intermedi-
ate nonlinear system (5.1)—(5.6) are seen to be mu-
tually dependent, inasmuch as they maintain the fol-
lowing two differential constraints

4t (n) +4-(n) = —w(n +1fn) —w(nln - 1),

7(n) = w(n + 1jn) + w(njn — 1).
As a consequence, we have the strong reasons to re-

duce the number of field functions by means of sub-
stitutions

q-(n) = +q(n) —
—w(n+ 1|n)sin ( +) =
q+(n) = —q(n) -

—w(n + 1|n) cos®(ay )

w(nn — 1) cos?(a_), (6.3)

—w(nln —1)sin?(a_), (6.4)

r(n) =w(n+1n) + w(nln — 1), (6.5)
where the parameters a; and a_ are assumed to be
time-independent.

Thus, instead of twelve original prototype field
functions, announced in the expression (3.1) for the
spectral matrix L(n|z), we come only to the four ul-
timate field functions ¢(n), w(n + 1|n) and taa(n),
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tsz(n). For the stylistic reasons it is appropriate to
rename the last two functions by formulas

t22 (’ﬂ) =

ta3(n) = —ps ().

—p—(n), (6.6)
(6.7)

Having combined the final set of semi-discrete non-
linear integrable equations in terms of four ultimately
reduced field functions ¢(n), w(n + 1|n) and p_(n),
p+(n) we surprisingly revealed that time-independent
parameters So4, U4s, U31, S13, t21, t12, t34, t43 Mmanifest
themselves only in the form of two combinations

Q2 = —to1tis — SoqUiga, (6.8)

Qi = —t34t43 — U31513- (69)

In view of these observations, it is reasonable to in-
troduce the following parametrization formulas

tor = +Q_ sin(y), (6.10)
t12 = —Q_sin(yp), (6.11)
S94 = +Q_ cos(p), (6.12)
uge = —Q_ cos(yp), (6.13)
t3q =+ sin(yp), (6.14)
tyzs = —Q4 sin(yp), (6.15)
us; = —4 cos(ip), (6.16)
s13 = +Q4 cos(y). (6.17)

Due to the above parametrization formulas (6.10)—
(6.17) and the early written parametrization formu-
las (4.15)—(4.22), the expression for the determinant
det L(n|z) of the spectral matrix (3.1) acquires the
very simple form

det L(n|z) = Q2 Q2. (6.18)
7. Semi-Discrete Nonlinear
Integrable System in Terms

of Ultimately Reduced Field Functions

Now we are ready to write down our semi-discrete
nonlinear integrable system in terms of ultimately re-
duced field functions

w(nn — 1) cos®(a_) =
(7.1)

—(n 4+ 1n)sin®(ay) —
—w(n|n —1)],

q(n)
= p—(n) exp[+w(n +1|n)
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q(n) +w(n + 1|n) cos®(ay ) + 1w (n|n — 1) sin®*(a_) =

= pt(n) exp[—w(n +1fn) + w(nfn — 1)}, (7.2)

p—(n) exp[+w(n + 1jn) —w(nln — 1jn)] =

= 0% exp[+q(n + 1) — g(n)] x

+2n+ 1) — w(n + 1|n)] cos®(a )} x
—w(n|n — 1)]sin*(a_ )} —

— 02 exp[+q(n) — q(n — 1)] x

x exp{+[w(n

x exp{+[w(n + 1|n)

x exp{tw(n + 1n) — w(nln — 1)] cos? (o )} x

x exp{+fw(n|n—1) —w(n—1ln—2)]sin*(a-)}, (7.3)
P (n) exp[—w(n + 1jn) + w(nln — 1|n)] =

= Q% exp[+q(n + 1) — g(n)] x

x exp{—[w(n + 2|n+ 1) — w(n + 1|n)] sinQ(aJr)} X

x exp{—[w(n + 1|n) + w(n|n — 1)] cos®(a_)} —

— Qi exp[+q(n) — g(n — 1)] x

(n+1Jn) — w(n|n — 1)]sin®(a4 )} x

) (74)

Alternatively, we are able to rewrite this first order
in time set of four equations (7.1)—(7.4) as the sec-
ond order in time set of just two equations and thus
to exclude the field functions p_(n) and p4(n) from
further consideration. Then, the alternative form of
our semi-discrete nonlinear system is formalized by
the equations

x exp{—[w

x exp{—[w(n|n—1) —w(n—1|n—2)] cos®(a

§(n) —(n 4+ 1|n)sin®(ay ) — w(njn — 1) cos*(a_) —

—[4(n)
X [+w(n + 1|n) —w(nln — 1)] =

—(n-+1|n)sin®(ay ) —w(njn—1) cos?(a_)] x
= Q2 exp[+q(n + 1) — q(n)] x

(n+2[n+1) — w(n + 1|n)] cos®(ay )} x
—w(n|n — 1)]sin?*(a_)} —

— Q2 exp[+q(n) — q(n — 1)] x

(n+1fn)

x exp{+[w
x exp{+[w(n + 1|n)
—w(n|n — 1)] cos®(ary )} %

)} (75)
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G(n) + w(n + 1|n) cos?(ay) + w(njn — 1) sin®(a_) +

+[¢(n) +1i(n+1]n) cos?(ay) +w(n|n—1) sin?(a_)] x

X [+w(n 4+ 1|n) —w(njn —1)] =

= 0% exp[+q(n + 1) — g(n)] x

(n+2[n+1) — w(n + 1|n)] sin®(oy )} x

x exp{—[u — w(nln — 1)] cos*(a_)} —

— 0% exp[+q(n) — g(n — 1)] x

w(n + 1|n)
w(njn—1)—

x exp{—[w
n+1|n)

—w(n|n — 1)]sin®(a )} x
_)}. (7.6)

Of course, it would be interesting to press these
rather bulky equations (7.5)—(7.6) into a Procrustean
bed of concise Lagrangian or Hamiltonian formula-
tion. However, the solution of this problem is not so
simple. Maybe it can be facilitated by the explicit
extraction of some physically important local con-
servation laws within the recurrence technique well
developed for the semi-discrete nonlinear integrable
systems [11, 19]|. Nevertheless, sometimes even the
knowledge of basic local conservation laws does not
guarantee the routes to the system’s exact Hamil-
tonian presentation in physically meaningful terms
[20, 21].

The unbiased estimation of the proposed semi-
discrete nonlinear system (7.5)—(7.6) shows that it
consists of two nonlinearly coupled subsystems. The
subsystem associated with the field function ¢(n) is
the vibrational subsystem of the Toda type [6-8] inas-
much as it is characterized by the positively defined
elasticity coefficients Q2 and Qi As for the subsys-
tem associated with the field function w(n), it is char-
acterized by the negatively defined elasticity coeffi-
cients —Q2 and —Q3. Therefore, the latter subsys-
tem can not be treated as the vibrational one. Moreo-
ver, this anti-vibrational subsystem strictly manifests
itself as the subsystem with the spatially distributed
inertial mass parameters shared between each pair of
neighboring lattice sites.

This preliminary naive consideration finds its par-
tially modified confirmation in the standard low-
amplitude (linear) analysis of the system under study
(7.5)—(7.6). Indeed, the respective dispersion relation
between the eigenfrequency w and the wave vector s

x exp{—|

x exp{—| w(n—1|n—2)] cos?(a

wt =16 Q302 sin?(5¢/2) =0 (7.7)
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clarifies, that only the part

w? — 40, Q_|sin®(»/2) =0 (7.8)

is responsible for the true vibrations with the real

valued eigenfrequency w(s) = 24/|Q24+Q_| | sin(s¢/2)|
Conversely, the part

w? + 40,9 _|sin?(x2/2) =0 (7.9)
indicates on a sort of instability detectable at least
in the system’s low-amplitude (linear) dynamical
regime.

8. Complete List of Ultimate Reduction
Formulas for the Functional Components
of Spectral and Evolution Matrices

For the convenience of future applications we present
the complete list of ultimate reduction formulas for
the functional components of spectral and evolution
matrices.

Thus, the list of reduction formulas specifying the
spectral matrix L(n|z) (3.1) reads as follows

+Q_ cos(p )exp[Jrq(n ] x
ai)] x

)
w(n|n — 1) cos®(a_)],

s24(n) =
x exp [—w(n + 1|n) sin®
X exp [—
ug2(n) = —Q_ cos(yp )exp[ q(n)] x
x exp [+w(n + 1|n) sin®(ay4)] x

x exp [+w(n|n — 1) cos*(a_)], (8.2)
ug1(n) = —€24 cos(y )eXPHCI(“ ] x

) x
)l (8.3)
s13(n) =+ cos(p) exp[—g(n)] x

w(n 4 1|n) cos?

(
%

x exp [+w(n + 1|n) cos® (a4
x exp [+w(n|n — 1) sin®(a—

X exp [— x
X exp [—
tgl(n) =

X exp [—

w(n|n — 1) sin ,
+Q_ sin(y) exp[+q(n)] x
w(n + 1|n) sin®(ay)] x
x exp [—w(n|n — 1) cos*(a_)]
ti2(n) = —Q_ sin(¢) exp|

x exp [+w(n + 1n) sin®(a4)] x
x exp [+w(n|n — 1) cos*(a_)], (8.6)
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taa(n) =+ sin(p) expl+q(n)] x

x exp [+w(n + 1|n) cos®(a4)] x

)]
x exp [+w(n|n — 1) sin®*(a_)], (8.7)
taz(n) = —Q sin(p) exp[—q(n)] x
X exp [~w(n + 1|n) cos®(ay )] x
x exp [—w(n|n — 1) sin®(a_)],
s32(n) = exp[+w(n + 1n) + w(n|n — 1)},
uz3(n) = exp[~w(n + 1n) — w(n|n — 1)},
taa(n) = —p_(n)

ts3(n) = —pi(n).

The list of reduction formulas specifying the evolu-
tion matrix A(n|z) (3.2) is given below

asa(n) = +0_ cos(p) explHa(n)] x
x exp [+w(n + 1|n) cos® (a4 )] x
(njn — 1) [1 4 cos®(a—)]},

x exp {—w (8.13)

cia(n + 1) = 0 cos(ip) exp[—q(n)] x

(ap)]} x

I, (8.14)

x exp {+w(n + 1|n) [1 + sin®(
X exp [—

C31 (’ﬂ) =

w(n|n —1)sin?(a_)
—Q cos(p) exp[+q(n)] x
)| x

x exp [—w(n + 1|n) sin?(ay

]

x exp {+w(n|n — 1) [1 + San(Ot 7} (8.15)
ai3(n + 1 = 4+ cos(p) exp[—q(n)] x

x exp {—w(n + 1|n) [1 + cos®(ay)]} x
x exp [+w(n|n — 1) cos®(a_)], (8.16)
ba1(n) =
x exp [+w(n + 1|n) cos® (a4 )] x
w(n|n —1) [1 + cos?(a_)]},

bia(n + 1) = —Q_sin(p) exp[—q(n)] x

+Q_ sin(p) exp[+q(n)] x

X exp {— (8.17)

x exp {+w(n + 1|n) [1 + sin®(ay)]} x

x exp [—w(n|n — 1) sin®*(a_)], (8.18)
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ba(n) = +€2 sin(p) exp[+q(n)] x

x exp [—w(n + 1|n) sin®(a4 )] x

x exp {+w(n|n — 1) [1 +sin®*(a_)]}, (8.19)
bas(n + 1) = —Q sin(p) exp[—q(n)] x

x exp {—w(n + 1|n) [1 + cos®(ay)]} x

x exp [+w(n|n — 1) cos®(a_)], (8.20)
asa(n) = exp[+2w(n|n — 1)], (8.21)
caz(n) = exp[—2w(n|n — 1)], (8.22)
bag = 0, (8.23)
baz = 0. (8.24)

Although the arbitrary constant parameter ¢ is
presented almost in each of above written reduction
formulas (8.1)—(8.24), however it is absent in each
of the two permissible incarnations (7.1)-(7.4) and
(7.5)—(7.6) of developed semi-discrete nonlinear inte-
grable system. This remarkable fact allows us to sim-
plify drastically the ultimate expressions for the spec-
tral L(n|z) and evolution A(n|z) matrices by either
of the two appropriate choices

sin(p) =0, (8.25)
or
cos(p) =0 (8.26)

for the most suitable fixation of adjusting parame-
ter .

9. Conclusion

The main objective of our present research was to
formulate the basic principles for the development
of semi-discrete nonlinear integrable systems and
to comprehensively illustrate them starting with a
particular properly invented spectral and evolution
matrices. Following these basic principles, we have
shown how the prototype semi-discrete nonlinear in-
tegrable system, characterized by the twelve field
functions, is reduced to the offspring semi-discrete
nonlinear integrable system, characterized only by the
four physically meaningful field functions.
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The obtained system comprises the two coupled
nonlinear quasi-one-dimensional evolutionary subsys-
tems of vibrational and anti-vibrational origins. The
vibrational subsystem is the subsystem of the pro-
nounced Toda type, and it is characterized by the
usual on-site (spatially local) mass parameter and
positively defined elasticity coefficient. In contrast,
the anti-vibrational subsystem is characterized by the
spatially distributed mass parameters and negatively
defined elasticity coeflicient.

Due to its Lax integrability, the suggested semi-
discrete nonlinear system permits the exact analytic
solutions, which can be obtained in the framework of
modern mathematical methods such as the method
of inverse scattering transform [9, 11-14] and the
method of Darboux-Bécklund transformation [15-
17]. On the other hand, the Lax integrability opens
the door for the selection of physically motivated lo-
cal conservation laws among the infinite hierarchy of
local conservation laws typical of the integrable non-
linear evolutionary systems on quasi-one-dimensional
lattices [11,19].

The forthcoming investigation of our nonlinear dy-
namical system appears to give some new insight onto
the very important and interesting permanent prob-
lems of the applied nonlinear dynamics [22, 23].

We think, that a class of low-dimensional semi-
discrete nonlinear models dealing with the semi-
analytic description of traffic control problems [24—
26] deserves to be enriched by the strict analytic ap-
proaches too.
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IIOBYJIOBA TA AHAJII3 HOBUX

IHTEI' POBHUX HEJIIHIMHUX JUHAMIYHNX
CUCTEM HA KBA3MOJIHOBUMIPHUX
I'PATKAX. IBOKOMIIOHEHTHA HEJIIHIMHA
CHUCTEMA 3 IIPOCTOPOBO JIOKAJILHUMU
TA ITPOCTOPOBO PO3IIOAIJIEHUMU
IHEPLIIMHNMIM MACOBUMU ITAPAMETPAMUI

OcHOBHI npuHIUIN TOOYOBU IHTEI'DOBHUX EBOJIOIIAHUX He-
JIHIAHUX CHUCTeM Ha KBa3MOJHOBHUMIDHHMX I'DaTKaX IMOJAHO B
SICHUX MaTeMaTUYHUX Ta (PI3MYHUX TepMiHAX HA [IPOTUBAry 10
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3apO3yMIIMX MaTeMaTUYHUX (POPMYIIOBAHb Ta KOMII'IOTEPHO
3aaHraykoBaHux BukJja/iB. Ili 6a30Bi nmpuHIMNIM MiIKpPiIeHO
peasIbHOIO OOy JOBOIO HOBOI HAIiBAUCKPETHO! HesiHifHOl iHTe-
I'POBHOI CHCTEMH, YHI JOIOMI>KHI CIIEKTPAJIbHHUI Ta €BOJIIOIii-
HUl onepaTopu 3a7aHo 4 X 4 kBajpaToBuMmu MarpuisiMu. Cru-
palo4NCh Ha HaIl CYKyIHUH IOIEepeIHii JOCBiJ, MU JeTajlb-
HO OIIMCYEMO IPOLENYDPY PeAYyKYBaHHsSI IPDOTOTHIIHOI HeJIiHii-
HOI IHTEI'DOBHOI CHUCTEMH 3 JIBAHAIIISTHMA [TOJILOBUMU (DYHKIIi-
AMH 10 (PI3UYHO OCMHUCJIEHOI HEJIIHINHOI iHTErPOBHOI CHCTEMU
3 yorupMa noJjibopuMu pyskIiisimu. Orep:kaHa KiHIleBa HalliB-
JMCKpeTHa HeJliHiifiHa iHTerpoBHa cucreMa MicTUThb y cobi aBi
MiICUCTEMU CYTTEBO BiMiHHOTO dizmunoro 3micry. Tak, oqua 3
migcucreMm € nigcucremoro ToniBcbkoro Tuiy. Bona xapakrepu-
3Y€THCS JIOKAJIBHUM MaCOBUM IIapaMeTPOM i MO3UTHBHO BU3HA-
gennM Koedinienrom mpyrkuocru. HaBnaku, imma migcucrema
XapaKTePHU3YETHCsI IPOCTOPOBO PO3IOAIJIEHUMI MaCOBUMH I1a-
paMeTpaM¥ i HEraTHBHO BH3HAYEHUM KOEMDIIIEHTOM IIPYKHO-
cru. Mu BBaKaeMo, IO HAIl PEeTeJIbHUN PO3IJIsi)i YyCiX OCHOB-
HUX KPOKIB IOOY0BM HAIIBAUCKPETHUX HEJIHIAHUX IHTErPOB-
HUX CHCTEM CTaHe B IPUTOMl JJIsi ITOCJiIHUKIB, HeOOi3HAHUX 3
YUCJIEHHUMHU [IE€PEIIOHaMU, HEMUHYYUMU B TaKii [iKaBiii i mep-
CIIEKTUBHINl IIapUHI HAyKH sIK TeOpif HaIiBIUCKPETHUX HeJIi-
HIAHUX IHTEI'POBHUX CUCTEM.

Katrwwoei caoea: HesiHiliHA tuHaMiKa, IHTEIPOBHA CHCTEMA,
KBa3MOIHOBUMIpHA I'paTKa, CTablJibHI 3MilleHHsI, HeCcTablIbHI
3MIIEeHHST.
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