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ANALYSIS OF THE SYNAPTIC SIGNAL
TRANSMISSION BASED ON A KINETIC MODEL

We will analyze the peculiarities of the nerve signal transmission through a synaptic cleft (a
contact between two neurons). The corresponding analysis is performed using a kinetic model
that is based on a system of nonlinear differential equations of the first order and makes it
possible to calculate the number of activated receptors on the postsynaptic membrane and the
amount of mediator in the synaptic cleft. The model combines simplicity and functionality,
which allows obtaining the qualitative results comparable to available experimental data and
the results of other theoretical studies. It has been shown that the model correctly describes
the process of signal transmission through the synaptic cleft at a qualitative level. Exact (nu-
merical) and approximate (analytic) solutions for the number of activated receptors on the
postsynaptic membrane and the amount of a mediator in the synaptic cleft are obtained and
analyzed. The stability of stationary states is considered and proved in the framework of the
proposed model, which confirms the self-consistency of the model and the possibility of its use
for simulating the signal transmission through the synapse.
K e yw o r d s: synapse, mediator, receptor, exocytosis, impulse.

It’s clearly a budget. It’s got a lot
of numbers in it.

George W. Bush

1. Signal Transmission through the Synapse

The study of the synaptic signaling has a long history
[1–9]. However, a number of questions remain unan-
swered. Among them are tasks ranging from deter-
mining the characteristics of molecular mechanisms
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and identifying the methods of their cooperation with
regard for the diffusion processes and the presence
of chemical reactions [5, 9–14] to develop a com-
plete analytic theory of synaptic transmission of in-
formation as such [5, 9]. The reason is that the sig-
nal transmission process itself is a complicated phe-
nomenon and involves various mechanisms and a se-
ries of non-trivial interactions [15–22]. Therefore, the
number of models and approaches used to study the
process of nerve impulse propagation is constantly
growing, and specialists from various fields take an
active part in research. In this sense, it can be ar-
gued that the relevant topic is interdisciplinary. This
article is a continuation of a series of studies [23–
28], which were initiated in work [5], and, for which,
the interdisciplinarity factor was the key one. This
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circumstance made it possible to formulate and de-
velop several original models that allowed us to ob-
tain interesting and promising results in the direction
aimed at studying the synaptic transmission of infor-
mation [28].

As is known, a synapse is a contact between two
neurons. The synaptic cleft itself is confined between
the presynaptic and postsynaptic membranes. The
mediator, a special active substance that interacts
with receptors on the postsynaptic membrane and ac-
tivates them, is released from the presynaptic mem-
brane into the synaptic cleft. The activation of the
postsynaptic membrane receptors results in the gen-
eration of a nerve impulse, which propagates along
a neuron to the next synaptic contact [3, 5, 8]. It is
clear that, in this case, the description of the signal
transmission process is extremely simplified, but it is
sufficient for understanding the simulation principles
used in the kinetic model that is considered in the
paper.

2. Kinetic Model

Hence, the process of impulse transmission through
a synapse is a complicated and multifactor phe-
nomenon, which involves many mechanisms of var-
ious types and characters [9]. It is quite difficult to
be modeled in the framework of a single approach. In
the models proposed to describe the synaptic signal
transmission, only a few factors are usually singled
out, and attention is focused just on them. For ex-
ample, there are models of mediator exocytosis into
the synapse (see, e.g., works [8, 9, 26, 29]), models of
mediator diffusion in the synaptic cleft [25, 28, 30], or
models describing the activation of the postsynaptic
membrane [5, 25, 26, 28].

It is worth noting separately the models that are
based on the universal character of various phenom-
ena and processes (first of all, in the theory of liquids
and phase transitions), which makes it possible to an-
alyze the process of synaptic impulse transmission at
a higher abstraction level, thus reducing such a con-
sideration to the analysis of physical systems (see,
e.g., works [5, 25, 28, 31–34]). But even with such ap-
proximations, the models remain difficult for the the-
oretical analysis. Therefore, extremely valuable are
those successful approaches that are based on rela-
tively simple models and, at the same time, allow
obtaining valid results, even if they are of a general

character [5]. Such models include the kinetic model
of the synaptic information transmission. It was cre-
ated by summarizing available experimental data and
the results of theoretical studies.

In the framework of the kinetic model proposed
earlier in the series of works [5, 23–26], the process
of signal transmission through the synaptic cleft was
described by the following system of nonlinear differ-
ential equations of the first order:

𝑑𝑎

𝑑𝑡
= 𝑘1(𝑅− 𝑎(𝑡))𝑚(𝑡)− 𝑘2 𝑎(𝑡), (1)

𝑑𝑚

𝑑𝑡
= 𝑓(𝑡)− 𝑘1(𝑅− 𝑎(𝑡))𝑚(𝑡). (2)

Here, 𝑅 denotes the total number of receptors on
the postsynaptic membrane, 𝑎(𝑡) is the number of
activated receptors on the postsynaptic membrane
at the time 𝑡, 𝑚(𝑡) denotes the amount of a medi-
ator in the synaptic cleft, and 𝑓(𝑡) is a function that
describes the intensity of mediator release into the
synaptic cleft. The first term on the right-hand side
of Eq. (1) and the second term on the right-hand
side of Eq. (2) describe the interaction of the media-
tor with inactive receptors on the postsynaptic mem-
brane (see, e.g., works [5, 25, 28]). At the same time,
the assumption was made that, after the interaction
with the receptors, the mediator is removed from the
synaptic cleft. This is an evident approximation, but
it has no qualitative effect on the final result (see,
e.g., works [23–28]).

On the one hand, this model is quite simple. On the
other hand, it describes the general process of signal
transmission through the synapse rather well, as is
evidenced by the results obtained on the basis of this
model and its modifications (see, e.g., work [28]). At
the same time, it should be noted that the previ-
ously obtained results were most likely focused on
the analysis of specific solutions for the synapse func-
tioning modes. Such an approach has practical value,
but then the properties of the system as such re-
cede into the background. This paper is designed to
close the relevant gaps. It contains some qualitative
analysis of the model at a general qualitative level,
which is combined with a quantitative analysis of sep-
arate partial or limiting cases. In so doing, we ap-
ply standard approaches and techniques inherent to
the theory of stability and the theory of self-orga-
nization.

38 ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 1



Analysis of the Synaptic Signal Transmission

3. Stationary Cases

First of all, let us analyze the results given by the
model for stationary cases or, more precisely, for the
system states before and after the impulse trans-
fer. Such an analysis is important in view of several
circumstances. First of all, this concerns how ade-
quate the model is with respect to the real situation,
because it describes a substantially simplified process
of impulse transmission through the synapse. So, it is
important to make sure that the obtained results are
reliable and consistent.

Therefore, before the impulse arrival at 𝑡 = 0, the
system is in an unexcited state with 𝑎(0) = 0 (no
activated receptors), 𝑚(0) = 0 (no mediator in the
cleft), and 𝑓(0) = 0 (no process of mediator exocy-
tosis into the cleft). This state is consistent with the
system of equations (1)–(2), being its partial solu-
tion. To test the system stability, let us assume the
presence of some small deviations 𝛿𝑎(𝑡) and 𝛿𝑚(𝑡) for
the number of activated receptors and the amount of
a mediator in the cleft, respectively. We consider the
indicated parameters to be small and write system
(1)–(2) in the linear approximation with respect to
those parameters as follows:

𝑑𝛿𝑎

𝑑𝑡
= 𝑘1𝑅𝛿𝑚(𝑡)− 𝑘2𝛿𝑎(𝑡), (3)

𝑑𝛿𝑚

𝑑𝑡
= 𝛿𝑓(𝑡)− 𝑘1𝑅𝛿𝑚(𝑡), (4)

where 𝛿𝑓(𝑡) denotes the variation (a small deviation)
of the function 𝑓(𝑡) describing the intensity of attrac-
tant introduction into the system. Actually, 𝛿𝑓(𝑡) is
responsible for random acts of mediator exocytosis
into the synapse.

The solution of the linear system of equations (3)–
(4) can be written in the following form:

𝛿𝑎(𝑡) =
𝑘1𝑅

𝑘1𝑅− 𝑘2
×

×
(︂
exp (−𝑘1𝑅𝑡)

𝑡∫︁
0

𝛿𝑓 (𝜏) exp (𝑘1𝑅𝜏)𝑑𝜏 +

+ exp (−𝑘2𝑡)

𝑡∫︁
0

𝛿𝑓(𝜏) exp(𝑘2𝜏)𝑑𝜏 +

+

(︂
𝐴+𝑀 − 𝑘2𝐴

𝑘1𝑅

)︂
exp (−𝑘2𝑡)−𝑀 exp(−𝑘1𝑅𝑡)

)︂
, (5)

𝛿𝑚(𝑡) = 𝑀 exp(−𝑘1𝑅𝑡)+

+ exp (−𝑘1𝑅𝑡)

𝑡∫︁
0

𝛿𝑓(𝜏) exp (𝑘1𝑅𝜏)𝑑𝜏, (6)

where 𝛿𝑎(0) = 𝐴 denotes the initial deviation of the
number of activated receptors, and 𝛿𝑚(0) = 𝑀 the
initial deviation of the mediator amount. Solutions
(5)–(6) asymptotically tend to zero provided that the
characteristic time of the period of random mediator
exocytosis into the synapse (denoted by 𝑡0) is sub-
stantially shorter than the observation time 𝑡, i.e., if
𝑡0 ≪ 𝑡 holds. In addition, a sufficient stability condi-
tion is the asymptotic 𝛿𝑓(𝑡) ∼ exp(−𝛼𝑡) for any value
𝛼 > 0. In this sense, it can be considered that the sta-
tionary zero solution of system (1)–(2) is stable.

4. General Properties

The following fact is also interesting. System (1)–(2)
can be used to obtain the equation

𝑑(𝑎(𝑡) +𝑚(𝑡))

𝑑𝑡
= 𝑓(𝑡)− 𝑘2𝑎(𝑡). (7)

After the integration and taking the conditions 𝑎(0) =
= 𝑎(∞) = 0 and 𝑚(0) = 𝑚(∞) = 0 into account, we
get the following:

∞∫︁
0

𝑓(𝑡)𝑑𝑡 = 𝑘2

∞∫︁
0

𝑎(𝑡) 𝑑𝑡. (8)

In a certain sense, it is a balance equation, according
to which the area under the curve 𝑎(𝑡) describing the
time dependence of the number of activated receptors
is determined by the total amount of a mediator intro-
duced into the synaptic cleft. Therefore, if the func-
tion 𝑓(𝑡) changes to 𝑓(𝑡)+𝛿𝑓(𝑡), with

∫︀∞
0

𝛿𝑓(𝑡)𝑑𝑡 = 0,
this correction does not change the integral character-
istic

∫︀∞
0

𝑎(𝑡)𝑑𝑡. The integral
∫︀∞
0

𝑎(𝑡)𝑑𝑡 also remains
unchanged under the transformation 𝑓(𝑡) → 𝜆𝑓(𝜆𝑡).

Generally speaking, the complicated character of
the model is associated with its nonlinearity. In turn,
the nonlinearity describes the effect of receptor sat-
uration on the postsynaptic membrane. It occurs, if
the number of activated receptors approaches the to-
tal number of receptors on the postsynaptic mem-
brane. However, if this is not the case (and such a
regime is quite feasible and “working”), then the sys-
tem of model equations becomes substantially sim-
pler. In particular, if the relationship 𝑅 ≫ 𝑎(𝑡) holds,
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then neglecting the terms proportional to the prod-
uct 𝑎(𝑡)𝑚(𝑡) in the system of equations (1)–(2), we
obtain a linear system of differential equations of the
first order,

𝑑𝑎

𝑑𝑡
= 𝑘1𝑅𝑚(𝑡)− 𝑘2𝑎(𝑡), (9)

𝑑𝑚

𝑑𝑡
= 𝑓(𝑡)− 𝑘1𝑅𝑚(𝑡). (10)

This system has an analytic solution. In particular,
for the initial conditions 𝑎(0) = 0 and 𝑚(0) = 0, we
have the following solutions for system (9)–(10):

𝑎(𝑡) =
𝑘1𝑅

𝑘1𝑅− 𝑘2

(︃
exp(−𝑘2𝑡)

𝑡∫︁
0

𝑓(𝜏) exp(𝑘2𝜏)𝑑𝜏 −

− exp(−𝑘1𝑅𝑡)

𝑡∫︁
0

𝑓(𝜏) exp(𝑘1𝑅𝜏)𝑑𝜏

)︃
, (11)

𝑚(𝑡) = exp(−𝑘1𝑅𝑡)

𝑡∫︁
0

𝑓(𝜏) exp(𝑘1𝑅𝜏)𝑑𝜏. (12)

In effect, this is a solution of system (5)–(6) at 𝐴 =
= 𝑀 = 0.

Using solutions (11)–(12), it is possible to deter-
mine, along with other quantities, the conditions (mo-
ments of time), when the number of activated recep-
tors and the amount of a mediator in the cleft are
maximum. In particular, the number of activated re-
ceptors is maximum at the time moment 𝑇𝑎 that is a
solution of the algebraic equation (hereafter, we as-
sume that 𝑓(0) = 0):

𝑘2
𝑘1𝑅− 𝑘2

(︃
exp (−𝑘2𝑇𝑎)

𝑇𝑎∫︁
0

𝑓(𝜏) exp (𝑘2𝜏) 𝑑𝜏 +

+ exp (−𝑘1𝑅𝑇𝑎)

𝑇𝑎∫︁
0

𝑓(𝜏) exp (𝑘1𝑅𝜏)𝑑𝜏

)︃
=

= exp (−𝑘1𝑅𝑇𝑎)

𝑇𝑎∫︁
0

𝑓(𝜏) exp (𝑘1𝑅𝜏) 𝑑𝜏. (13)

Accordingly, to determine the time moment 𝑇𝑚, when
the mediator amount in the cleft is maximum, we
have the following equation:

𝑓(𝑇𝑚) = 𝑘1𝑅 exp(−𝑘1𝑅𝑇𝑚)

𝑇𝑚∫︁
0

𝑓(𝜏) exp(𝑘1𝑅𝜏)𝑑𝜏. (14)

Unfortunately, in the general case, the above equa-
tions (13) and (14) can be solved only numerically.

5. Quantitative Analysis

For the quantitative analysis of system (1)–(2), it is
necessary to normalize the quantities. For this pur-
pose, let us redefine 𝑎 → 𝑅𝑎, 𝑚 → 𝑅𝑚, and 𝑡 → 𝑡

𝑘1𝑅
.

We get the following system of equations:

𝑑𝑎

𝑑𝑡
= (1− 𝑎(𝑡))𝑚(𝑡)− 𝑘 𝑎(𝑡), (15)

𝑑𝑚

𝑑𝑡
= 𝜙(𝑡)− (1− 𝑎(𝑡))𝑚(𝑡), (16)

where 𝑘 = 𝑘2

𝑘1𝑅
and 𝜙(𝑡) =

𝑓
(︁

𝑡
𝑘1𝑅

)︁
𝑘1𝑅2 . Then the solution

of the corresponding linear system looks like

𝑎(𝑡) =
1

1− 𝑘

(︃
exp (−𝑘𝑡)

𝑡∫︁
0

𝜙(𝜏) exp (𝑘𝜏) 𝑑𝜏 −

− exp (−𝑡)

𝑡∫︁
0

𝜙(𝜏) exp (𝜏) 𝑑𝜏

)︃
, (17)

𝑚(𝑡) = exp (−𝑡)

𝑡∫︁
0

𝜙(𝜏) exp (𝜏) 𝑑𝜏. (18)

It is obvious that the general solution depends con-
siderably on the character and intensity of transmit-
ted impulses. This means the qualitative dependence
of the solution on the function 𝜙(𝑡). However, first of
all, the peculiarities of a single impulse passage and
the issue of the validity of linear approximation are
of interest.

In the case where a single impulse passes through
the synapse, the function 𝜙(𝑡) was chosen in the form

𝜙(𝑡) = 𝐵 exp [−𝛽(𝑡− 𝑡0)
2], (19)

where the parameter 𝐵 determines the signal inten-
sity, the parameter 𝑡0 is the characteristic time of the
signal arrival, and the parameter 𝛽 determines the
degree of temporal localization of the signal (actu-
ally, its duration). For the indicated 𝜙(𝑡)-dependence,
Fig. 1 illustrates the time-dependences of the num-
ber of activated receptors, 𝑎(𝑡), calculated for the
exact and approximate systems of equations (with
the parameter values 𝑘 = 2, 𝐵 = 0.5, 𝑡0 = 1, and
𝛽 = 15).
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Fig. 1. Dependences 𝑎(𝑡) calculated on the basis of the exact
(solid curve) and approximate (diamonds) models. The follow-
ing parameter values were used in calculations: 𝑘 = 2, 𝐵 = 0.5,
𝑡0 = 1, and 𝛽 = 15. For clarity, the dependence 𝜙(𝑡)/10 is also
plotted (dashed curve)

Fig. 2. Dependences 𝑚(𝑡) is calculated on the basis of the
exact (solid curve) and approximate (diamonds) models. The
following parameter values were used in calculations: 𝑘 = 2,
𝐵 = 0.5, 𝑡0 = 1, and 𝛽 = 15. For clarity, the dependence
𝜙(𝑡)/10 is also plotted (dashed curve)

Figure 2 demonstrates the dependences 𝑚(𝑡) (the
exact and approximate solutions) for the same param-
eter values (𝑘 = 2, 𝐵 = 0.5, 𝑡0 = 1, and 𝛽 =15). One
can see that, in the considered situation, the approx-
imate solutions give a more than acceptable result
(in comparison with the numerical solutions of the
original system of equations (15)–(16)). The reason
lies in the fact that the amount of a mediator intro-
duced into the synaptic cleft is enough for only a rela-
tively small number of receptors on the postsynaptic
membrane (as compared to their total number) to be
activated. This result is in the total agreement with
the assumption used to obtain the linear approximate
system of differential equations (9)–(10).

At the same time, if, for example, the value of the 𝐵
parameter increases, the difference between the solu-

Fig. 3. Dependences 𝑎(𝑡) calculated on the basis of the exact
(solid curve) and approximate (diamonds) models. The follow-
ing parameter values were used in calculations: 𝑘 = 2, 𝐵 = 5,
𝑡0 = 1, and 𝛽 = 15. The dependence 𝜙(𝑡)/10 is also plotted
(dashed curve)

Fig. 4. Dependences 𝑚(𝑡) calculated on the basis of the exact
(solid curve) and approximate (diamonds) models. The follow-
ing parameter values were used in calculations: 𝑘 = 2, 𝐵 = 5,
𝑡0 = 1, and 𝛽 = 15. The dependence 𝜙(𝑡)/10 is also plotted
(dashed curve)

tions of the approximate linear and original nonlinear
systems of equations becomes more noticeable. Fi-
gure 3 shows the dependences 𝑎(𝑡) for the value 𝐵 = 5
and the same values of other parameters.

The corresponding dependence 𝑚(𝑡) is shown in
Fig. 4. One can see that, in this case, the linear ap-
proximation gives overestimated values for the num-
ber of activated receptors and shorter times for the
mediator release from the synaptic cleft. That is, in
the case where, due to exocytosis, the amount of a me-
diator in the synaptic cleft is many times larger than
the number of receptors on the postsynaptic mem-
brane, the linear approximation is not applicable.

It is also of interest to analyze how the process
of receptor activation on the postsynaptic membrane
changes, when the 𝜙(𝑡) function is varied in such a

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 1 41



O.M. Vasyliev, O.V. Zaitseva, O.V. Chalyi

Fig. 5. Dependences 𝑎(𝑡) for various values of the parameter
𝛽 = 10 (dashed curve), 100 (solid curve), and 1000 (dotted
curve). The parameters 𝑘 = 2, 𝑡0 = 1, and 𝐵 =

√
𝛽

Fig. 6. Dependences 𝑚(𝑡) for various values of the parameter
𝛽 = 10 (dashed curve), 100 (solid curve), and 1000 (dotted
curve). The parameters 𝑘 = 2, 𝑡0 = 1, and 𝐵 =

√
𝛽

way that the total amount of the mediator released
into the synaptic cleft remains unchanged. In partic-
ular, we talk about the synchronous changes of the
parameters 𝐵 and 𝛽 in dependence (19) such that

+∞∫︁
−∞

𝜙(𝑡) 𝑑𝑡 = const. (20)

The desired effect can be achieved, if we put 𝐵 ∼
√
𝛽.

Figure 5 illustrates the dependences 𝑎(𝑡) calculated
for such a regime. Their counterparts for the amount
of the mediator in the synaptic cleft, 𝑚(𝑡), calculated
for various values of the parameter 𝛽 are depicted
in Fig. 6. One can see that the character of the de-
pendences 𝑎(𝑡) does not qualitatively change, when
the value of the parameter 𝛽 changes. This circum-
stance may be important in the context of the stabil-
ity of mechanisms governing the signal transmission
through synaptic contacts.

Fig. 7. Parametric dependences 𝑎(𝑡) versus 𝑚(𝑡) for vari-
ous values of the parameter 𝛽 = 10 (dashed curve), 100 (solid
curve), and 1000 (dotted curve). The parameters 𝑘 = 2, 𝑡0 = 1,
and 𝐵 =

√
𝛽

Also of interest is the parametric dependence be-
tween the parameters 𝑎(𝑡) and 𝑚(𝑡); here, the pa-
rameter is the time 𝑡. This dependence is presented
in Fig. 7. It is clear that it is not unique; each curve
is closed, with its beginning and end points at the
coordinate origin (𝑚 = 0, 𝑎 = 0), because the ini-
tial and final states of the system are realized at
the zero number of activated receptors and in the
absence of a mediator in the synaptic cleft. On the
one hand, this result is expected and obvious. On the
other hand, it testifies to the self-consistency of the
model and the validity of its results, at least at the
qualitative level.

6. Conclusions

We have presented the simulation results concerning
the process of nerve impulse transmission through the
synaptic cleft. The analysis is performed on the basis
of a kinetic model. The model is used to calculate,
in certain modes, the time dependences of the num-
ber of activated receptors on the postsynaptic mem-
brane and the amount of the mediator in the synap-
tic cleft. The obtained results are in good agreement
with the available experimental data and theoreti-
cal predictions obtained in the framework of various
approaches [9, 28]. It is also shown that, despite its
relative simplicity, the kinetic model of signal trans-
mission through the synapse is self-consistent and al-
lows obtaining the reliable results that explain the
peculiarities in the passage of impulses through the
synapse.
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О.М.Васильєв, О.В. Зайцева, О.В.Чалий

АНАЛIЗ СИНАПТИЧНОЇ ПЕРЕДАЧI
СИГНАЛIВ НА ОСНОВI КIНЕТИЧНОЇ МОДЕЛI

У статтi аналiзуються особливостi передачi нервових сигна-
лiв через синаптичну щiлину (контакт мiж двома нейрона-
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ми). Вiдповiдний аналiз виконується з використанням кi-
нетичної моделi, яка ґрунтується на системi нелiнiйних ди-
ференцiальних рiвнянь першого порядку i дозволяє вiдсте-
жувати кiлькiсть активованих рецепторiв на постсинапти-
чнiй мембранi та кiлькiсть медiатора в синаптичнiй щiлинi.
Модель поєднує в собi вiдносну простоту та функцiональ-
нiсть, що дозволяє отримувати якiснi результати, спiвстав-
нi з наявними експериментальними даними та результата-
ми iнших теоретичних дослiджень. Показано, що модель
на якiсному рiвнi коректно описує процес проходження си-
гналу через синаптичну щiлину. Отримано та проаналiзо-

вано точнi (числовi) та наближенi (аналiтичнi) розв’язки
для кiлькостi активованих рецепторiв на постсинаптичнiй
мембранi та кiлькостi медiатора в синаптичнiй щiлинi. До-
ведено стiйкiсть стацiонарних станiв в рамках моделi, що
свiдчить про самоузгодженiсть останньої i можливiсть її ви-
користання для моделювання проходження сигналiв через
синапс.

Ключ о в i с л о в а: синапс, медiатор, рецептор, екзоцитоз,
iмпульс.
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