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In recent years,

many developed upgrades of angle-resolved photoemission spectroscopy

(ARPES) have significantly increased the amount of the obtained data. In this article, we
briefly review the methods of processing of ARPES spectra with the use of convolutional neu-
ral networks (CNNs). In addition, we have made a short checkup of the potential application
of CNNs that outperforms the existing methods or gives the possibility to achieve previously

unachievable results.
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1. Introduction

Angle-resolved photoemission spectroscopy (ARPES)
is an experimental technique that is widely used to
image directly surface and bulk electronic states. It
is used in the studies of the electronic structure of
various quantum materials ranging from strongly cor-
related states of matter to those exhibiting non-tri-
vial topology [1-3]. The progress of the experimental
tools has given rise to the improvement of the reso-
lution and, hence, the information content of spec-
tra. In recent years, a lot of upgrades of APRES
such as time-resolved ARPES, spin-resolved APRES,
spatially resolved ARPES, etc. have been developed
[3]. The amount of the obtained ARPES data is in-
creased nowadays, and the dimensionality becomes
more complicated (from 1D to 3D), making the anal-
ysis of such spectra significantly more difficult [3]. In
this case, various machine learning-based methods
can be used to increase the efficiency of the data
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analysis. Machine learning (ML) methods have be-
come one of the most widely used tools in different
areas of science and technology [4, 5]. There are sev-
eral reasons for why this happened. First of all, we
mention the appearance of various open-source ma-
chine learning libraries such as Tensorflow [6], Py-
Torch [7], and sci-kit learn, which are user-friendly
and give a possibility for the easy implementation of
a vast range of different ML algorithms. Secondly, the
extreme speed up in the training time through the
graphics processing unit allows one to significantly
decrease the time required for a model implemen-
tation. One of the best illustrations of the powerful
cooperation between ML and fundamental physics is
the Higgs Boson Machine Learning Challenge which
was proposed to analyze the ATLAS experiment data
in order to identify the Higgs boson [8]. In solid-
state physics, ML methods showed their efficiency for
the prediction of different material properties such
as bulk and shear moduli, the existence of topolog-
ical states or superconductivity, etc. [9-12]. In this
article, we will make a short review of the existing
methods of processing of ARPES spectra and deter-
mine the tasks that arise for ARPES and might be
solved efficiently using various convolutional neural
network-based methods.
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2. Convolutional Neural Networks

In the case of ARPES, the obtained data usually have
2 (image cuts of energy-momentum) or more (for ex-
ample, results of time-resolved ARPES, when, in ad-
dition to energy and momentum, we have time) di-
mensions. One of the most widely used and efficient
algorithms for the image processing is based on dif-
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Fig. 1. An example of the convolution operation with a kernel
size of (3,3) [13]
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ferent types of convolutional neural networks. CNN is
a neural network that is typically composed of three
main types of layers: convolution, pooling, and fully
connected [13,14]. CNN is currently supposed to be
one of the best algorithms that are used for the au-
tomated processing of images. As can be understood
from the appellation, the core of the CNN architec-
ture is a convolutional layer.

2.1. Conwvolutional layer

The convolutional layer is based on two operations —
convolution and activation. Such layer consists of a
set of kernels (also called filters), each of them per-
forms the convolution operation with an input ten-
sor (1-dimensional in the case of speech recogni-
tion, 2-dimensional for the image processing, or 3-
dimensional for the video processing). In the image
processing, convolution is the process of transforming
an image by applying a kernel over each pixel and its
local neighbors across the entire image and calculat-
ing an element-wise product between each element of
the kernel and the corresponding pixel of the image
(Fig. 1). The result of the application of the kernel to
the image is called a feature map. During the neural
network training process, the values of each kernel are
changed to identify some kind of features from the in-
put image. The advantage of this type of network is
that it tries to find the correlation of neighboring pix-
els and learns to search for some kind of features in
the input tensor, which is important for the following
operation (processing with fully connected layers). In
the case of predictive machine learning models, the
performance is highly dependent on the feature en-
gineering [12, 15]. In the case of CNN, the feature
engineering is made with convolutional layers auto-
matically. The hyperparameters of the convolutional
layers are the kernel size (3 on 3 or 5 on 5, ete.),
the number of kernels in the layer, and the activation
function type.

2.2. Pooling layer

In CNNs, convolutional layers are often followed by
a pooling layer. The reason to use the pooling is that
the output of the convolutional layer determines the
precise position of features in the input tensor. So,
the rotation, shifting, or other changes in the fea-
ture position will result in another feature map. The
pooling layer summarizes the features present in a
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region of the feature map generated by a convolu-
tion layer. So, the summarized features are used for
further operations instead of precisely positioned fea-
tures generated by the convolution layer. This makes
the model more robust to variations in the position
of the features in the input image. One more reason
to use pooling layers is to reduce the dimensions of
the feature maps and to create a lower resolution ver-
sion of the feature map, which contains the large or
important structural elements, without the fine de-
tails and gives the possibility to reduce the number
of parameters to learn [13]. In the case of pooling,
the input tensor is divided into a set of regions that
do not overlap, and such a region is replaced by one
pixel. The pooling operation implementations might
be different — max pooling (taking the maximal pixel
value from the region), average pooling (taking the
average pixel of all pixel values from the region), min
pooling, ete. (Fig. 2).

2.3. Fully connected layers

Feature maps, which are obtained after convolutional
and pooling layers are flattened then and used as
the input on a fully connected neural network, which
is used then for the classification or regression tasks
[13,14].

3. CNN-Based ARPES
Spectra Processing Methods

To obtain the information from the ARPES spectra,
they should be processed. There are a variety of tasks
and approaches to such processing depending on var-
ious factors. We can generalize these different tasks
into the two big families:

1. Determination of spectral parameters such as
the electronic dispersion, real and imaginary parts of
quasiparticle self-energy, gap size, etc. [1,3].

2. Different image processing algorithms to extract
different features and quick visual inspection, for ex-
ample, the second-derivative method [16], curvature
method [17], minimum gradient method [18], etc.

3.1. Determination of the electronic
dispersion

Experimentally obtained ARPES spectra undergo
the distortion and broadening in the energy and
momentum dimensions due to the different interac-
tions of electrons in the crystal (electron-electron and
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electron-phonon scatterings). In addition, the spec-
tra are affected by various noises (from the inelas-
tically scattered electrons, shot noise, etc.) and ex-
perimental setup apparatus function. Various meth-
ods are used to determine the electronic dispersion. It
is worth to mention MDC and EDC analyses [32],
and different image processing methods [16-18]. Ho-
wever, these methods have many different method-
dependent constraints, and all of them tend to fail in
complicated situations like:

1. Spectra with high levels of noise (low signal-to-
noise ratio (SNR)).

2. Multiband systems, when two or more bands are
in the vicinity of each other, the intersection of dif-
ferent bands, the intensity of one band is much lower
than those of the others.

One of the successful examples of applying neural
networks for the ARPES spectra processing is the de-
termination of the electronic band dispersion [19]. In
this case, the electronic dispersion determination has
been regarded as finding an appropriate inverse trans-
formation that can best recover the original images —
which can be formulated as solving an inverse prob-
lem. To solve this problem, it has been proposed to
use a CNN, which provides a great performance in
improving the image qualities by solving a series of
inverse problems such as the super-resolution, denois-
ing, and patching. The idea of neural network train-
ing can be seen in the example — we have the training
data consisting of input (in our case, simulated ex-
periment data Y) and the desired output (“dressed”)
electron dispersion (simulated energy band X). Du-
ring the forward pass, each filter is convolved across
all dimensions of the input volume (width, height,
depth), computing the dot product between the fil-
ter entries and the input, producing a feature map of
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Fig. 4. The example of the experimental ARPES spectra processing within different me-
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that filter. These are then taken through an activa-
tion function, which decides whether a certain feature
is present at a given location in the image. During the
training process, the kernels (filters) of such a net-
work are changed to minimize the loss function (dif-
ference between desired and obtained outputs). This
process is repeated until the minimum loss function
is achieved or some number of epochs have been
passed. The results of the spectra processing using
such a neural network and with other methods are
shown in Fig. 4. It can be seen that the CNN is the
most precise method for the electronic dispersion de-
termination, which enables a detailed extraction of
the characteristic features [19].

3.2. Noise removal

One more practical application of neural networks is
the denoising of ARPES spectra. The authors of work
[20] proposed a neural network that consists of 20
convolutional layers, each layer of the convolutional
neural network has a filter number of 64 and a filter
size of 3. The training data set consists of pairs of
original and generated data. The desired output is the
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spectra with a high signal-to-noise ratio (can be used
readily available ARPES data), and the input is the
corresponding spectra with noise addition (generated
spectra with a low signal-to-noise ratio).

As can be seen in Fig. 5, b, unlike the Gaussian
smoothing, the denoising neural network efficiently
removes noise, and simultaneously preserves the int-
rinsic band structure. The reason for this is that the
size of the characteristic feature of the band struc-
ture is much greater than the data pixel size (any fea-
ture occupies much more than one pixel). Such a neu-
ral network adapts to get more information from the
noisy input than just the pixel-wise sum using the a
priori information extracted from the training set. So,
if the information at a pixel is corrupted with noise,
the value can be recovered, from the most statisti-
cally probable value inferred from adjacent pixel val-
ues [20].

3.3. Autoencoder-based noise
reduction and feature extraction

The above-mentioned methods are used for the band
tracing and denoise simultaneously the ARPES spec-
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Fig. 5. Denoising results of the neural network proposed in [20]. (a) FeSe ARPES data long the M-I'-M cut and denoising
results. LC and HC denote low-count (low SNR) and high-count data (high SNR). t denotes a unit acquisition time. The low-
and high-count data are acquired for ¢ and 100 ¢, respectively. SM and NN denote the Gaussian smoothing and denoising neural
network, respectively. (b) Corresponding second-derivative results of (a) [20]

tra. To trace the bands and to denoise spectra simul-
taneously, a special convolutional neural network was
proposed [21] — an autoencoder |22, 23|. Such a net-
work aims to learn data encodings (lower-dimensional
representation(encoding) for higher-dimensional data
and have numerous practical applications such as the
denoising, colorization, feature-level arithmetic, de-
tection, tracking, and segmentation [24,25]. To train
the denoising autoencoder, images with noise are used
as the input, and noise-free images are used as the
output [24,25]. The autoencoder consists of 3 parts:

1. Encoder (compresses the input data).

2. Bottleneck (contains the compressed knowledge
representations).

3. Decoder (reconstructs data from their encoded
form).

The first is the encoder, which transforms the in-
put distribution into a low-dimensional tensor (latent
representation vector). Since the latent vector is of
a low dimension, the encoder is forced to learn only
the most important features of the input data. The
second part is the decoder, which tries to recover
the input from the latent vector. As the latent vec-
tor is the low-dimensional compressed representation
of the input distribution, the recovered output can
only approximate the input. The goal of the decoder
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is to make the output as close as possible to the in-
put. One of the most commonly used cases of such
neural networks is the image denoising. Unlike “clas-
sical” denoising methods, autoencoders extract the
image from the noisy input data rather than search
for noise [21, 23-25].

It has been shown that such a convolutional vari-
ational autoencoder (VAE) network can simultane-
ously perform the denoising and feature extraction
from ARPES dispersion maps. The efficiency of the
VAE is a result of the combination of convolutional
layers (which are useful in the denoising) and a bot-
tleneck (which enables the feature extraction). Auto-
encoder-like topology is used to extract only impor-
tant features for the image reconstruction. It has been
shown that the proposed neural network can just de-
noise the image or denoise the image and extract fea-
tures simultaneously. For the spectra denoising, the
networks are trained using generated data with many-
body renormalizations and broadening. To generate
the data, the spectral function has been used. It in-
cludes the effects of the interaction of fermionic quasi-
particles with a collective bosonic mode. The spec-
tral function was convolved the spectral function with
a Gaussian resolution function and multiplied by a
Fermi function. To obtain a variety of images neces-
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sary for the network training, most parameters ran-
domly varied in the range of values near the real pa-
rameters of the Bi2212 [21].

As the input, noisy versions of the generated spec-
tra were used, and the desired output was presented
by generated spectra without noise. The size of the
whole set was 6000 pairs (5000 — training set and
1000 — validation set). The denoising of the Bi2212
spectra with the proposed network has revealed that
the obtained energy distribution curves (EDC) follow
the underlying line shape quite accurately and show
almost no noise.

The more complicated model of the training data
generation was used for the spectra denoising with
the feature extraction. It contains a bigger amount of
parameters (15 different parameters in contrast to 9
in the previous case). The size of the whole set was
9000 pairs (7000 — training set and 2000 — validation
set). The desired output of VAE was the generated
spectra, and the input was the corresponding broad-
ened, noisy, and anisotropic versions of these spec-
tra. Processing the experimentally obtained spectra
of 1T-TiSe2 has shown that this network could re-
solve the dispersion of the top and bottom branches
of the Bogoliubov-like bands around the M point of
the Brillouin zone [21].

There are two peculiarities of the above-mentioned
neural networks that show the powers of such an ap-
proach:

1. Though the training networks have been used for
generated datasets, both networks gave results on ex-
perimentally obtained spectra, which are better than
the results of the conventional methods.

2. Both networks are used efficiently for solving the
various inverse problems (from noisy data to denoised
images; from the distorted electronic dispersion to the
"bare’ one).

4. Train-Set-Free Denoising

The absence of the experimentally obtained spec-
tra without the noise is a complication in the case
of different denoising neural network methods. To
overcome this limitation, several approaches are
used. First, it is the usage of generated spectra as the
desired output, as well as the corresponding spectra
with additional noise as the input [21]. Another ap-
proach is based on usage of experimentally obtained
spectra with a high signal-to-noise ratio as the desired
output. In this case, the desired result is such a spec-
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trum, and the input is this spectrum with adding a
synthetic noise [20]. However, these approaches lack
flexibility and tend to fail with spectra that differ dra-
matically from the one in the training set.

The training-set-free method was proposed to avoid
the collection of training sets and achieve higher
adaptability and flexibility. This method is based on
the decomposition of the spectra into two parts: cor-
related part and a noise. Such an approach is valid for
the ARPES spectra in which nearby pixels are highly
correlated. Two independent neural networks have
parametrized the clean spectra and the noise. The
correlated part has been parametrized as the out-
put of an encoder-decoder-type convolutional neural
network. The encoder part maps the input image to
the latent space, the decoder plays the opposite role
and maps the data from the latent space to the input
space. The input of this network can be somewhat
arbitrary, and the only requirement might be the re-
flection of self-correlation. These two neural networks
first guess a superposition of the clean spectrum and
noise via the forward propagation. Then the parame-
ters of the neural network are updated concerning the
loss function through the backpropagation (BP). The
main advantage of such a method is that it can be eas-
ily extended to the three-dimensional case, without
requiring a large amount of expensive high-quality
training data and a time- or/and resource-consuming
training process [26].

Such a method has been used to extract a grid
structure in ARPES spectra due to the metal mesh
in front of the analyzer. In this case, the spectrum
is decomposed into three textures: the clean spec-
tra, the grid structure, and the noise. To parametrize
the observed data, two convolutional neural networks
have been used. One network was used to extract the
“clean” spectra, and the other to determine the grid
texture and noise. These two networks allow sepa-
rating the signal of the energy bands from the grid,
even when the grid width and the energy bandwidth
are comparable (Fig. 6). The main advantage of the
deep-learning method is the possibility of extracting
the complete intrinsic energy band signal using the
local data correlation to prevent losing the critical
information [27].

5. Perspectives

Besides the tasks mentioned above, there are a bunch
of different problems that can be solved more effi-
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ciently or solved using neural networks only. We will
determine such issues and propose a neural network-
based approach for solving them.

5.1. Physical model determination

To have a reliable approach to determine the under-
lying physical model from ARPES spectra, a classi-
fier based on CNN can be used. Such networks are
used for a wide variety of various tasks such as the
prediction of Alzheimer’s disease from the magnetic
resonance imaging [28], the detection of common rice
plant anomalies [29], and neutrino event classification
[30]. However, the topology of such networks does not
vary greatly. They all consist of repeating convolution
layers followed by pooling layers. The final pooling
layer output is flattened out, then transformed into a
one-dimensional array, and fed to the fully connected
layers that predict the output. The goal is to train
such a neural network to assign the generated spec-
tra to the corresponding model that has been used
to generate spectra. Considering the ability of neural
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networks to generalize on generated data can achieve
significant classification results for the experimentally
obtained spectra.

As the example of such a problem, we can consider
the physical mechanism of the so-called “pseudogap”
in copper-based superconductors. The opening of a
gap or just a depletion of the electronic density of
states at the Fermi level has been observed by differ-
ent experimental techniques, but ARPES is the most
direct tool to access the electronic density of states at
the Fermi level. The physical mechanism of the pseu-
dogap appearance in copper-based superconductors
remains unclear. It is supposed that the pseudogap
in cuprates is a complex phenomenon that includes
at least three different “intertwined” orders: spin and
charge density waves (similar to the 2D CDW com-
pounds) and preformed pairs, which appear in differ-
ent parts of the phase diagram [31]. A major issue
arises from the lack of a dependable criterion to dif-
ferentiate between various types of gaps in ARPES
data. The input of the network in this case is the
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image of a certain dimensionality (spectra generated
using a certain theoretical model), the output integer
number or vector with “one-hot encoding” that cor-
responds to the predicted class (corresponding theo-
retical model). If the differences between gaps can be
established from the spectra — the neural network will
learn how to do it.

5.2. ARPES-spectra parameter extraction

The conventional model to describe ARPES spectra
is a one-particle spectral function, which is the imag-
inary part of the Green’s function for one-electron
excitations (quasiparticles):

E//(w)

A = e - T TR

where ¥/ (w), ¥”(w) — is the real and the imaginary
parts of the quasiparticle self-energy, which reflects
all the interaction of electrons in the crystal, e(k) —
“bare” electron dispersion. Thus, not only the struc-
ture of one-electron bands, but also the structure
of basic interactions in the electronic system might
be expected to reflect in the ARPES spectrum. To
determine the quasiparticle self-energy, the MDC
and EDC-analyses are used [1,32-34] In the case of
the MDC analysis, the spectrum is divided into a
set of momentum distribution curves at fixed ener-
gies. Each of these curves is fitted using the Lorenz
function, which gives the possibility to extract the
imaginary part of the self-energy that corresponds to
the full-width half maximum (FWHM) of the Loren-
zian, and the maximum of the curve is determined
by w —e(k) — ¥'(w). From whence, we can determine
the real part of the self-energy. The MDC analysis
can be used only for not too flat bands (does not
work near and on the top/bottom of bands), the de-
pendence of the self-energy on the momentum can
be neglected (usually valid) [32]. In the case of the
EDC-analysis, the spectrum is divided into a set of
the energy distribution curves at fixed energies. Each
of these curves is fitted using a model (there is no
conventional model as in the case of the MDC anal-
ysis). From this model, we can obtain the self-energy
and the electronic dispersion. However, there are also
a lot of restrictions. For example, EDC does not work
for a too steep dispersion, suppose the self-energy
does not depend on the energy (that is not valid in
most cases). In the EDC analysis, the noise of in-
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elastically scattered electrons becomes significant, be-
cause it is not constant and dependent on the energy
and should be also considered in the model used for
the fitting.

So, we can conclude that both methods have re-
strictions and involve the correlation only between
pixels in one dimension. Another disadvantage is the
difficulty of the processing automation (which is im-
portant for the processing of large amounts of data).

The CNN-based method can help to overcome the
limitations of the existing methods:

1. Convolutional layers search for a correlation be-
tween pixels in all directions and treat spectra as the
whole, not as the set of almost independent slices.

2. All spectral parameters are determined almost
instantly, and a large amount of data can be processed
using such a method.

The tradeoff is the lack of versatility — the network
works only for one particular physical model (defined
by the training set generator) and the set of parame-
ters (defined by the output layer topology). However,
there is a simple way to make this approach more uni-
versal — using more than one neural network. Each of
the networks corresponds to a different model with a
different set of parameters. As the differences between
networks are not essential, the transfer learning [35]
reduces drastically the time for the neural network
training.

5.3. Time-resolved
ARPES (trARPES) analysis

TrARPES is the experimental technique that gives
the possibility to investigate not only the electronic
band structure, but also the momentum-resolved elec-
tronic dynamics. The obtained data give the pos-
sibility to get non-equilibrium properties of a vari-
ety of different materials. TrTARPES is performed in
a pump-probe configuration using an ultrafast laser
system, the pulse excites a sample out of equilibrium,
and the probe pulse is used for measuring the system
from the transient system. The ARPES spectra are
recorded as a function of the pump-probe time de-
lay [3, 36]. So, the trARPES gives the possibility to
observe the additional time dimension. However, dur-
ing the analysis of such data, each spectrum is han-
dled separately using the EDC and MDC analyses or
other methods, reducing the 3-dimensional task to a
set of one-dimensional ones [37-39]. Then, by com-
paring the obtained results for different delay times,
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we determine the differences and extract information
about the systems under investigation. Such an ap-
proach is not reliable and can not be used to extract
non-evident features and peculiarities.

New methods should be used to exploit all benefits
of this experimental technique for tracking both spa-
tial and time correlations between the spectra. The
approaches for the video classification tasks are con-
sidered in [40-42]. In this case, more information is
provided to the recognition task by adding a temporal
component through which plenty of other information
can be used. In addition, this task is much more com-
putationally demanding even for processing the short
videos, since each video might contain hundreds to
thousands of frames, not all of which are useful, and
the training of such networks can not be parallelized
(GPU will not increase the training speed). Howe-
ver, a combination of trARPES and different types of
recurrent CNNs (CNN + RNN [40] or CNN + LSTM
(long short-term memory) [43]) gives the possibility
to verify different models based not only on the pe-
culiarities of the electronic band structure, but also
adding the temporal component through which other
information can be additionally used.

An example of such a problem is the classifica-
tion of the physical processes and identifying the
relaxation mechanism after the absorption of pump
photons. The situation when the absorption of pump
photons results in optical dipole transitions from oc-
cupied to unoccupied electronic states with the sub-
sequent relaxation due to the intrinsic scattering pro-
cess is too simplified. When the material is in an or-
dered state, the optical excitation can perturb or de-
stroy the order parameter. The excitation can launch
a coherent mode such as a photon via the Raman
process or electrons can be “dressed” by the periodic
structure of the pump fields and form Floquet—Bloch
states. Of course, each of these mechanisms does not
exclude another one. So, complicated combinations
of different mechanisms might exist. Even from the
time-resolved spectra, it is a challenge to classify the
arising physical process and identify the existing re-
laxation mechanisms [3].

5.4. Predicting critical temperature
of the high-temperature superconductors

Now, plenty of machine learning methods are used
to predict the properties of materials such as topo-
logical states, band gaps, bulk and shear moduli, su-
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perconductivity, and others. Such machine-learning-
based models use different parameters such as the
composition-weighted average of a number of unfilled
electrons, the maximum value of melting tempera-
ture, and the standard deviation of the number of
valence electrons taken over the element value of the
compound [12,44].

In the case of different predictive models, the criti-
cal step in the model creation is the feature engineer-
ing. The feature engineering (extraction) is the batch
of methods that select and/or combine variables into
features, effectively reducing the amount of data that
must be processed, while still wholly and accurately
describing the original data set. Such a step is use-
ful to reduce the number of resources needed for the
model training and to increase the efficiency of the
model. However, not all important features can be
constructed from the proposed variables [12,44].

For example, there are a huge number of different
compounds, where the appearance/disappearance of
the superconducting state or essential changes of the
critical temperature are accompanied by complicated
changes in the electronic band structure [45,46]. Some
empirical correlations between superconductivity and
the electronic band structure have been established
[45]. But not all important features can be established
from a 2D slice or the set of 2D slices of the 3D Bril-
louin zone almost “by eye”.

The Fermi surface tomography enables performing
a 3-D mapping of the Fermi surface within a short
time interval with very high resolution [47]. CNN al-
lows the building of predictive models for the Fermi
surface top with the existence of high-temperature su-
perconductivity or with drastic changes in the critical
temperature. Their convolutional layers learn to find
peculiarities of the electronic band structure, which
are crucial for the high-temperature superconductiv-
ity, and fully connected layers predict the critical tem-
perature using extracted features [4, 5].

The problem with such an approach is the absence
of a standardized database due to the lack of the
experimentally obtained ARPES spectra for differ-
ent compounds with corresponding critical temper-
atures. If this database will be created, after per-
forming the computationally inexpensive neural net-
work training, using the Open Quantum Materials
Database (OQMD) [48] or another DFT calculation
database search for the high-temperature supercon-
ductors among different compounds.
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Another possible approach (that is easier to inter-
pret) is to use convolutional and pooling layers just
for the feature extraction, and the extracted features
will be used for other machine learning models such
as the random forest one [49, 50].

6. Discussion

We have reviewed the pros of such CNN-based mod-
els. However, we should say a few words about some
cons:

1. There is some skepticism about the usage of
neural networks for different scientific tasks due to
a lack of interpretability. In most cases, the neural
network is regarded as a “black box” with an un-
known decision-making mechanism. So, even in the
case of creating a powerful predicting model, we will
not be able to determine new physical laws. Howe-
ver, in recent years, the number of articles devoted
to the interpretability of neural networks has grown
exponentially [51, 52, 52]. A lot of methods aimed to
increase the transparency of the model such as the
feature analysis techniques, different model inspec-
tions, saliency methods, etc. have been proposed. Al-
most all these methods are time and computationally
expensive, not well worked out yet, and are not uni-
versal. Although it is unlikely that such approaches
will make neural network-based models such trans-
parent and clear as the simple linear models, the
idea of “black box” tends to be completely incorrect
[51, 52].

2. The convolutional layers give the possibility to
find the dependences between the pixel and its local
neighbors, but they tend to fail in the case of long-
range dependences. The attention mechanism [54] has
been regarded as an advanced technique to capture
long-range dependences. So, some additional compli-
cations of the neural network give the possibility to
overcome the limitations of the kernels to determine
and consider long-range dependences between pixels
[55-57].

An alternative popular approach for the computer
vision tasks is the usage of visual transformers (ViT)
[58]. Such models employ a transformer-like archi-
tecture [54], which has been widely recognized as a
powerful tool for solving the natural language pro-
cessing tasks [59, 60]. The performance of ViT has
outperformed CNNs on multiple benchmark tests
[60, 61]. However, such improvements are achieved
mostly for large datasets (more than several millions
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of examples) and pre-trained models. So, in the case
of ARPES spectra processing, where the datasets are
much smaller [19-21], ViT does not tend to have bet-
ter results than the CNN.

7. Conclusion

We have reviewed the existing CNN-based methods
for the ARPES spectra processing, that are used for
the noise reduction and/or the electronic dispersion
determination. Such methods outperform the “classi-
cal” ARPES processing methods such as the second-
derivative, minimum curvature, maximum gradient,
Gaussian denoising, and other ones. There are numer-
ous reasons for the efficiency of such networks. First
of all, we mention the ability to generalize. So, the
use of relatively small training datasets (less than
10000 examples) of generated data networks allows
one to efficiently process the experimentally obtained
spectra. Second, due to the adaptability and flexibil-
ity, almost the same networks can be used for signifi-
cantly different tasks simply by changing the training
dataset. Third, the milestone of all reviewed meth-
ods is the ability to learn and use the complicated
correlation between neighboring pixels using the con-
volutional layers. Such correlation allows the denois-
ing or degridding of spectra using the decomposition
of spectra into uncorrelated and correlated parts. In
this case, CNN is used to approximate the correlated
part, which corresponds to “pure” spectra.

However, besides the existing methods, there is
a wide range of tasks that can be resolved using
CNNs. We have outlined some of them such as:

1. trARPES spectra processing using the different
types of recurrent CNNs;

2. physical model classification using a CNN-based
classifier;

3. automated ARPES spectral parameter extrac-
tion using CNNs;

4. creating predicting models for predicting the
critical temperature and/or existence of the super-
conductivity of the high-temperature superconduc-
tors based on the electronic band structure.
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METOAN OBPOBKU
APRES-CIIEKTPIB HA OCHOBI
HEMPOHHUX MEPEXK (OTJISIZOBA CTATTS)

Brockonasienust MmeTony poroeMiciitHol cuekTpockonii 3 po3mi-
snenaaM 1o Kyty (ARPES) cyrreBo 36inbmuniam KigbKicTb ga-
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HUX, 1[I0 OTPUMYIOThCH IIiJ] dac BumiproBanb. “Kiacuani’ me-
Tomu, Taki sk MDC- ta EDC-ananiz abo meroau 1mudposol
00poOKHU 300paskeHb, HE JO3BOJIAIOTH IIBUAKO Ta €(PEKTHUBHO
06pobIIsATH 3HAYHI OOCArM OTPUMAHUX JAHUX. » CTATTI IIPO-
BEJIEHO OIVIsL], iCHYIOYHX METOZIB 0OpOOKM CIIEKTPIB Ha OCHOBI
3roprkoBux HeiiponHnx Mepex (BHM), mo nossossiiors ede-
KTHBHO 3HELIyMJIIOBATH CIIEKTPH Ta BHU3HAYATH €JEKTPOHHY
mucnepciro. KpiM Toro, 3ampornoHoBaHO HU3KY IE€PCHEKTHBHIX
3acTocyBaHb MeToiB Ha ocHoBli 3HM s 3a1a4, 1110 BUHUKA-
I0TH IpU 06pobni PhoToEMICIfIHIX CIEKTPIB.

Katrwwoei caoesa: poroeMiciiiHa CIEKTPOCKOIIS 3 PO3IiIeH-
HSIM II0 Ky Ty, 3rOPTKOBI HEfIDOHHI MepexKi, MaIlIuHHE HABYAHHS.
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