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LOW-ENERGY n—p AND n-d
SCATTERINGS WITH THE DENG-FAN POTENTIAL

In any first approach toward a nuclear structure problem, one presumes the nucleons to be
elementary particles. The failure or success of this approach may then instruct us something
about the significance of sub-nuclear degrees of freedom. The Deng—Fan potential, although ex-
tensively used in molecular dynamics to reproduce several observables for the atomic-atomic
and atomic-molecular interactions, is parametrized for nuclear systems to fit low-energy ob-
servables. By exploiting the variable phase approach (VPA) to potential scattering, phase
parameters, cross-sections and analyzing powers are estimated for the nucleon—nucleon and
nucleon—nucleus systems. Our results show good concurrence with the earlier theoretical and
experimental data within this simple model of interaction.
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1. Introduction

In the domain of non-relativistic quantum scatter-
ing theory [1], understanding the energy spectra and
wave functions of a quantum system under various
potentials is an interesting subject, as one can gather
all the necessary information about the system un-
der consideration. In 1957, Deng and Fan [2] pro-
posed a diatomic potential to define the molecular
vibrational spectrum. The Deng—Fan potential is a
generalized Morse potential (GMP) [3], as it satisfies
the correct physical boundary conditions at » = 0
and r = co what the generic Morse potential fails to
do. Thus, the Deng—Fan potential is consistent with
the quantum needs and can be a good choice for
studying quantum physical systems. Many authors
have investigated this potential via different quan-
tum mechanical wave equations [2-11] by utilizing
several standard approximation prescriptions to the
solution in both relativistic and non-relativistic do-
mains. Refs. [2-3] studied this potential for the S-
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wave case. This potential was considered by Hassan-
abadi et al. [4] who obtained an ansatz for a quan-
tum mechanical solution applying a Pekeris-type ap-
proximation. Dong [5] used a proper approximation
to the centrifugal term, and Oluwadare [6] applied
the Nikiforov—Uvarov method for solving the Klein—
Gordon equation. Yazarloo [7] and Dong [8] have ob-
tained approximate bound and scattering state so-
lutions to the Schrédinger equation in all partial
waves with approximation to the centrifugal term for
the potential under consideration. The Deng—Fan po-
tential is a multiparameter exponential-type poten-
tial. Various other exponential-type potentials have
been treated for their approximate analytic solutions
in a number of publications [12-25].

Thus, for theoretical physicists, the Deng—Fan po-
tential is already an interesting choice in the con-
text of its application to the molecular dynamics [2—
11]. However, we will apply this potential for the two-
particle nuclear scattering with judicious exploitation
of the variable phase approach (VPA) [26]. Several
authors have computed quantum mechanical scat-
tering phase shifts through VPA with various types
of potentials [27-35]. Relatively recently, Behera et
al. [31] studied the nucleon-nucleon and alpha-nuc-
leon elastic scatterings for the motion in the Manning-
Rosen potential, whereas Sahoo et al. [32] studied the

247



B. Khirali, B. Swain, S. Laha et al.

nucleon-nucleon scattering for F- and G-partial waves
using the Hulthén potential both by the proper uti-
lization of the variable phase method.

The fundamental concept of nuclear physics is the
interaction between two nucleons. The conventional
objective of nuclear physics is to comprehend the
properties of atomic nuclei in terms of the exposed
interaction between pairs of nucleons. With the in-
ception of quantum chromo dynamics (QCD), it be-
came comprehensible that the nucleon-nucleon (NN)
interaction is not elemental. On the other hand, even
today, in any first approach toward a nuclear struc-
ture problem, one presumes the nucleons to be ele-
mentary particles. The failure or success of this ap-
proach may then instruct us something about the sig-
nificance of sub-nuclear degrees of freedom. The NN
interaction has been inspected by a large number of
physicists all over the world for the past 90 years. It
is empirically the best known piece of strong inter-
actions. Although, in the light of QCD, meson the-
ory is not supposed as elementary anymore, the me-
son exchange thought continues to symbolize the best
working model for a quantitative nucleon-nucleon
potential.

The present paper is an analysis of (n—p) and (n—d)
scattering experiments below 50 MeV. At low ener-
gies, only a few partial waves are expected to be im-
portant in the nuclear scattering, a fact that simpli-
fies the phase-shift analysis. Unfortunately, the only
accurate measurements in this energy range are an-
gular distribution measurements. Hence the present
paper is primarily a study of the restrictions im-
posed on phase-shift solutions by the single require-
ment that a good least-squares fit be obtained to
the angular distribution. When the analysis is carried
out using 'So, Py, 3Py, >P5 and Dy nuclear phase
shifts, it is noticed that equally good fits to the an-
gular distribution are obtained which are within the
permissible error limits. Here, we consider a simple
minded potential model without any mixing param-
eters to treat nucleon-nucleon and nucleon-nucleus
systems.

The content of the present approach is that a func-
tion which satisfies the Ricatti equation/phase equa-
tion has, at each point, the meaning of the phase-
shift of the wave function for scattering by the poten-
tial at that point. This helps us in the investigation
of the different regions of the potential in producing
the phase shift. VPA [26] is more effective with short
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range potentials scattering and, therefore, is a suit-
able choice for the nuclear scattering studies toward
the calculation of the scattering phase shifts for quan-
tum mechanical systems with local [27-33], as well as
nonlocal [34, 35] potentials. The findings of a simi-
lar research utilizing the Deng—Fan potential [2] are
presented in this paper. To judge the merit of our ap-
proach, model calculations are presented for real sys-
tems, namely,for neutron-proton (n—p) and neutron-
deuteron (n—d). For the systems under consideration,
we shall compute phase parameters, angular distri-
butions, total elastic scattering cross sections, and
analysing powers to compare them with more ad-
vanced calculations up to partial waves ¢ = 2. In Sec-
tion 2, we present our methodology, and Section 3 is
devoted to the results and discussion. We conclude in
Section 4.

2. Methodology

The unreformed Deng—Fan potential [4, 7] has the
form of (ea'f_l) + (ea:’il)Q. We modify it to another

convenient form which reads in ¢th partial wave as

—Qar

(&

Vi(r) = Vn(r) = Ulm +
e 2ar L(0+1)
+ (%) (1 — e_cw_)2 7"2 ) (1)

where « is the inverse range parameter with dimen-
sion of fm™!, and v; and vy are the strength pa-
rameters with dimension of fm~=2. The phase shifts
for the potential given by Eq. (1) are computed
by applying the standard prescription, the variable
phase approach, to the potential scattering [26]. The
VPA is an alternative prescription to calculate phase
parameters for quantum mechanical problems with-
out solving the standard wave equation. The VPA
is based on the separation of the radial wave func-
tion of the Schrédinger equation into an amplitude
part Ay(r;k) and an oscillating part with a vari-
able phase d(r; k). This amounts to separating out
the two effects of the potential which manifest them-
selves in distorting the wave function and in gen-
erating the scattering phases [34, 35]. The function
0¢(r; k), termed as the phase function, has, at each
point, the meaning of the phase shift of the wave
function for scattering by the potential truncated at
a distance r. A completely cut off potential will not
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produce any phase shift. Thus, the phase function
(5[(7‘; ]{7) =0.

For a local potential d,(k,r) satisfies a first-order
non-linear differential equation [26] written as

3y(r: k) = —k~ Vi (r) [cos 8o(rs k) jo (k) —

— sindy(r: R (k)] e

where j(kr) and 7y (kr) are the Riccati-Bessel func-
tions [36]. For £ =0, 1& 2, the phase equations yield
0y (rik) = —k~'Vo(r) [sin (do(r: k) + kr)]”, (3)

V1 (7”)

k32

—kr cos (61(r; k) + kr)] ’

5 (r;k) = [Sin (01(r; k) + kr) —

and

5)(r; ) ;

—k~Va(r) ka - 1> X

x sin (83(r; k) + kr) — % cos (02(r; k) + kr)} . (9

The quantity k is the center of mass momentum
and, in turn, is related to the center of mass energy
by the relation ¥ = v2mE /h. The scattering phase
shift d,(r; k) is obtained by solving the phase equation
from the origin to the asymptotic region with the ini-
tial condition d¢(0; k) = 0. During the solution of the
phase equation, d,(r; k) is up surged by the potential
as one moves away from the origin to its asymptotic
value as soon as one moves out of the range of the po-
tential. Obviously, d¢(k) = lim, o d¢(r; k). Having
the phase function dy(r; k), one can easily determine
the amplitude function A,(r; k).

3. Results and Discussion

We shall parametrize the nuclear Deng—Fan poten-
tial, given in Eq. (1), to obtain the standard phase
parameters [37, 38] of different states of the (n—p) and
(n—d) systems by numerically solving the differential
equations (3)—(5) from the origin to the asymptotic
region. As the function &y(r; k) generates the phase
shift at each point, the step size of the variable r in
calculating accumulation of phase within the range of
the interaction is very crucial. Thus, to have proper
phase parameters, one has to optimize the step size
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Fig. 1. (n—p) scattering phase shifts (S-wave) as a function of
laboratory energy. The standard data are from Ref. [37]

judiciously. The parameters for the (n—p) and (n—d)
systems for different states along with the optimized
step sizes are given in Table 1.

For the numerical computation, we use f%/2m =
= 41.47MeV fm? and 31.1025 MeV fm? for (n—p) and
(n—d) systems, respectively, where m is the reduced
mass of the respective systems. From Fig. 1, we ob-
serve that our parameters for the >S; and 'Sy states
of (n—p) system reproduce the correct phase parame-
ters up to a laboratory energy of 50 MeV. Our results
are in conformity with those of Pérez et al. [37]. Si-
milarly, the P- and D-wave phase shifts are also in

Table 1. List of parameters for the potential

Systems | States | o (fm™1) |v1 (fm=2) |ve (fm~2) | Step size
n-p 180 0.868 | —0.7174 | —0.0032 | 0.0100
38, 0.868 | —1.8950 | 0.8000 | 0.0085
1p, 0.756 | -2.1500 | 2.9000 | 0.0100
3Py 0.756 | -2.9600 | 2.2000 | 0.0100
3Py 0.756 | —2.3650 | 3.5500 | 0.0100
3P, 0.756 | —2.7530 | 1.4000 | 0.0100
1Dy 0.350 | -1.4500 | 0.0050 | 0.0471
3D, 0.800 | —0.8000 | 5.0000 | 0.0008
3Dy 0.400 | —1.6000 | 0.0500 | 0.0010
3D3 0.350 | —1.4000 | 0.0050 | 0.0950
n-d [1/2(H)| 0.860 | —2.500 2.00 0.1590
1/22)| 0868 | —2.480 | -1.65 0.0032
3/2(2)| 0.340 | -2.770 0.50 0.900
3/2()| 0.830 | -0.415 2.00 0.0098
249
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Fig. 2. (n—p) scattering phase shifts (P-wave) as a function
of laboratory energy. The standard data are from Ref. [37]
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Fig. 3. (n—p) scattering phase shifts (D-wave) as a function
of laboratory energy. The standard data are from Ref. [37]

excellent agreement with Ref. 37, as shown in Figs. 2,
3. The n—d scattering phase parameters, portrayed in
Fig. 4, reproduce reasonable agreement with those of
Hiiber et al. [38] except 3/2(*) state. In that, our re-
sults show a slight oscillating character in the energy
range 4-12 MeV.

For the Deng—Fan model,the scattering of the (n—
p) and (n—d) systems, the associated potentials for
different states are depicted in Figs. 5-8. Nuclear po-
tentials are highly state-dependent, and the same has
been shown by Figs. 5-7 for different S-, P- and D-
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Fig. 5. S-wave (n—p) potentials as a function of r

states of the (n—p) system. The associated potentials
for different states of the (n—d) system have also been
displayed in Fig. 8.

The scattering cross-section is an effective area that
quantifies the intrinsic rate a given event occurs dur-
ing the scattering of a two-particle group. In the lit-
erature, the low-energy reliable data relating to (n—p)
and (n—d) systems [39-62] exist for various nucleon-
nucleon interaction models. However in low-energy
collisions, the total cross-section comes out mostly
from elastic scattering channel with insignificant in-
volvement from the rest of the involved reaction chan-
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Fig. 6. P-wave (n—p) potentials as a function of r
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Fig. 7. D-wave (n—p) potentials as a function of

nels. We aspire to investigate to what level our model
calculations will be able to acquiesce realistic cross-
section data in view of small incongruity between the
results of our phase shift analysis and of other calcu-
lations. The scattering amplitude is expressed as

ik i 20 4 1) Py(cos 0) (exp(2id,) — 1). (6)
/=0

The quantity 0y is the nuclear phase shift. The dif-
ferential scattering cross-section o(f) is given by
o(8) = |f(8)|°. One may calculate the total scatter-
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Fig. 8. (n—d) potentials as a function of r
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Fig. 9. (n—p) differential scattering cross-section as a function

of center of mass angle

section o(f) over the entire solid angle and the angle
integrated cross-section is

47

" (7

(2L + 1) sin? 6.
L=0

or =

Note that this integrated cross-section is sometimes
called the total cross-section, because it is the total
after integration over all angles. The elastic scatter-
ing of neutrons by proton has been investigated by a
number of researchers [37, 51-61]. In the present text,

ing cross-section by integrating the differential cross-

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 4

we calculate differential and total scattering cross-
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Fig. 10. (n—p) differential scattering cross-section as a func-
tion of center of mass angle
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Fig. 11. (n—d) differential scattering cross-section as a func-
tion of center of mass angle

sections for the (n—p) and (n—d) systems and compare
them with the data [44, 45, 63] available in the liter-
ature by exploiting Eqs. (6), (7). The cross-section is
distorted and characterized using analysing power A,
and is proportional to the difference between left-right
cross-sections. Analyzing powers have also been esti-
mated following the prescription of Cooper et al. [64].

The differential scattering cross-sections are por-
trayed in Figs. 9-12 together with the standard re-
sults [45, 63| for the (n—p) and (n—d) systems.
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Fig. 13. (n—p) total scattering cross-section as a function of
laboratory energy

Our computed scattering cross-sections, using the
obtained phase parameters, are in good conformity
with Scanlon et al. [63] and Schwarz et al. [45]. The
analyzing powers for the systems under discussion are
also estimated and found them in good agreement
with experimental data [65, 66]. Figures 9 and 10
show the differential scattering cross-sections for the
(n—p) system at incident energies 27.5 and 47.5 MeV
together with the Scanlon et al. [63]. The same are
shown in Figs. 11, 12 for the (n—d) system for 2.5

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 4
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Table 2. Neutron-proton elastic analyzing
power at Epap = 27.5 MeV in comparison
to experimental data of J. Wilczynski et al. [65]

ELAB =27.5+ 1 MeV
fc.m. (deg) Analyzing power (Ay)
Present work Wilezynski et al. [65]

33.1 4.841904 5.6040.029
50.9 6.511997 8.114+0.039
69.1 6.134383 7.744+0.034
87.1 6.426498 7.68 +0.039
105.4 6.387566 5.4240.027
122.9 5.139937 3.604+0.019
141.0 4.757877 2.37£0.004
151.4 3.526850 2.25+0.007

Table 3. Neutron-proton elastic analyzing
power data at Er o = 50.0 MeV in comparison
to experimental data of J. Wilczynski et al. [65]

Erap = 50.0 £2MeV
Oc.m. (deg) Analyzing power (Ay)
Present work Wilczynski et al. [65]

33.1 15.241 12.15+1.24
50.9 19.460 21.35+1.15
69.1 20.097 23.21+1.12
87.1 18.602 21.06 +1.42
105.4 16.379 14.53+1.45
123.0 12.911 7.894+1.67
141 8.389 4.94+£0.51
151.4 3.592 1.86 £0.85

and 4.0 MeV (laboratory energies) in conjunction
with the results of Schwarz et al. [45]. We observe
that the cross-section data vary uniformly with angle
and consistently with energy. When the incident en-
ergy is higher, the cross-section monotonically drops,
and the minimum for the (n—p) system, which is ap-
proximately 100°, then slowly shifts backward. The
majority of our (n—p) data fit into the experimen-
tal error ranges. However, one must take it into ac-
count up to quite high energies in order to really cal-
culate the cross-section via its partial-wave expan-
sion. Conversely, we take into account energies up
to 50 MeV, when a few lower partial waves are in-
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Table 4. Neutron-deuteron elastic
analyzing power at E;, o = 5.0 MeV in comparison
to experimental data of Tornow et al. [66]

Epap = 5MeV
Oc.m. (deg) Analyzing power (Ay)
Tornow et al. [66
Present work (Errors are about :|[:0,]0035)

341 0.007 0.013
45.3 0.009 0.021
53.3 0.012 0.025
61.5 0.017 0.025
70.2 0.027 0.032
771 0.047 0.043
85.6 0.124 0.051
91.3 0.335 0.061
97.0 0.623 0.075
103.5 0.199 0.082
107.4 0.100 0.086
115.2 0.038 0.092
117.6 0.030 0.091
1203 0.024 0.084
123.1 0.021 0.074
128.0 0.014 0.067
131.4 0.011 0.057

volved. The minimum for the (n—d) system comes
at around 90°, as instead of 120° as measured by
Schwarz et al. [45].

253



B. Khirali, B. Swain, S. Laha et al.

Table 5. Neutron-deuteron elastic
analyzing power at Epap = 6.5 MeV in comparison
to experimental data of Tornow et al. [66]

ELAB = 6.5 MeV
Oc.m. (deg) Analyzing power (Ay)
Tornow et al. [66
Present work (Errors are about :I[:O.g)035)

30.6 0.0123 0.013
38.9 0.0148 0.020
46.6 0.0187 0.023
53.0 0.0233 0.032
61.3 0.0329 0.029
67.8 0.0449 0.037
74.9 0.0840 0.040
82.0 0.0878 0.045
91.1 0.1050 0.072
101.0 0.0846 0.087
105.6 0.0703 0.108
111.5 0.0549 0.115
117.3 0.0433 0.118
125.3 0.0326 0.099
134.9 0.0247 0.076
150.0 0.0183 0.026
155.0 0.0171 0.021

The analyzing powers for (n—p) and (n—d) systems
at two different energies are presented in Tables 2-5
along with the experimental results [65, 66].

The total scattering cross-sections for both systems
are portrayed in Figs. 13 and 14 along with the stan-
dard data [44, 45].

The cross-section calculations were performed in-
cluding the contributions of S-, P- and D-waves. Our
results for the total (n—p) and (n—d) cross-sections
are in excellent agreement with those of Refs. [44,
45]. As the S-wave contribution to the total cross-
section dominates over the higher partial wave in-
volvement in the low-energy region, the overall agree-
ment of our cross-section data with Ref. [44, 45] is
noteworthy.

4. Conclusions

Our results for the elastic scattering phase shifts for
different states of the (n—p) and (n—d) systems are in
conformity with the standard data [37, 38]. Cross-sec-
tions and analysing powers are computed with con-
sideration for the impacts of few lower partial waves

254

like S-, P- and D-waves. A synchronized account of all
theoretical and experimental omit it evidences over
a wide range of the energy spectrum may provide
more insights into the N-N interaction and, possi-
bly, even the significance of the three-body forces for
the nucleon-deuteron system. The difference in A, is
thought to be greatly reduced by altering the short-
range element of the LS force in the nucleon-nucleon
potential. This implies that the off-energy-shell LS
interaction has a major influence on A,. This po-
tential model needs to be refined, as indicated by
the energy dependence of the difference in A,. The
Schrédinger equation for the effective potentials must
first be solved in order to incorporate an electromag-
netic potential into the current nuclear potential for
the charged hadron scattering.

The (n—p) and (n—d) cross-section calculations
with our simple minded potential model are in ex-
cellent agreement with those of earlier works with
sophisticated potential models. In the recent time,
physicists show much attention in probing for the
exponential-type of potentials as they play a signif-
icant role in plasma, solid-state, atomic, and molec-
ular physics. For the treatment of charged hadronic
systems, one has to consider a combined interaction
model: electromagnetic plus nuclear in origin. The
electromagnetic part of the interaction is normally
represented by the screened/cut off Coulomb interac-
tion as the pure Coulomb potential has no existence
in reality. This problem is in our active consideration
with the Deng—Fan plus Hulthén potential to study,
particularly, the proton-proton and proton-deuteron
systems. The overall quality of the consistency be-
tween the theory and experiment is worth mention-
ing. Therefore, the present potential may turn out to
be interesting to theoretical physicists.

We have no funding source for this work.
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HUSBKOEHEPTETUYHE n—p TA n—d
PO3CIIOBAHH{ 3 ITOTEHIIAJIOM JEHTI'-®AHA

ITorennian Jleur—®Pana, sskuii BAKOPUCTOBYETHCSI B MOJIEKYJISIP-

Hilf guHaMind, 3acToCOBaHO ajist onucy n—p Ta n—d poscioBaH-

Hs B paMKax MeToxay (a3oBux pyHKIIH. 3HaiigeHo nepepisu i

napamMerpu (a3u PO3CisiHHS B y3TOJ?KEHH] 3 iHIIUMHU TeopeTu-

YHUMHA pO6OTal\II/I i EKCIIeEpuMEHTaJIbHUMU JaHUMMU.

Katwvwoei caoea: norennian lenr—Pana, meron dazoBux

dyHsKIii, mapamMerpu a3y po3CisgHHS, Iepepi3, MoJsApu3allii-

Ha acuMeTpist, n—p i n—d cucremu.
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