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RESONANCE STRUCTURE
OF 8Be WITHIN THE TWO-CLUSTER
RESONATING GROUP METHOD

A microscopic two-cluster model is applied to study the elastic alpha-alpha scattering and the
resonance structure of 8Be. The model is an algebraic version of the Resonating Group Method
(RGM), which involves the complete set of oscillator functions to expand the wave function of a
two-cluster system. The interaction of nucleons inside each cluster and the interaction between
clusters are determined by the well-known semirealistic nucleon-nucleon potentials which are
employed in calculations. They differ by a size of the core at small distances between nucleons
and realize the strong, moderate, and weak cores. They allow us to study dependence of calcu-
lated quantities on the shape of a nucleon-nucleon potential. The detailed analysis of resonance
wave functions is carried out in the oscillator, coordinate, and momentum spaces. Effects of
the Pauli principle on the wave functions of the 8Be continuous spectrum states are tho-
roughly studied.
K e yw o r d s: cluster model, resonating group method, resonance states, Pauli principle.

1. Introduction
The nucleus 8Be is a very interesting object which
attracts a large attention of various theoretical and
experimental groups of researchers. This nucleus has
no bound states, but it has a rich collection of reso-
nance states. The low-energy part of resonance states
belongs to the two-cluster continuum of two interact-
ing alpha particles. There are three resonance states
0+, 2+, and 4+, which are considered as a rota-
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tional band of the 8Be nucleus. The 0+ resonance
state is a very narrow resonance state with the en-
ergy 0.092 MeV above the 𝛼+𝛼 decay threshold. The
width of this state is 5.57 eV and the half-life time is
8.19× 10−17 sec [1]. This allows one to treat it ap-
proximately as a bound state. Since the threshold
energy of the second channel 𝑝+7Li is 17.35 MeV
with respect to the energy of the 𝛼 + 𝛼 channel, the
𝛼 + 𝛼 channel is dominant in a wide energy range
(0 ≤ 𝐸 ≤ 15 MeV).

In the present paper, we are going to study
the structure of 8Be and pay the main attention
to the wave functions of resonance states. For this
aim, we employ a specific version of the resonat-
ing group method (RGM) which was formulated in
Refs. [2, 3] and is known as the algebraic version
of the RGM. The key element of the algebraic ver-
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sion is that it uses the wave functions of a three-
dimensional harmonic oscillator to expand the wave
functions of an inter-cluster motion and realizes the
matrix form of a quantum mechanical description
of nuclear systems. The matrix form can be applied
to study both bound and resonance states, since
the corresponding boundary conditions, which are
well known in the coordinate space, were trans-
formed into a discrete oscillator representation. At
the present time, the algebraic version of the res-
onating group method is a very efficient and pop-
ular tool to study the dynamics of two-cluster sys-
tems (Refs. [4–9]), and three-cluster systems as well
(Refs. [10–13]).

The present paper is a continuation of the investi-
gations of 8Be started in Ref. [7]. Note that the nu-
cleus 8Be was a subject of the algebraic version of
the resonating group method in Refs. [2, 14]. In the
present paper, we will reveal a new interesting infor-
mation on peculiarities of the dynamics of two-cluster
systems and their manifestations in 8Be. We will dis-
cuss different ways of detecting resonance states and
will show how resonance states affect the behavior of
a lot of observable (partial and total cross-sections
of elastic scattering and so on) and non-observable
(wave functions, an average distance between clus-
ters, and so on) physical quantities. As our model
includes the oscillator basis, we will analyze the be-
havior of wave functions in the oscillator, coordinate,
and momentum representations. An explicit evidence
of a simple relation between the expansion coeffi-
cients and the corresponding wave function in the
coordinate space will be shown for a continuous spec-
trum states.

The layout of the present paper is the following. In
Sec. 2, we shortly review the principal ideas of the
two-cluster model. In this section, we also introduce
all necessary quantities which will be used to ana-
lyze the obtained results. Section 3 will start with
the selection of nucleon-nucleon potentials with fix-
ing all input parameters of our calculations. Then
it proceeds with the analysis of the phase shifts of
the elastic alpha-alpha scattering and the determina-
tion of the energies and widths of resonance states
in 8Be. After that, peculiarities of the wave functions
of resonance states and effects of the Pauli principle
on continuous spectrum states of 8Be are discussed in
detail. The final section summarizes main results of
our investigations.

2. Method

Formulation of a microscopic method requires to dis-
play many-particle Hamiltonian and the explicit form
of a wave function. The Hamiltonian which will be
used in our calculations involves the kinetic energy
operator, a semirealistic nucleon-nucleon potential,
and the Coulomb interaction of protons. To achieve
our goals, the sought wave function is selected to re-
produce the two-cluster structure of 8Be. Therefore,
the wave function of 8Be comprised of two alpha par-
ticles can be represented in the form

Ψ𝐸𝐿 = ̂︀𝒜{︀
Φ1

(︀
4He, 𝑏

)︀
Φ2

(︀
4He, 𝑏

)︀
𝜓𝐸𝐿 (𝑞)𝑌𝐿𝑀 (̂︀q)}︀,

(1)
where ̂︀𝒜 is the antisymmetrization operator,
Φ1

(︀
4He, 𝑏

)︀
, and Φ2

(︀
4He, 𝑏

)︀
are the translational in-

variant and antisymmetric functions describing the
internal structure of the first and second alpha clus-
ters, respectively. Since the spin of an alpha particle
equals zero, the total spin 𝑆 of 8Be equals also zero,
and, therefore, the total angular momentum 𝐽 co-
incides with the total orbital momentum 𝐿. Throu-
ghout of the text, we will use the total orbital mo-
mentum 𝐿 to mark different rotation states of 8Be. A
wave function 𝜓𝐸𝐿 (𝑞) represents the radial motion
of two clusters, while the spherical harmonic 𝑌𝐿𝑀 (̂︀q)
represents the rotating motion of clusters. The Jacobi
vector q = 𝑞 · ̂︀q (̂︀q is a unit vector whose orientation
in space is fixed by two angles 𝜃𝑞, and 𝜑𝑞) is propor-
tional to the distance r between interacting clusters

q = r

√︂
𝐴1𝐴2

𝐴1 +𝐴2
=

=

√︂
𝐴1𝐴2

𝐴1 +𝐴2

[︃
1

𝐴1

∑︁
𝑖∈𝐴1

r𝑖 −
1

𝐴2

∑︁
𝑗∈𝐴2

r𝑗

]︃
, (2)

where r1, r2, ..., r𝐴 are coordinates in the space of
individual nucleons.

The main assumption of the RGM is that the wave
functions Φ1(

4He, 𝑏) and Φ2(
4He, 𝑏) are known and

fixed, while the intercluster function 𝜓𝐸𝐿(𝑞) has to
be obtained by solving the dynamic equations. In the
standard version of the RGM, one has to solve the
integro-differential equation. The integral or nonlo-
cal part of the equation appears due to the anti-
symmetrization operator or, in other words, due to
the Pauli principle. In the algebraic version of the
RGM, the dynamic equations transforms into a set
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of linear algebraic equations. This is achieved by us-
ing a full set of the radial part of oscillator functions
{Φ𝑛𝐿(𝑞, 𝑏)}. By expanding the intercluster function
𝜓𝐸𝐿(𝑞) over oscillator functions

𝜓𝐸𝐿(𝑞) =

∞∑︁
𝑛=0

𝐶
(𝐸)
𝑛𝐿 Φ𝑛𝐿(𝑞, 𝑏) (3)

and the total two-cluster function Ψ𝐸𝐿 over cluster
oscillator functions {|𝑛𝐿⟩}

Ψ𝐸𝐿 =

∞∑︁
𝑛=0

𝐶
(𝐸)
𝑛𝐿 |𝑛𝐿⟩, (4)

we arrive to a system of linear algebraic equations
∞∑︁
̃︀𝑛=0

{︁
⟨𝑛𝐿| ̂︀𝐻|̃︀𝑛𝐿⟩ − 𝐸𝛿𝑛̃︀𝑛Λ𝑛𝐿

}︁
𝐶

(𝐸)̃︀𝑛𝐿 = 0. (5)

The cluster oscillator function |𝑛𝐿⟩ is determined as

|𝑛𝐿⟩ =

= ̂︀𝒜{Φ1(
4He, 𝑏)Φ2(

4He, 𝑏)Φ𝑛𝐿(𝑞, 𝑏)𝑌𝐿𝑀 (̂︀q)} (6)

We can see that the oscillator function Φ𝑛𝐿(𝑞, 𝑏) de-
scribes the relative motion of two alpha particles in
the cluster function (6), and takes the explicit form
of the oscillator function

Φ𝑛𝐿(𝑞, 𝑏) =
(−1)𝑛

𝑏3/2
𝒩𝑛𝐿 𝜌𝐿𝑒−

1
2𝜌

2

𝐿𝐿+1/2
𝑛 (𝜌2),

𝜌 = 𝑞/𝑏.
(7)

As we interested in the intercluster wave function in
the momentum space 𝜓𝐸𝐿(𝑝), we present also oscil-
lator functions in the momentum space

Φ𝑛𝐿(𝑝, 𝑏) = 𝑏3/2𝒩𝑛𝐿 𝜌𝐿𝑒−
1
2𝜌

2

𝐿𝐿+1/2
𝑛 (𝜌2),

𝜌 = 𝑝 𝑏,
(8)

where

𝒩𝑛𝐿 =

√︃
2Γ(𝑛+ 1)

Γ(𝑛+ 𝐿+ 3/2)
,

and 𝐿𝛼
𝑛(𝑧) is the generalized Laguerre polyno-

mial [15].
The system of equations (5) contains matrix el-

ements of the Hamiltonian between cluster oscilla-
tor functions ⟨𝑛𝐿| ̂︀𝐻|̃︀𝑛𝐿⟩ and matrix elements of the
unit operator ⟨𝑛𝐿|̃︀𝑛𝐿⟩. For two-cluster systems, the
matrix elements are diagonal with respect to quan-
tum numbers 𝑛 and ̃︀𝑛 and coincide with the so-called
eigenvalues of the norm kernel Λ𝑛𝐿

⟨𝑛𝐿|̃︀𝑛𝐿⟩ = 𝛿𝑛,̃︀𝑛Λ𝑛𝐿.

For 8Be, the eigenvalues Λ𝑛𝐿 equal

Λ𝑛𝐿 =
1

2

4∑︁
𝑘=0

4! (−1)
𝑘

𝑘! (4− 𝑘)!

[︂
1− 𝑘

1

2

]︂2𝑛+𝐿

. (9)

The system of equations (5) is deduced directly from
the Schrödinger equation

( ̂︀𝐻 − 𝐸)Ψ𝐸𝐿 = 0

for the wave function (1).
By solving the set of equations (5), we obtain the

energy and a wave function of bound states or a wave
function and the scattering 𝑆-matrix for continuous
spectrum states. If, in Eq. (5), we restrict ourselves
with a finite number (we denote it 𝑁) of oscillator
functions (𝑛 = 0, 1, ..., 𝑁 −1), we encounter the gen-
eralized eigenvalue problem for 𝑁 × 𝑁 matrices. By
solving this problem, we obtain the energy spectrum
𝐸𝜈 (𝜈 = 1, 2, ..., 𝑁) and wave functions {𝐶(𝐸𝜈)

𝑛𝐿 } of
bound and pseudobound states. The latter are con-
tinuous spectrum states describing alpha-alpha scat-
tering states under specific conditions. It was shown
in Ref. [16] that the wave functions of pseudobound
states in the oscillator space have a node at the
point 𝑁 , i.e.

𝐶
(𝐸𝜈)
𝑁𝐿 = 0.

Thus, the diagonalization of the Hamiltonian with
a fixed number of oscillator functions selects, from
continuous spectrum states, those states which obey
this specific boundary condition.

To solve the system of equations (1) for a scat-
tering state, one has to formulate proper boundary
conditions in the discrete oscillator space and then
incorporate them in a set of equations (5). This prob-
lem has been numerously discussed in the literature
(see, for instance Refs. [2, 3, 17, 18], [19]). Here, we
shortly outline practical steps to obtain and analyze
scattering states.

In the oscillator space like in the coordinate space,
we split the space into two parts: internal and asymp-
totic regions. Let us recall how boundary conditions
are formulated and used in the coordinate space. In
the internal region, the interaction between clusters is
prominent, and it should be treated correctly. In the
asymptotic region, the interaction between clusters
originates from a short-range nucleon-nucleon poten-
tial, is negligibly small, and can be ignored. As a con-
sequence of this fact, the Hamiltonian in the asymp-
totic region consists of the kinetic energy operator ̂︀𝑇𝑞
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of relative motion of clusters for neutral clusters (or
when one of the clusters is a neutron). For charged
clusters, it consists of the same kinetic energy oper-
ator and the Coulomb interaction of two point-like
charged particles

̂︀𝐻 = ̂︀𝑇𝑞 + 𝑍1𝑍2𝑒
2

𝑞

√
𝜇, (10)

where 𝑍1(𝑍2) is a charge of the first (second) cluster,
𝑒2 = 1.44 MeV · fm is the square of the elementary
charge in nuclear units, and

̂︀𝑇𝑞 = − ~2

2𝑚

[︂
𝑑2

𝑑𝑞2
+ 2

1

𝑞

𝑑

𝑑𝑞
− 𝐿 (𝐿+ 1)

𝑞2

]︂
,

𝜇 =
𝐴1𝐴2

𝐴1 +𝐴2
.

(11)

It is well-known (see, e.g., books [20, 21]) that
Hamiltonian (10) leads to two independent solutions

𝜓
(𝑅)
𝑘𝐿 (𝑞) =

√︂
2

𝜋
𝑘
𝐹𝐿 (𝜌, 𝜂)

𝜌
,

𝜓
(𝐼)
𝑘𝐿 (𝑞) =

√︂
2

𝜋
𝑘
𝐺𝐿 (𝜌, 𝜂)

𝜌
,

(12)

where 𝜌 = 𝑘𝑞, 𝜂 is the Sommerfeld parameter:

𝜂 =
𝑍1𝑍2𝑒

2

~𝑘
√
𝜇𝑚. (13)

Wave functions 𝜓(𝑅)
𝑘𝐿 (𝑞) and 𝜓(𝐼)

𝑘𝐿 (𝑞) describe the scat-
tering of charged particles and are regular and irregu-
lar (singular) at the origin of coordinates. For neutral
particles, when 𝜂 =0, these functions are the spherical
Bessel and Neumann functions

𝜓
(𝑅)
𝑘𝐿 (𝑞) =

√︂
2

𝜋
𝑘𝑗𝐿(𝜌),

𝜓
(𝐼)
𝑘𝐿 (𝑞) = −

√︂
2

𝜋
𝑘𝑛𝐿(𝜌, 𝜂),

(14)

The general solution for Hamiltonian (10) is the
following combination of regular and irregular func-
tions:

𝜓
(𝑎)
𝑘𝐿 (𝑞) = 𝜓

(𝑅)
𝑘𝐿 (𝑞) + tan 𝛿𝐿𝜓

(𝐼)
𝑘𝐿 (𝑞), (15)

where 𝛿𝐿 is a phase shift for the elastic cluster-cluster
scattering. If we managed to calculate the phase shift
𝛿𝐿, then we immediately determine the two-cluster
wave function in the semiinfinite range of distances
𝑅𝑖 ≤ 𝑞 < ∞, where 𝑅𝑖 indicates the intercluster dis-
tance which marks a border between the internal and

asymptotic regions. Equation (15) explicitly demon-
strates boundary conditions for scattering states in
a single-channel case. The asymptotic wave function
𝜓
(𝑎)
𝑘𝐿 (𝑞) at the point 𝑞 = 𝑅𝑖 has to be matched with

the internal wave function 𝜓
(𝑖)
𝑘𝐿(𝑞). We assume that

it is determined by the numerical solution of the
Schrödinger equation in the interval of intercluster
distances 0 ≤ 𝑞 < 𝑅𝑖. The boundary conditions then
are read as

𝜓
(𝑖)
𝑘𝐿(𝑅𝑖) = 𝜓

(𝑎)
𝑘𝐿 (𝑅𝑖), (16)

𝑑

𝑑𝑞
𝜓
(𝑖)
𝑘𝐿(𝑞)

⃒⃒⃒⃒
𝑞=𝑅𝑖

=
𝑑

𝑑𝑞
𝜓
(𝑎)
𝑘𝐿 (𝑞)

⃒⃒⃒⃒
𝑞=𝑅𝑖

, (17)

where the asymptotic and internal wave functions are
matched and their first derivatives as well. These con-
ditions guarantee that the intercluster wave function
and its first derivative are continuous at the point
𝑞 = 𝑅𝑖.

The same ideas were essentially used to formu-
late boundary conditions in the oscillator representa-
tions. Here, we present the shortest way of explana-
tion, but not completely rigorous. For the sake of sim-
plicity, we consider neutral clusters. As we pointed
out above, the Hamiltonian in the asymptotic region
consists of the kinetic energy operator. In the oscilla-
tor representation, this Hamiltonian has the tridiago-
nal form or a Jacobi matrix. Nonzero matrix elements
⟨𝑚,𝐿| ̂︀𝑇𝑞|𝑛,𝐿⟩ of the kinetic energy operator are

⟨𝑚𝐿| ̂︀𝑇𝑞|𝑛𝐿⟩ = ~2

2𝑚𝑏2
×

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−

√︃
𝑛

(︂
𝑛+ 𝐿+

1

2

)︂
, 𝑚 = 𝑛− 1,(︂

2𝑛+ 𝐿+
3

2

)︂
, 𝑚 = 𝑛,

−

√︃
(𝑛+ 1)

(︂
𝑛+ 𝐿+

3

2

)︂
, 𝑚 = 𝑛+ 1.

(18)

It was shown in Refs. [18,22,23] that the matrix equa-
tion
∞∑︁

𝑛=0

[︁
⟨𝑚𝐿| ̂︀𝑇𝑞|𝑛𝐿⟩ − 𝐸𝛿𝑚𝑛

]︁
𝐶𝑛𝐿 = 0 (19)

has two independent solutions 𝐶(𝑅)
𝑛𝐿 (𝑘𝑏) and 𝐶(𝐼)

𝑛𝐿(𝑘𝑏).
Traditionally, we refer to them as to regular and ir-
regular solutions of Eqs. (19). The explicit form of
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the solutions 𝐶(𝑅)
𝑛𝐿 (𝑘𝑏) and 𝐶

(𝐼)
𝑛𝐿(𝑘𝑏) can be found in

Ref. [18, 22, 23]. It was shown in Refs. [2, 3] that, for
large values of 𝑛, the expansion coefficients 𝐶(𝑅)

𝑛𝐿 (𝑘𝑏)

and 𝐶
(𝐼)
𝑛𝐿(𝑘𝑏) are connected to the regular and irreg-

ular functions (14) by the simple relations

𝐶
(𝑅)
𝑛𝐿 (𝑘𝑏) ≈

√︀
2𝑅𝑛 𝜓

(𝑅)
𝑘𝐿 (𝑅𝑛), (20)

𝐶
(𝐼)
𝑛𝐿(𝑘𝑏) ≈

√︀
2𝑅𝑛 𝜓

(𝐼)
𝑘𝐿 (𝑅𝑛), (21)

where

𝑅𝑛 = 𝑏
√
4𝑛+ 𝐿+ 3 (22)

is the turning point of a classical harmonic oscilla-
tor. Relations (20) and (21) reflect general properties
of oscillator functions. To this end, the relations sim-
ilar to (20) and (21) are valid for any functions of a
two-cluster system and corresponding expansion co-
efficients. It was explicitly demonstrated in Ref. [9]
for the wave function of the 6Li ground state. It was
shown that the relation between the wave function
and the expansion coefficients (20) and (21) is valid
even for small values of 𝑛 (𝑛 ≥ 5). In the present cal-
culations, we use similar relations for the expansion
coefficients of the asymptotic wave functions (12) for
charged clusters.

To solve Eq. (5) for continuous spectrum states,
we have to introduce appropriate the boundary con-
ditions in that set of equations. For this aim, the in-
finite set of expansion coefficients is divided into two
subsets – internal and asymptotic ones:{︁
𝐶

(𝐸)
𝑛𝐿

}︁
=

=
{︁
𝐶

(𝐸)
0𝐿 , 𝐶

(𝐸)
1𝐿 , ..., 𝐶

(𝐸)
𝑁−1𝐿, 𝐶

(𝑅)
𝜈𝐿 + tan 𝛿𝐿𝐶

(𝐼)
𝜈𝐿

}︁
, (23)

where index 𝜈 (𝑁 ≤ 𝜈 < ∞) numerates expansion
coefficients in the asymptotic region. With such form
of expansion coefficients, we have got 𝑁 +1 unknown
quantities (𝑁 expansion coefficients in the internal
region and phase shift 𝛿𝐿) to be determined. By sub-
stituting the expansion coefficients (23) in Eq. (5), we
obtain
𝑁−1∑︁
̃︀𝑛=0

{︁
⟨𝑛𝐿| ̂︀𝐻|̃︀𝑛𝐿⟩ − 𝐸⟨𝑛𝐿|̃︀𝑛𝐿⟩}︁𝐶(𝐸)

𝑛𝐿 +

+ tan 𝛿𝐿
∑︁
𝑣≥𝑁

⟨𝑛𝐿| ̂︀𝐻|𝜈𝐿⟩𝐶(𝐼)
𝜈𝐿 =

= −
∑︁
𝑣≥𝑁

⟨𝑛𝐿| ̂︀𝐻|𝜈𝐿⟩𝐶(𝑅)
𝜈𝐿 . (24)

It is important to underline that, in this system of
equations, index 𝑛 runs from 0 to 𝑁 − 1, and, thus,
we have a set of 𝑁 + 1 linear algebraic equations for
𝑁 + 1 unknown quantities. With regard to Eq. (19),
we get the set of equations (24)
𝑁−1∑︁
̃︀𝑛=0

{︁
⟨𝑛𝐿| ̂︀𝐻|̃︀𝑛𝐿⟩ − 𝐸⟨𝑛𝐿|̃︀𝑛𝐿⟩}︁𝐶(𝐸)

𝑛𝐿 +

+ tan 𝛿𝐿
∑︁
𝑣≥𝑁

⟨𝑛𝐿|̂︀𝑉 |𝜈𝐿⟩𝐶(𝐼)
𝜈𝐿 =

= −
∑︁
𝑣≥𝑁

⟨𝑛𝐿|̂︀𝑉 |𝜈𝐿⟩𝐶(𝑅)
𝜈𝐿 . (25)

This is a basic set of equations which allows us to
obtain a phase shift and the wave function of contin-
uous spectrum states. The numerical solution of this
set of equations is performed with a finite sum over
indices 𝜈. In our calculations presented bellow, the
sum involves 20 terms.

We will not also dwell on calculations of matrix el-
ements of the kinetic and potential energy operators,
since their explicit form and reliable methods of their
calculations can be found in Ref. [19].

It is worth to note that the wave function Ψ𝐸𝐿 for
a bound or pseudobound state is traditionally nor-
malized to unity

⟨Ψ𝐸𝐿|Ψ𝐸𝐿⟩ =
∞∑︁

𝑛=0

⃒⃒⃒
𝐶

(𝐸)
𝑛𝐿

⃒⃒⃒2
= 1.

However, the corresponding intercluster function is
normalized as

⟨𝜓𝐸𝐿|𝜓𝐸𝐿⟩ = 𝑆𝐿. (26)

In the oscillator representation, it can be represen-
ted as

𝑆𝐿 =

∞∑︁
𝑛=0

⃒⃒⃒
𝐶

(𝐸)
𝑛𝐿

⃒⃒⃒2
/𝜆𝑛. (27)

The quantity 𝑆𝐿 is proportional to the spectroscopic
factor 𝑆𝐹𝐿 (see its definition, for instance, in [24, 25]
and [26], Chapter 9), which play an important role in
the theory of nuclear reactions, when the Pauli prin-
ciple is treated approximately [25]. The factor 𝑆𝐹𝐿

is used to determine amount of a certain (definite)
clusterization in a wave function of the compound
system. It is obvious from the definition of the spec-
troscopic factor (26), that it can be determined for
bound state only, when the norms of the wave func-
tions Ψ𝐸𝐿 and 𝜓𝐸𝐿 are finite.
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2.1. Definition of basic quantities

Having calculated the wave function of the ground or
resonance state in the oscillator representation 𝐶(𝐸)

𝑛𝐿 ,
we can easily construct the intercluster wave func-
tions in the coordinate and momentum representa-
tions
𝜓𝐸𝐿(𝑞) =

∑︁
𝑛=0

𝐶
(𝐸)
𝑛𝐿 Φ𝑛𝐿(𝑞, 𝑏), (28)

𝜓𝐸𝐿(𝑝) =
∑︁
𝑛=0

𝐶
(𝐸)
𝑛𝐿 Φ𝑛𝐿(𝑝, 𝑏). (29)

One can use these functions to obtain the addi-
tional information on bound and resonance states.
We will employ the wave function in the coordinate
space 𝜓𝐸𝐿(𝑞) to calculate the average distance be-
tween clusters 𝐴𝑐, which can be defined as

𝐴𝑐 = 𝑏
√︀
⟨𝜓𝐸𝐿(𝑞) |𝑞2|𝜓𝐸𝐿(𝑞)⟩ /𝜇, (30)

where 𝜇 = 𝐴1𝐴2/𝐴 is the reduced mass for a selected
clusterization. Similarly, we can also determine the
average momentum 𝑃𝑐 of relative motion of two clus-
ters

𝑃𝑐 = 𝑏−1
√︀
⟨𝜓𝐸𝐿(𝑝) |𝑝2|𝜓𝐸𝐿(𝑝)⟩. (31)

The average momentum 𝑃𝑐 is related to the average
kinetic energy of two-cluster relative motion by the
simple relation

𝑇𝑐 =
~2

2𝑚
𝑃 2
𝑐 .

By considering the continuous spectrum states, we
will calculate and analyze the weight of the internal
part of a wave function, which is defined as

𝑊𝐿 (𝐸) =

𝑁𝑖−1∑︁
𝑛=0

⃒⃒⃒
𝐶

(𝐸)
𝑛𝐿

⃒⃒⃒2
. (32)

This definition of a weight is equivalent to the follow-
ing definition:

𝑊𝐿(𝐸) =

𝑅∫︁
0

𝑑𝑞𝑞2 |𝜓𝐸𝐿(𝑞)|2. (33)

The radius of the internal region 𝑅 can be determined
in a self-consistent way as

𝑅 ≈ 𝑏
√︀
4𝑁𝑖 + 2𝐿+ 3.

Let us evaluate the behavior of the function 𝑊𝐿(𝐸)
in a simple case where the function 𝜓𝐸𝐿(𝑞) describes
a free motion of two clusters with the orbital mo-
mentum 𝐿 = 0. Then the wave function 𝜓𝐸(𝑞) =
= 𝜓𝐸,𝐿=0(𝑞) is

𝜓𝐸(𝑞) =

√︂
2

𝜋

sin(𝑘𝑞)

𝑞
,

and the weight 𝑊 (𝐸) =𝑊𝐿=0(𝐸) is equal to

𝑊 (𝐸) =

𝑅∫︁
0

𝑑𝑞𝑞2 |𝜓𝐸(𝑞)|2 =
2

𝜋

[︂
1

2
𝑅− sin(2𝑘𝑅)

4𝑘

]︂
,

where 𝑘 is the wave number

𝑘 =

√︂
2𝑚𝐸

~2
.

Thus, in a simple case, the weight 𝑊 (𝐸) has, as a
function of the energy, an oscillatory behavior and
is decreased with increasing the energy 𝐸 or wave
number 𝑘. It is worth to note that, for small values
of 𝐸, we get

𝑊 (𝐸) ≈ 2

3𝜋
𝑅(𝑘𝑅)2.

The weight𝑊 (𝐸) is equal to zero at 𝐸 = 0 and slowly
increases as a linear function of the energy. Such a
behavior of weights as functions of the energy sug-
gests that these functions have a maximum at a rela-
tively small energy. We will see below that the weights
𝑊𝐿(𝐸) of the internal part of scattering wave func-
tions allow us to find the positions of resonance states
and to evaluate their widths.

Within our method, the parameters of resonance
states are obtained from the corresponding phase
shifts by using the Breit–Wigner formula for a phase
shift around a resonance state. It is assumed that the
phase shift 𝛿 in a vicinity of the resonance state con-
sists of a background (potential) phase shift 𝛿𝑝 and
resonance phase shift 𝛿𝑅

𝛿 = 𝛿𝑝 + 𝛿𝑅,

where the resonance phase shift is determined by the
Breit–Wigner formula

𝛿𝑅 = − arctan

(︂
Γ

𝐸 − 𝐸𝑟

)︂
.
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We also assume that the first derivative of the back-
ground phase shift with respect to the energy is much
smaller than the first derivative of the resonance
phase shift with respect to the energy. Then, the en-
ergy and width of a resonance state can be determined
from the following equations:

𝑑2𝛿(𝐸)

𝑑𝐸2

⃒⃒⃒⃒
𝐸=𝐸𝑟

= 0, Γ = 2

[︂
𝑑𝛿(𝐸)

𝑑𝐸

]︂−1

𝐸=𝐸𝑟

. (34)

These relations allow us to determine more correctly
the energy and width of a resonance state, especially
in the case where the background phase shift is not
small, and where the resonance state is wide.

3. Results and Discussion

Before the calculations, we need to select a nucleon-
nucleon potential and to fix some parameters. To an-
alyze the structure of 8Be, we selected three semireal-
istic nucleon-nucleon potentials which are very often
used in many microscopical models of light atomic
nuclei. They are the Volkov N2 potential (VP) [27],
the Minnesota potential (MP) [28, 29], and modified
Hasegawa–Nagata potential (MHNP) [30, 31]. These
potentials provide a fairly good description of the
nucleon-nucleon interactions in the states with dif-
ferent values of the two-nucleon spin 𝑆 and isospin
𝑇 . They also give the acceptable energy and size pa-
rameters of light nuclei described by a wave function
of the many-particle shell model. The main difference
of these nucleon-nucleon potentials, which are of im-
portance for our investigations, is that the MHNP has
the largest repulsive core at small distances between
nucleons, the VP has the smallest repulsive core, and
the MP represents the intermediate case.

Having selected the nucleon-nucleon potential, we
determine some input parameters of the model. First
of all, we have one free parameter in our calcula-
tion. It is the oscillator length 𝑏. It is natural to
choose such value 𝑏 which minimizes the binding en-
ergy of an alpha particle. We slightly adjusted the
Majorana exchange parameter 𝑚 in the VP and
MHNP, as well as the exchange parameter 𝑢 of the
MP. The adjusted and original exchange parameters
are shown in Table 1. The optimal value of the oscil-
lator length 𝑏 is also indicated in Table 1.

It is of interest to compare the cluster-cluster po-
tential generated by the selected nucleon-nucleon po-
tentials. Unfortunately, it is a difficult task, since

Fig. 1. Folding potential of the alpha-alpha interaction gen-
erated by the MHNP, MP, and VP

the cluster-cluster potential is a nonlocal energy-
dependent interaction. This is due to the Pauli prin-
ciple. However, we can compare the so-called fold-
ing potential, which is local and represents the main
part of the cluster-cluster interaction, when the anti-
symmetrization between clusters is disregarded. This
means that, in Eq. (1), the antisymmetrization op-
erator ̂︀𝒜 is set to be ̂︀𝒜 = 1. In Fig. 1, the fold-
ing potentials generated by three nucleon-nucleon po-
tentials are shown as a function of the intercluster
distance. The folding potentials, like nucleon-nucleon
potentials, have the Gaussian shape. However, con-
trary to the nucleon-nucleon potentials, the folding
potentials have no repulsive core at small distances
between alpha particles. As the folding potential in-
volves the Coulomb interaction of protons, there is a
barrier which stipulates the existence of the 0+ res-
onance state. One can see that the MP and MHNP
generate barriers of the same shape and height.

We start our investigations with the 0+ phase shift
of the elastic alpha-alpha scattering and the position
of the 0+ resonance state. In Fig. 2, we show the be-

Table 1. Optimal values of oscillator
length 𝑏 and exchange parameter 𝑚 or 𝑢

of nucleon-nucleon potentials

Potential 𝑏, fm 𝑚/𝑢, adjusted 𝑚/𝑢, original

VP 1.376 0.6011 0.600
MP 1.285 0.9347 –
MHNP 1.317 0.3961 0.4057
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Fig. 2. Phase shifts of the alpha-alpha scattering with the
zero value of the total orbital momentum

Fig. 3. Phase shifts of the elastic 𝛼+ 𝛼 scattering calculated
with three different NN potentials and compared with experi-
mental data. Notations are the same as in Fig. 2

havior of the 0+ phase shift around the 0+ resonance
state. As we can see, this is an example of the classical
Breit–Wigner resonance state, since the phase shift is
increased on 180∘ at the resonance energy, and the
background phase shift equals zero before and after
that energy.

We also calculated phase shifts of the elastic alpha-
alpha scattering and determined the position of the
2+ and 4+ resonance states. In Fig. 3, we demon-
strate the dependence of phase shifts for the alpha-
alpha elastic scattering on the energy and the shape of
nucleon-nucleon potentials. The 0+ phase shifts cal-
culated with the MHNP and MP are very close in the
whole range of energies displayed in Fig. 3. However,
the 0+ phase shifts calculated with VP are noticeably

Fig. 4. Energy of the 0+ states of 8Be as a function of the
number of oscillator functions. Dash-doted line indicates the
position of the 0+ resonance state. Results are obtained with
the MHNP

different, despite that the VP. as the MHNP and MP,
gives the correct position of the 0+ resonance state,
as it was demonstrated in Table 2. The difference be-
tween phases shifts of 𝛼 − 𝛼 scattering generated by
three potentials is growing the total orbital momen-
tum 𝐿. The difference is also reflected on the energy
and width of the 2+ and 4+ resonance states (see
Table 2).

Figure 3 demonstrates that there is a fairly good
agreement of our results and experimental data. The
experimental data displayed in Fig. 3 are taken from
Refs. [32–35]. One can see that the MHNP and MP
potentials yield the 0+ and 2+ phase shifts which
are very close for experimental data in the presented
range of energy. As for the phase shifts with the total
orbital momentum 4+, our results are close to the ex-
perimental data at the energy range 0≤ 𝐸 ≤10 MeV,
and there is a deviation from experimental data for
all potentials for the energy 𝐸 > 10 MeV.

3.1. Spectrum of resonance states

In Table 2, we compare the results of our calculations
with the available experimental data [1]. The energy
of resonance states is determined with respect to the
𝛼+ 𝛼 threshold energy.

There is another way to detect resonance states
with a small width (i.e., narrow resonance states).
This can be done by considering the spectrum of the
two-cluster Hamiltonian as a function of the number
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Table 2. Spectrum of resonance states in 8Be, calculated
with three different nucleon-nucleon potentials and compared with experimental data

𝐿𝜋 Potential
Theory Experiment

𝐸, MeV Γ, MeV 𝐸, MeV Γ, MeV

0+ MHNP 0.091 5.183× 10−6 0.092 (5.57± 0.25)× 10−6

VP 0.091 6.947× 10−6

MP 0.092 5.876× 10−6

2+ MHNP 2.818 1.122 3.122± 0.010 1.513± 0.015
VP 2.526 1.494
MP 2.977 1.773

4+ MHNP 10.633 1.816 11.442± 0.150 3.500
VP 10.852 6.732
MP 12.710 5.281

of oscillator functions involved in calculations. Such
dependence is shown in Figs. 4 and 5, where the spec-
tra of 0+ and 2+ state are displayed. By a dash-doted
lines, we indicate the position of the 0+ and 2+ res-
onance states, calculated by using the corresponding
phase shifts and Eqs. (34). As we see in Fig. 4, the en-
ergy of the lowest 0+ state has a plateau exactly at the
energy of the 0+ resonance state. There is no plateau
in Fig. 5 for the wide 2+ resonance state. There are
only small irregularities in the behavior of the en-
ergy of 2+ states as a function of the number of os-
cillator functions 𝑁 . Consequently, such type of fig-

Fig. 5. Energy of 2+ states of 8Be as a function of the num-
ber of oscillator functions. Dash-doted line indicates the posi-
tion of the 2+ resonance state. Results are obtained with the
MHNP

ures similar to Fig. 4 allows one to make predictions
with a very good precision for the energy of a very
narrow resonance state. This phenomenon is used in
the Stabilization Method (see the formulation of this
method in Ref. [36] and in some additional applica-
tions of the method [19]) to locate the position of
resonance states.

The weights 𝑊 (𝐸) for the internal part of the scat-
tering wave function introduced in Eq. (33) also re-
flect the existence of resonance states. We demon-
strate it for the 2+ states. The weights displayed in
Fig. 6 are calculated with the MHNP (solid line)

Fig. 6. The weights of the internal part of a scattering wave
function as a function of the energy constructed for the 2+

state with the MHNP (solid line) and MP (dot-dashed line).
Vertical lines indicate the position of the 2+ resonance states
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Fig. 7. Wave functions of the 0+, 2+ and 4+ resonance states
as functions of the distance between alpha particles, calculated
with the MHNP, VP, and MP

Fig. 8. Wave functions of 0+, 2+ and 4+ resonance states in
8Be in the oscillator representation

and with the MP (dot-dashed line). The solid ver-
tical and dot-dashed lines indicate the position of the
2+ resonance states for the MHNP and MP, respec-
tively. There are two peaks in Fig. 6. The first peak
is not related to a resonance state, while the sec-
ond one is formed by a resonance state. The center
of the second peak is very close to the energy of the
2+ resonance state. This figure demonstrates that the
weights 𝑊𝐿=2(𝐸) as functions of the energy can con-
firm the existence of rather wide resonance states and
indicate their positions.

3.2. Resonance wave functions

In this section, we consider the wave functions of res-
onance states in 8Be. These functions are presented
in the oscillator, coordinate, and momentum repre-
sentations. We start with the coordinate representa-
tion. The wave functions 𝜓𝐸𝐿(𝑟) of the 0+, 2+, and
4+ resonance states are displayed in Fig. 7. It is worth
to note that the maximum of the intercluster wave
function of the 0+ resonance state is at 𝑟 = 0. Thus,
the Pauli principle allows two alpha particles to be
at the same point of the coordinate space. Due to the
centrifugal barrier, the wave functions of the 2+ and
4+ resonance states equal zero at 𝑟 = 0. Another in-
teresting feature of all resonance states is that they
have a large amplitude of the wave function in the in-
ternal region (0 ≤ 𝑟 < 7 fm) and small amplitudes of
oscillations in the asymptotic region (𝑟 > 7 fm). The
presented results allow us to investigate the depen-
dence of resonance wave functions on the shape of a
nucleon-nucleon potential. As we can see in Fig. 7, the
MHNP and MP give almost identical wave functions
for the 0+ and 2+ resonance states, but slightly dif-
ferent wave functions for the very broad 4+ resonance
state. In addition, the amplitudes of resonance wave
functions calculated with the MHNP and MP are
larger than those obtained with the Volkov potential.

In Fig. 8, we present the wave functions of the 0+,
2+ and 4+ resonance states in the oscillator repre-
sentation. The wave functions of the narrow 0+ reso-
nance states look like the wave functions of bound
states. Our results confirm the conclusion made in
Ref. [4] that the wave functions of narrow resonance
states in the coordinate or oscillator representation
are similar to those of bound states. We can see that
the oscillator functions with 0 ≤ 𝑛 < 20 dominate in
wave functions of all observed resonance states, since
the expansion coefficients 𝐶𝑛 associated with these

12 ISSN 2071-0194. Ukr. J. Phys. 2023. Vol. 68, No. 1



Resonance Structure of 8Be

functions have the largest weight in resonance wave
functions. The resonance wave functions in the oscil-
lator representation are similar to the corresponding
wave functions in the coordinate representation: they
have large amplitudes in the internal region.

Figure 8 demonstrates that the wave functions of
the 0+ and 2+ resonance states are almost indepen-
dent of the shape of a nucleon-nucleon potential. The
main difference between the wave functions for dif-
ferent nucleon-nucleon potentials is observed for the
expansion coefficients with very small values of 𝑛. As
for the wave function of the 4+ resonance state, it
is very close to those for the VP and MP, while the
wave functions of the resonance states obtained with
the MHNP are quite different.

The analysis of results presented in Figs. 7 and 8,
shows that the larger the energy of a resonance state,
the higher the number of oscillations of a resonance
wave function in the coordinate and oscillator repre-
sentations within the displayed range of the variables
𝑟 and 𝑛, respectively.

The wave functions of resonance states in 8Be are
also presented in the momentum space (Fig. 9). Fi-
gure 9 demonstrates that the wave functions of 0+

and 2+ resonance states are almost independent of
the shape of a nucleon-nucleon potential. These wave
functions are located in a very restricted region of the
momentum 𝑝. The wave functions of the 4+ resonance
states obtained with different nucleon-nucleon poten-
tials are quite different and spread in a more wider
region of 𝑝. However, they are similar in the range of
small values of the momentum: 0 ≤ 𝑝 ≤ 0.5 fm−1.

To demonstrate that our method is consistent
with other alternative methods, we compare our re-
sults with those within the Complex Scaling Method
(CSM) (its main ideas and recent achievements can
be found in Ref. [37]) which allows one to determine
a pole of the 𝑆-matrix and, consequently, the energy
and width of resonance states directly from calcula-
tions of eigenvalues of the non-Hermitian Hamilto-
nian. Both calculations are performed for the MHNP
and with the same input parameters. Thr results of
these calculations are gathered in Table 3. It is seen
that the results of our calculations are quite compa-
rable with those of the CSM. The best agreement be-
tween two methods is achieved for the 2+ and 4+ reso-
nance states, meanwhile the energy and width of the
0+ resonance state are surprisingly different within
these methods.

Fig. 9. Wave functions of the 0+, 2+ and 4+ resonance states
in 8Be in the momentum space. Results are presented for three
NN potentials

It is well known that the Pauli principle plays the
significant role in many-body fermion systems and
particularly in many-cluster systems. The effects of
the Pauli principle have been discussed in the litera-
ture from different points of view. We present another
way of discussing the effect of the Pauli principle on
the wave functions of continuous spectrum states in
8Be. We calculate and analyze the quantity 𝑆𝐿 intro-
duced in Eq. (27). This quantity is equal to unity, if
the Pauli is disregarded or if its effects are negligibly
small. Thus, a deviation of 𝑆𝐿 from unity shows how

Table 3. Parameters of resonance
states calculated within the Resonating Group
Method and the Complex Scaling Method

𝐽𝜋
Our method CSM

𝐸, MeV Γ, MeV 𝐸, MeV Γ, MeV

0+ 0.091 5.183× 10−6 0.150 35.68× 10−5

2+ 2.820 1.196 2.893 1.135
4+ 10.730 1.925 10.824 1.916
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Fig. 10. Effects of the Pauli principle on the wave functions
of 8Be

Fig. 11. Wave functions of the 2+ state obtained with the
diagonalization of the Hamiltonian (𝐷) and by solving the sys-
tem of linear algebraic equations (𝐿)

strong is the effect of the Pauli principle. In Fig. 10
we display 𝑆𝐿 as a function of the energy for the 0+,
2+ and 4+ states.

We see that the largest effect of the Pauli princi-
ple is observed for the eigenfunctions whose eigen-
values (eigenenergies) are very close to the energies
of detected resonance states. This result reflects the
main properties of resonance states, which are the
most compact configurations among other states of
the two-cluster continuum. The smaller the width of

a resonance state, the more compact is its configu-
ration. Figure 10 shows that the low-energy states
(0 ≤ 𝐸 ≤ 50 MeV) are more strongly affected by
the Pauli principle than the states with large ener-
gies. With increasing the energy, the effects are grad-
ually diminished. It is worth noting that the huge cen-
trifugal barrier in the 4+ state strongly diminishes
the effects of the Pauli principle for the low-energy
states (0 ≤ 𝐸 ≤ 5 MeV), where 𝑆𝐽 ≈ 1. The cen-
trifugal barrier in the 2+ state is approximately 3
times smaller than in the 4+ state. Thus, the Pauli
principle is stronger for the 2+ state in this range
of energy. It is worth to note that the results shown
in Fig. 10 are in agreement with the conclusions
made in Ref. [4], where two-cluster systems includ-
ing 8Be have been studied in the Fock–Bargmann
representations. This representation is a bridge be-
tween the quantum-mechanical treatment of nuclear
systems and the classical one. In particular, it was
shown that the classical regime is valid in the contin-
uous spectrum of 8Be, when the energy of such states
is larger than 60 MeV. Figure 10 also shows that the
effects of the Pauli principle in this region are small.

To demonstrate the relation between the wave func-
tion obtained by the diagonalization of the Hamil-
tonian with a certain number of oscillator functions
and a wave function calculated by solving the set of
linear equations (5) with necessary boundary condi-
tions, we used the following procedure. First, we diag-
onalize the 250× 250 matrix of the Hamiltonian for
the 2+ state and select an eigenstate with the en-
ergy close to that of the 2+ resonance state. Thus,
we selected the fourth eigenfunction with the energy
𝐸4 = 2.929 MeV. We denote this function as 𝐷,
because it was obtained by the diagonalization. Se-
cond, we solved the system of linear algebraic equa-
tions with the energy very close to the energy of
four eigenstates. We employ 400 oscillator functions
to show the behavior of expansion coefficients in a
large range of values of the index 𝑛. The wave func-
tion calculated in such way is marked as 𝐿. Since the
functions are normalized in different ways, we renor-
malize the wave function 𝐿 to make the comparison
self-consistent. We divided the expansion coefficients{︀
𝐶

(𝐸)
𝑛𝐿

}︀
, which represent the wave function 𝐿, by the

square root of the sum 𝑆250

𝑆250 =

249∑︁
𝑛=0

⃒⃒⃒
𝐶

(𝐸)
𝑛𝐿

⃒⃒⃒2
.
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Table 4. The mass root-mean-square radii and average
distances between alpha particles for some pseudobound 0+, 2+ and 4+ states

𝐿𝜋 = 0+ 𝐿𝜋 = 2+ 𝐿𝜋 = 4+

𝐸, MeV 𝑅𝑚, fm 𝐴𝑐, fm 𝐸, MeV 𝑅𝑚, fm 𝐴𝑐, fm 𝐸, MeV 𝑅𝑚, fm 𝐴𝑐, fm

0.091 3.11 6.35 0.610 11.31 22.62 6.44 9.67 19.35
0.462 10.74 21.48 1.168 10.14 20.28 8.07 9.44 18.88
0.953 10.01 20.02 1.876 9.49 18.99 9.71 8.62 17.25
1.664 9.89 19.78 2.624 8.25 16.51 11.03 7.59 15.24
2.604 9.84 19.69 3.329 8.32 16.67 12.60 8.93 17.87

As the result, a part of the wave function 𝐿 repre-
sented with 250 oscillator functions is normalized in
the same way as the wave function 𝐷. The renormal-
ized wave function 𝐿 and wave function 𝐷 are demon-
strated in Fig. 11. There is a small difference for the
expansion coefficients with small values of 𝑛, which is
due to a small difference of the energies of 𝐷 and 𝐿
states. In a large range of values of 𝑛, they are very
close to each other. The wave function 𝐿 can be easily
expanded to very large values of 𝑛 (𝑛 > 400), since
we know the asymptotic behavior of the function.

We select the wave function of 2+ state, which
is displayed in Fig. 11 and obtained from the diag-
onalization procedure, to show a relation between
the coordinate wave function and expansion coeffi-
cients discussed above and presented in Eq. (20) and
(21). Figure 12 visualizes such relation. We see that
all expansion coefficients starting from 𝑛 = 4 are very
close to those of the wave function in the coordinate
space. This figure confirms once more that there is
a simple relation between the coordinate and oscilla-
tor representations. This relation is valid not only for
large values of index 𝑛 as it was deduced originally,
but also for fairly small values.

3.3. Average distances between clusters

In Table 4, we display the spectrum of 8Be obtained
by diagonalizing the Hamiltonian, mass root-mean-
square (rms) radii 𝑅𝑚 of 8Be in these states, and
the average distances 𝐴𝑐 between clusters. These re-
sults are obtained with the MHNP. It is necessary to
point out that the most compact configurations of
8Be are revealed in those eigenstates of the Hamilto-
nian whose energies are very close to the energy of
resonance states. They are the first state for 𝐿𝜋 = 0+

Fig. 12. Wave function 𝜓 (𝑟) of the 2+ state with the energy
𝐸 = 2.92 MeV as a function of the intercluster distance (solid
line) and expansion coefficients (𝜓(𝑅𝑛)) as functions of the
discrete distance 𝑅𝑛

and the fourth state for 𝐿𝜋 = 2+. These two states
have the smallest mass rms radius and smallest av-
erage distance between alpha particles. As is seen,
the average distances are approximately two times
larger than the corresponding mass rms radii. It is
also worth noticing that the low-energy states (ex-
cept the 0+ resonance state) have the largest distance
between alpha-particles. Thus, the low-energy states
in the cluster model are very dispersed (stretched)
states. This is stipulated by the shape of their wave
functions which are dominantly represented by oscil-
lator functions with large values of the index 𝑛.

In Table 4, we display five 0+ and 2+ states with
the lowest energies, while, for the 4+ states, we se-
lected those eigenstates which are close by energy to
the 4+ resonance state. Results presented in Table

ISSN 2071-0194. Ukr. J. Phys. 2023. Vol. 68, No. 1 15
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Fig. 13. The mass rms radius 𝑅𝑚, the average distance be-
tween alpha clusters 𝐴𝑐, and the average momentum of their
relative motion 𝑃𝑐 as functions of the energy obtained for the
0+ states with the MHNP

Fig. 14. The same as in Fig. 13 but for the states with 𝐽𝜋= 2+

4 show effects of the Pauli principle on a restricted
set of eigenstates. The full picture of the effects for a
large range of states is displayed in Figs. 13 and 14. In
Fig. 13, we show, for the 0+ states, the mass rms radii
𝑅𝑚, the average distance between alpha clusters 𝐴𝑐,
and the average momentum 𝑃𝑐 as functions of the en-
ergy. The same information is displayed in Fig. 14 for
the 0+ states.

The average distances between interacting clusters
has been discussed in the literature in the case where
cluster models are applied to study various nuclear
hypernuclear systems. For example, in Refs. [38, 39],
the hypernucleus 9

ΛBe has been studied within differ-
ent threecluster models with the partition 𝛼+𝛼+Λ.
The nucleus 8Be comprised by two alpha particles is
the major ingredient of the models. An approximate
formula was used in Ref. [38] to extract the average
𝛼 − 𝛼 distance. Recall that we use a rigorous way
for obtaining this quantity. The average distance be-
tween alpha particles was evaluated to be 5.99 fm in
the ground 0+ state which is close to our evaluation
𝐴𝑐 = 6.35 fm.

4. Conclusions

We have applied a two-cluster microscopic model for
the investigation of the alpha-alpha scattering and
the resonance structure of 8Be. The model is the res-
onating group method with the matrix form of dy-
namic equations. The transition from the coordinate
form to the matrix form is implemented with the
help of oscillator functions. Three popular semireal-
istic nucleon-nucleon potentials are involved in calcu-
lations to determine both the internal energy of each
cluster and the interaction between them. They also
determine the dynamics of alpha-alpha scattering and
the resonance structure of 8Be. These potentials are
used to study the dependences of the spectrum, phase
shifts, and wave functions of various states on the
shape of a nucleon-nucleon potential. The slight tun-
ing of parameters of the nucleon-nucleon potentials
allowed us to reproduce, with a good accuracy, the
energy and width of the 0+ resonance state. The same
parameters of the potentials are used to calculate 0+,
2+ and 4+ phase shifts of elastic alpha-alpha scatter-
ing and the position of 2+ and 4+. Our results are in
a fairly good agreement with available experimental
data and with results of other microscopical models.

It is shown that the Pauli principle has the largest
impact on the wave functions of resonance states,
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since the resonance states are the most compact two-
cluster configurations among other states of the con-
tinuous spectrum. This is confirmed by calculations
of the mass root-mean-square radius and average dis-
tance between alpha-particles. These calculations are
performed with a large finite set of oscillator func-
tions. It is also demonstrated that the effects of the
Pauli principle are steadily decreasing with increasing
the energy of 8Be.
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ment of complex scaling method for many-body resonances
and continua in light nuclei. Progr. Part. Nucl. Phys. 79,
1 (2014).

38. Y. Kanada-En’yo. Excitation energy shift and size differ-
ence of low-energy levels in p-shell Λ hypernuclei. Phys.
Rev. C 97, 024330 (2018).

39. A.V. Nesterov, Y.A. Lashko, V.S. Vasilevsky. Structure of
the ground and excited states in 9

ΛBe nucleus. Nucl. Phys.
A 1016, 122325 (2021). Received 23.01.23

Н.Калжiгiтов, В.О.Курмангалiєва,
Н.Ж.Такiбаєв, В.С.Василевський

РЕЗОНАНСНА СТРУКТУРА
ЯДРА 8Be У ДВОКЛАСТЕРНОМУ
МЕТОДI РЕЗОНУЮЧИХ ГРУП

Мiкроскопiчну двокластерну модель застосовано для ви-
вчення пружного альфа-альфа розсiяння та резонансної
структури ядра 8Be. Дана модель є алгебраїчною версiєю
методу резонуючих груп, яка залучає повний базис осциля-
торних функцiй для розкладу хвильових функцiй двокла-
стерної системи. Взаємодiя нуклонiв у кожному кластерi,
а також взаємодiя мiж кластерами визначається вiдоми-
ми напiвреалiстичними нуклон-нуклонними потенцiалами.
У розрахунках використано три нуклон-нуклонних потенцi-
али. Вони вiдрiзняються розмiром кору на малих вiдстанях
мiж нуклонами i реалiзують великий, помiрний, або малий
кор. Це дає можливiсть вивчати залежнiсть розрахованих
величин вiд форми нуклон-нуклонного потенцiалу. Прове-
дено детальний аналiз хвильових функцiй резонансних ста-
нiв у координатному, iмпульсному та осциляторному про-
сторах. Проаналiзовано вплив принципа Паулi на хвильовi
функцiї неперервного спектра ядра 8Be.

Ключ о в i с л о в а: кластерна модель, метод резонуючих
груп, резонанснi стани, принцип Паулi.
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