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STATISTICAL MULTIFRAGMENTATION
MODEL WITHIN THE EXTENDED MORPHOLOGICAL
THERMODYNAMICS APPROACH

On the basis of the morphological thermodynamics, we develop an exactly solvable version of
the statistical multifragmentation model for the nuclear liquid-gas phase transition. It is shown
that the hard-core repulsion between spherical nuclei generates only the bulk (volume), surface,
and curvature parts of the free energy of the nucleus, while the Gaussian curvature one does
not appear in the derivation. The phase diagram of the nuclear liquid-gas phase transition is
studied for a truncated version of the developed model.
K e yw o r d s: morphological thermodynamics, induced surface and curvature tensions, equa-
tion of state, nuclear liquid-gas phase transition, statistical multifragmentation.

1. Introduction
Over the past 20 years, the morphological thermody-
namics approach has been extensively developed in
condensed matter physics to describe the behavior of
dense 3- and 2-dimensional fluids [1]. It is based on
the Hadwiger theorem [2, 3] and can be formulated
as: the total free energy decrease −ΔΩ of a convex
rigid body B inserted into a fluid can be completely
described by four thermodynamic characteristics such
as the pressure 𝑝, the mean surface tension coefficient
Σ, the mean curvature tension coefficient 𝐾, and the
bending rigidity coefficient Ψ, i.e.,
−ΔΩ = 𝑝𝑣B +Σ𝑠B +𝐾𝑐B +Ψ𝑥B, (1)

where the quantities 𝑣B, 𝑠B, 𝑐B, 𝑥B are, respectively,
the volume of B , its surface, the mean curvature in-
tegrated over the surface of the rigid body, and the
mean Gaussian curvature also integrated over the sur-
face of B . The last two quantities are defined via the
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two local principal curvature radii 𝑅𝑐1 and 𝑅𝑐2 as
𝑐B =

∫︀
𝜕ℬ 𝑑2𝑟 1

2

[︀
1

𝑅𝑐1
+ 1

𝑅𝑐2

]︀
and 𝑥B =

∫︀
𝜕ℬ 𝑑2𝑟 1

𝑅𝑐1𝑅𝑐2

(the Euler characteristic). Such a treatment is usually
justified, if the system exists relatively away from the
critical point and, simultaneously, from wetting and
drying transitions [1, 3].

Independently of the morphological thermodynam-
ics, its analog in the grand canonical ensemble widely
known as the induced surface and curvature ten-
sions (ISCT) and the equation of state (EoS) was
developed recently in [4–8]. This approach was suc-
cessfully applied in Ref. [4] to model the prop-
erties of the one- and two-component mixtures of
classical hard spheres and hard discs. The ISCT
EoS was developed not only for classical particles,
but also for quantum ones [5, 6] and for relativis-
tic particles that experience the Lorentz contrac-
tion [8]. Very recently, the grand canonical ensemble
formulation of morphological thermodynamics was
also worked out for very small system volumes of
about 100 fm3, which are typical of the nuclear re-
actions [7].
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Here, we reformulate the exactly solvable version
of the statistical multifragmentation model (SMM)
[9, 10] using the postulates of morphological ther-
modynamics. This is a highly nontrivial extension
of the morphological thermodynamics to the infi-
nite number of degrees of freedom which charac-
terize the nuclear clusters of 𝑘 nucleons with 𝑘 =
= 1, 2, 3, ... . It corresponds to an important exten-
sion of the usual morphological thermodynamics to a
new field, namely, to a vicinity of the (tri)critical end-
point of nuclear matter. In addition, we will discuss
a possible extension of the suggested model which will
improve the description of the liquid phase of nuclear
matter at high packing fractions.

The work is organized as follows. In Sect. 1, we
heuristically derive the ISCT EoS for the SMM us-
ing the requirements of morphological thermodynam-
ics. In Sect. 2, a truncated version of the ISCT EoS
for the SMM is discussed, and our results are sum-
marized in Conclusions.

2. Derivation of ISCT EoS for SMM

We start our discussion from the one-component gas
of Boltzmann particles with hard-core repulsion. The
potential energy 𝑈(𝑟) of the interaction of such par-
ticles depends on the distance 𝑟 between their cen-
ters as

𝑈(𝑟) =

{︂
∞ for 𝑟 ≤ 2𝑅,
0 for 𝑟 > 2𝑅.

(2)

Hence, the quantity 𝑅 is the hard-core radius. Since
the typical temperatures of the nuclear liquid-gas
phase transition (PT) are below 20 MeV, i.e. much
smaller than the nucleon mass, one can safely use the
non-relativistic treatment [9, 10].

In the grand canonical ensemble with the pressure
𝑝, the van der Waals (VdW) EoS of particles with
hard-core repulsion can be written as

𝑝 = 𝑇𝜑(𝑇 ) exp

(︂
𝜇− 𝑎 𝑝

𝑇

)︂
, (3)

𝜑(𝑇 ) = 𝑔

∫︁
𝑑3𝑘

(2𝜋~)3
exp

(︂
− k2

2𝑚𝑇

)︂
, (4)

where 𝑇 is the system temperature, and 𝜇 is the
chemical potential. In Eq. (3), the parameter

𝑎 =

∫︁
𝑑3𝑟 [1− exp (−𝑈(𝑟)/𝑇 )] ≡ 4𝑣 ≡

≡ 𝑣 + 𝑠𝑅 ≡ 𝑣 +
1

2
𝑠𝑅+

1

2
𝑐𝑅2 (5)

denotes the second virial coefficient, where 𝑣 = 4
3𝜋𝑅

3

denotes the eigenvolume of particles, while 𝑠 = 4𝜋𝑅2

and 𝑐 = 4𝜋𝑅 denote, respectively, their eigensurface
and double eigenperimeter. In Eq. (4), 𝜑(𝑇 ) is the
thermal density of particles with mass 𝑚 and the de-
generacy factor 𝑔.

According to morphological thermodynamics [1–3],
the free energy of a rigid particle should be written
as 𝑓 = 𝑣𝑝+𝑠Σ+ 𝑐𝐾, and, hence, the grand canonical
pressure (3) should be generalized as

𝑝 = 𝑇𝜑(𝑇 ) exp

(︂
𝜇− (𝑣𝑝+ 𝑠Σ+ 𝑐𝐾)

𝑇

)︂
. (6)

But this equation should be supplemented by the
equations for the surface tension coefficient Σ and the
curvature tension one 𝐾 induced by hard-core repul-
sion. In Ref. [4], one can find how the equations for Σ
and 𝐾 can be derived rigorously. Here, we generalize
the heuristic derivation of Ref. [10] by including, into
our treatment, the curvature tension coefficient 𝐾.

Since, in the SMM, the nuclear clusters can consist
of any positive number of nucleons, we consider the
system of particles of 𝑁 sorts with the hard-core radii
𝑅𝑘, 𝑘 = 1, 2, ..., 𝑁 → ∞. The virial expansion of the
gas pressure up to the second order can be cast as [10]

𝑝 = 𝑇

𝑁∑︁
𝑘=1

𝜑𝑘𝑒
𝜇𝑘
𝑇

[︃
1−

𝑁∑︁
𝑛=1

𝑎𝑘𝑛𝜑𝑛𝑒
𝜇𝑛
𝑇

]︃
, (7)

𝜑𝑛(𝑇 ) = 𝑔𝑛

∫︁
𝑑3𝑘

(2𝜋~)3
exp

[︂
− k2

2𝑚𝑛𝑇

]︂
=

= 𝑔𝑛

[︂
𝑚𝑛𝑇

2𝜋~2

]︂ 3
2

, (8)

where 𝜑𝑛(𝑇 ) is the thermal density of particles of the
degeneracy 𝑔𝑛, mass 𝑚𝑛 = 𝑛𝑚1 with 𝑚1 = 940 MeV.
The second virial coefficient 𝑎𝑘𝑛 which has the mean-
ing of excluded volume per particle is given by

𝑎𝑘𝑛 =
2

3
𝜋(𝑅𝑘 +𝑅𝑛)

3 =

=
2

3
𝜋(𝑅3

𝑘 + 3𝑅2
𝑘𝑅𝑛 + 3𝑅𝑘𝑅

2
𝑛 +𝑅3

𝑛). (9)

First, consider the low densities at which expansion
(7) is valid. Substituting the second virial coefficients
(9) into Eq. (7) and regrouping the terms with the
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same powers of 𝑅𝑘 of a 𝑘-nucleon fragment, we can
write

𝑝 = 𝑇

𝑁∑︁
𝑘=1

𝜑𝑘𝑒
𝜇𝑘
𝑇

[︃
1− 4

3
𝜋𝑅3

𝑘

𝑁∑︁
𝑛=1

𝜑𝑛𝑒
𝜇𝑛
𝑇 −

− 4𝜋𝑅2
𝑘

2

𝑁∑︁
𝑛=1

𝑅𝑛𝜑𝑛𝑒
𝜇𝑛
𝑇 − 4𝜋𝑅𝑘

2

𝑁∑︁
𝑛=1

𝑅2
𝑛𝜑𝑛𝑒

𝜇𝑛
𝑇

]︃
. (10)

Apparently, for low densities, each sum in the square
brackets of Eq. (10) can be identified as

𝑁∑︁
𝑛=1

𝜑𝑛𝑒
𝜇𝑛
𝑇 =

𝑝

𝑇
, (11)

1

2

𝑁∑︁
𝑛=1

𝑅𝑛𝜑𝑛𝑒
𝜇𝑛
𝑇 =

Σ

𝑇
, (12)

1

2

𝑁∑︁
𝑛=1

𝑅2
𝑛𝜑𝑛𝑒

𝜇𝑛
𝑇 =

𝐾

𝑇
. (13)

Approximation (11) is valid for the low densities,
since defining the second virial coefficient with the
help of Eqs. (11) and (13), one modifies the third and
higher virial coefficients which, at these densities, can
be neglected. Therefore, substituting Eqs. (11) and
(13) into the right-hand side of Eq. (10), we obtain

𝑝 = 𝑇

𝑁∑︁
𝑘=1

𝜑𝑘𝑒
𝜇𝑘
𝑇 ×

×
[︂
1− 4

3
𝜋𝑅3

𝑘

𝑝

𝑇
− 4𝜋𝑅2

𝑘

Σ

𝑇
− 4𝜋𝑅𝑘

𝐾

𝑇

]︂
≃

≃ 𝑇

𝑁∑︁
𝑘=1

𝜑𝑘 exp

[︂
𝜇𝑘 − 𝑣𝑘𝑝− 𝑠𝑘Σ− 𝑐𝑘𝐾

𝑇

]︂
, (14)

where, in the last step of derivation, we used the
approximation 1 − 𝑥 ≃ exp(−𝑥) which is valid for
low densities. In Eq. (14), we introduced the eigen-
volume 𝑣𝑘 = 4

3𝜋𝑅
3
𝑘, the eigensurface 𝑠𝑘 = 4𝜋𝑅2

𝑘, and
double eigenperimeter 𝑐𝑘 = 4𝜋𝑅𝑘 of the 𝑘-nucleon
cluster with the hard-core radius 𝑅𝑘 = 𝑅1𝑘

1
3 and

𝑅1 ≃ 0.72 fm.
Comparing Eqs. (6) and (14), we conclude that

the latter is a multicomponent version of the grand
canonical pressure obtained in accord with the mor-
phological thermodynamics. Using the same logic, we
can generalize expressions (13) for the coefficients of

induced surface tension Σ and induced curvature ten-
sion 𝐾 in accordance with the morphological thermo-
dynamics and write

Σ = 𝑇𝐴

𝑁∑︁
𝑘=1

𝑅𝑘 𝜑𝑘 exp

[︂
𝜇𝑘 − 𝑣𝑘𝑝− 𝑠𝑘Σ− 𝑐𝑘𝐾

𝑇

]︂
, (15)

𝐾 = 𝑇𝐵

𝑁∑︁
𝑘=1

𝑅2
𝑘 𝜑𝑘 exp

[︂
𝜇𝑘 − 𝑣𝑘𝑝− 𝑠𝑘Σ− 𝑐𝑘𝐾

𝑇

]︂
, (16)

where the coefficients 𝐴 = 1/2 and 𝐵 = 1/2 will be
considered as the adjustable parameters. In Refs. [4–
6] it is shown that system (14)–(16) is the VdW EoS
which can be improved at high densities by inserting
the set of parameters {𝛼𝑘 > 1} and {𝛽𝑘 > 1} for each
sort of particles into the equations for Σ and 𝐾 as

Σ

𝑇
= 𝐴

𝑁∑︁
𝑘=1

𝑅𝑘𝜑𝑘 ×

× exp

[︂
𝜇𝑘 − 𝑣𝑘𝑝− 𝛼𝑘𝑠𝑘Σ− 𝑐𝑘𝐾

𝑇

]︂
, (17)

𝐾

𝑇
= 𝐵

𝑁∑︁
𝑘=1

𝑅2
𝑘𝜑𝑘 ×

× exp

[︂
𝜇𝑘 − 𝑣𝑘𝑝− 𝛼𝑘𝑠𝑘Σ− 𝛽𝑘𝑐𝑘𝐾

𝑇

]︂
, (18)

which can be now extrapolated to any particle num-
ber densities. The principal difference of the obtained
system (14)-(16) from the ones analyzed previously
in Refs. [4–6] is that the degeneracy factor 𝑔𝑘 of the
𝑘-nucleon cluster is a statistical partition of the en-
semble of clusters with the same mean volume 𝑣𝑘,
but different shapes [10–12]. For 𝑘 ≫ 1, this internal
partition of large clusters of 𝑘-nucleons can be ex-
pressed in terms of the mean surface 𝑠𝑘 [10–12]. Here,
we generalize the internal partition 𝑔𝑘 to high pres-
sures by including the mean double perimeter 𝑐𝑘 in
accord with the morphological thermodynamics and
write it as

𝑔𝑘≫1 =
1

𝑘𝜏+
3
2

exp

[︂
𝑣𝑘𝑝𝐿 − 𝑠𝑘𝜎0(𝑇 )− 𝑐𝑘𝐾0(𝑇 )

𝑇

]︂
, (19)

where 𝑝𝐿 is the pressure of nuclear liquid (internal
pressure of large custers), 𝜎0(𝑇 ) is the 𝑇 depen-
dent proper surface tension coefficient, and 𝐾0(𝑇 ) is
proper curvature tension coefficient, while 𝜏 is the
Fisher exponent [11]. Eq. (19) is a generalization of
the expression found in Ref. [10] which allows us to
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account for the effects of proper curvature tension. It
is necessary to stress that, without inclusion of the
proper curvature tension coefficient in Eq. (19), it is
impossible to compensate the induced surface tension
one and, hence, in such a model, the (tri)critical point
does not exist.

Existence of the curvature and even of the Gaussian
curvature terms in the Bethe–Weizsäcker formula for
the binding energy of large nuclei at zero temperature
has been discussed for about fifty years [13–15], but,
no definite conclusion about its existence was reached
so far. In this work, the induced surface tension co-
efficient is derived similarly to the surface one, but
our analysis shows no room to introduce the Gaus-
sian curvature terms. Therefore, we do not consider
it for the SMM.

The 𝑇 -dependence of both the proper and the in-
duced surface tension coefficients of nuclear clusters
have been discussed for a few decades [9, 12, 14–
16]. Although there exist several parametrizations for
𝜎0(𝑇 ) and for 𝜎tot = 𝜎0(𝑇 ) + Σ, we use the linear
𝑇 -dependence of 𝜎0(𝑇 ), since it is obtained within
an exactly solvable model for the surface partition
[12]. In addition, a thorough analysis of experimen-
tal data performed in Ref. [16] shows that there is a
wide range of temperatures at which the total surface
tension coefficient 𝜎tot is a linear function of 𝑇 . Be-
low, it is shown that even a truncated version of the
ISCT EoS provides the existence of two regions of
such 𝑇 -dependence of 𝜎tot.

3. Truncated ISCT EoS for Low Densities

System (14)–(16) can be used to describe the prope-
rties of nuclear matter at high particle number den-
sities and to clarify a principal question what is the
value of total surface tension coefficient 𝜎tot at super-
critical temperatures. In the famous Fisher droplet
model [11] and in the solvable version of SMM [9],
it is assumed that 𝜎tot = 0 for 𝑇 ≥ 𝑇cep, while, in
the SMM with compressible nuclear liquid, it is ar-
gued that 𝜎tot < 0 for 𝑇 > 𝑇cep, while 𝜎tot = 0
at 𝑇 = 𝑇cep. Apparently, this question can be an-
swered only experimentally. On the other hand, it is
expected that the critical point of nuclear matter is
located at particle number densities about 𝜌𝑐 ≃ 𝜌0

3
[10, 14], where 𝜌0 ≃ 0.16 fm−3 is the normal nuclear
density. Therefore, to study the properties of nuclear
matter in the vicinity of the critical endpoint, it is
sufficient to work out a simpler EoS.

Using the fact that, at low particle number densi-
ties, the contributions of surface and curvature ten-
sions to the second virial coefficient are the same,
i.e.,

∑︀𝑁
𝑘=1 𝜑𝑘𝑒

𝜇𝑘
𝑇 𝑅2

𝑘Σ =
∑︀𝑁

𝑘=1 𝜑𝑘𝑒
𝜇𝑘
𝑇 𝑅𝑘𝐾, one can

account for the curvature tension effects by doubling
down the contribution of Σ on the right-hand side of
Eqs. (14) and (17) [10]. Hence, instead of the system
(14)–(16), one can write

𝑝 = 𝑇

𝑁∑︁
𝑘=1

𝜑𝑘 exp

[︂
𝜇𝑘 − 𝑣𝑘𝑝− 𝑠𝑘Σ

𝑇

]︂
, (20)

Σ = 𝑇

𝑁∑︁
𝑘=1

𝑅𝑘𝜑𝑘 exp

[︂
𝜇𝑘 − 𝑣𝑘𝑝− 𝛼𝑠𝑘Σ

𝑇

]︂
, (21)

where the parameter 𝛼 = 1.5 is chosen according to
Ref. [10]. To parametrize the degeneracy of large clus-
ters according to Eq. (19) and to account for the fact
that nucleons do not have binding energy, we assume
the thermal density of 𝑘-nucleon fragments to be

𝜑1 = 𝑧1

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2

exp

[︂
− 𝜎0(𝑇 )

𝑇

]︂
, (22)

𝜑𝑘≥2 =
1

𝑘𝜏

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2

exp

[︂
(𝑘𝑝𝐿𝑉1 − 𝜇𝑘)− 𝜎0(𝑇 )𝑘

2
3

𝑇

]︂
,

(23)

where the chemical potential of a 𝑘-nucleon fragment
is 𝜇𝑘 = 𝑘𝜇 [9, 10], and value of 𝜏 = 1.9 provides the
existence of the 1-st order PT for 𝑇 < 𝑇cep [10]. In
Eq. (22), 𝑧1 = 4 is the degeneracy factor of nucle-
ons. For 𝑘 ≥ 1, one finds 𝑣𝑘 = 𝑉1𝑘 = 4

3𝜋𝑅
3
𝑘 with

𝑉1 = 1
𝜌0

. For 𝜑𝑘≥2 the binding energy is included into
the pressure of the liquid phase:

𝑝𝐿 =
𝜇+𝑊F(𝑇 ) +𝑊0 + 𝑎𝜈 [𝜇+𝑊0]

𝜈

𝑉1
, (24)

with 𝜈 = 2, 3, 4. The binding energy per nucleon is
given by 𝑊 (𝑇 ) = 𝑊0 +𝑊F(𝑇 ), where 𝑊0 = 16 MeV
is the bulk binding energy per nucleon at 𝑇 = 0, and
𝑊F(𝑇 ) = 𝑇 2

𝜀0
(with 𝜀0 = 16 MeV) accounts for the

Fermi motion of nucleons inside a nucleus at 𝑇 > 0
[9]. The constant 𝑎𝜈 in Eq. (24) should be found by
requiring that, at 𝑇 = 0 and normal nuclear den-
sity, 𝜌𝐿 = 𝜕𝑝𝐿

𝜕𝜇 = 𝜌0, the liquid pressure is zero
[10]. For definiteness, in this work, we assume that
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Fig. 1. Total surface tension coefficient 𝜎tot(𝜇𝑐(𝑇 ), 𝑇 ) at the
PT curve 𝜇𝑐(𝑇 ) as a function of 𝑇 is shown for several sizes
of the largest nucleus 𝑁 . A vertical line defines the critical
temperature 𝑇cep = 18 MeV

𝑎2 = 1.261× 10−2 MeV−1 and 𝜈 = 2. Hence, the sys-
tem (20)–(21) becomes

𝑝

𝑇
=

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2

𝑁∑︁
𝑘=1

𝑏𝑘
𝑘𝜏

exp

[︂
(𝑝𝐿− 𝑝)𝑉1𝑘 − (Σ + 𝜎0)𝑘

2
3

𝑇

]︂
,

(25)

Σ

3𝑉1𝑇
=

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2

𝑁∑︁
𝑘=1

𝑏𝑘

𝑘𝜏−
1
3

×

× exp

[︂
(𝑝𝐿 − 𝑝)𝑉1𝑘 − (𝛼Σ+ 𝜎0)𝑘

2
3

𝑇

]︂
, (26)

where the degeneracies 𝑏𝑘 are defined as 𝑏1 =

= 4 exp
[︁
−𝑊 (𝑇 )

𝑇

]︁
and 𝑏𝑘>1 = 1. The proper surface

tension coefficient 𝜎0 = 𝜎01 − 𝜎02
𝑇

𝑇cep
is chosen ac-

cording to the exact result found for the surface par-
tition [12], where 𝜎01 = 18 MeV, 𝜎02 = 24.76 MeV,
𝑇cep = 18 MeV.

Assuming, in Eqs. (25, 26), that 𝑝 = 𝑝𝐿, one ob-
tains the equations for the PT curve:

𝑝𝐿
𝑇

=

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2

𝑁∑︁
𝑘=1

𝑏𝑘
𝑘𝜏

exp

[︂
− (Σ + 𝜎0)

𝑇
𝑘

2
3

]︂
, (27)

Σ

3𝑉1𝑇
=

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2

𝑁∑︁
𝑘=1

𝑏𝑘

𝑘𝜏−
1
3

exp

[︂
− (𝛼Σ+ 𝜎0)

𝑇
𝑘

2
3

]︂
.

(28)

Fig. 2. The PT curves 𝜇𝑐(𝑇 ) in the plane of temperature 𝑇

and nuclear chemical potential 𝜇

Solving Eq. (28) for Σ and substituting it into
Eq. (27), one gets the pressure 𝑝𝑐 = 𝑝𝐿 at the PT
curve. Then Eq. (24) for 𝜇 with 𝜈 = 2 can be writ-
ten as

𝜇2 + 𝜇(1 + 2𝑎2𝑊0) +𝑊 (𝑇 ) + 𝑎2𝑊
2
0 − 𝑝𝑐𝑉1 = 0. (29)

Solving Eq. (29) for 𝜇, one obtains 𝜇𝑐(𝑇 ) at the PT
curve. The 𝑇 -dependence of the total surface tension
coefficient 𝜎tot(𝜇𝑐(𝑇 ), 𝑇 ) = Σ+𝜎0 is shown in Fig. 1,
while the function 𝜇𝑐(𝑇 ) is presented in Fig. 2. From
Fig. 1, one can see that 𝜎tot(𝜇, 𝑇 ) vanishes at 𝑇 =
= 𝑇cep = 18 MeV even for a small size of the largest
nucleus 𝑁 = 50, although the true PT exists only for
𝑁 → ∞.

In Fig. 2, the solutions 𝜇𝑐(𝑇 ) of Eq. (29) are
shown. It is evident that the upper curve describes
the gas-liquid PT curve for nuclear matter,while the
lower one corresponds to the unphysical solution.

4. Conclusions

In this work, we develop an exactly solvable version
of the statistical mutifragmentation model for nuclear
liquid-gas PT using the requirements of morphologi-
cal thermodynamics. By evaluating the second virial
coefficients, we explicitly demonstrate that the hard-
core repulsion between spherical nuclei generates only
the bulk (volume), surface, and curvature parts of
the free energy of nuclei and does not produce the
Gaussian curvature one. For a truncated version of
the developed ISCT EoS, we studied the 𝑇 −𝜇 phase
diagram of nuclear liquid-gas PT for several sizes of
the largest nucleus.
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В.С.Кучеренко, К.О.Бугаєв,
В.Сагун, О. Iваницький

МОДЕЛЬ СТАТИСТИЧНОЇ
МУЛЬТИФРАГМЕНТАЦIЇ В РАМКАХ РОЗШИРЕНОГО
ПIДХОДУ МОРФОЛОГIЧНОЇ ТЕРМОДИНАМIКИ

На основi морфологiчної термодинамiки розвинуто точно
розв’язувану модель статистичної мультифрагментацiї для
ядерного фазового переходу типу рiдина–пара. Продемон-
стровано, що вiдштовхування типу твердого кора мiж
сферичними ядрами генерує лише об’ємну, поверхневу та
пов’язану iз кривиною частини вiльної енергiї ядра, тодi як
частина гауссової кривини у виведеннi не фiгурує. Фазову
дiаграму ядерного фазового переходу типу рiдина–пара до-
слiджено в рамках спрощеної версiї розробленої моделi.

Ключ о в i с л о в а: морфологiчна термодинамiка, iндуко-
ваний поверхневий натяг та натяг кривини, рiвняння ста-
ну, ядерний фазовий перехiд типу рiдина–пара, статисти-
чна мультифрагментацiя.
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