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MODEL-INDEPENDENT

SOLUTION OF nd-SCATTERING

PROBLEM IN THE QUARTET STATE

A model-independent description of the phase shift of the elastic nd-scattering in the quartet
state is grounded, and explicit solutions for the low-energy scattering parameters (the quartet
scattering length as;; and effective range r3/3) are obtained in the form of asymptotically
exact expansions in terms of the ratio of the experimental two-nucleon low-energy scattering

parameters.
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1. Introduction

A great number of calculations of the quartet nd-
scattering low-energy parameters, in particular, the
quartet scattering length, revealed an independence
of the result (from qualitative point of view) on the
model of nuclear forces used (see, for example, the
earliest calculations [1, 2]), i.e., one has the so-called
“model-independence” of the three-nucleon system
properties in the quartet state. This fact can be ex-
plained [3, 4] due to the smallness of the radius of
nuclear forces as compared to the two-particle scat-
tering length and the role of Pauli principle suppress-
ing the role of nuclear forces in this problem. Qual-
itatively, the value of the quartet scattering length
can be explained already within the Skornyakov—
Ter-Martirosyan (STM) approximation of the three-
particle Faddeev equations in the zero-range of nu-
clear forces limit. In the present paper, we find more
accurate exact solution of the problem in the form
of an expansion in small parameter originating from
the smallness of the radius of nuclear forces up to the
fourth order in the parameter.

2. Statement of the Problem

We are going to ground the “model-independent” de-
scription [4] of the elastic nd-scattering phase shift
in the state with total spin S = 3/2. For simplic-
ity, we start with the Faddeev equations for the case
of a model separable potential. It can be shown that
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the result will be the same in the general case. The
Faddeev equation for the scattering amplitude (at the
energies below the break up threshold) can be written
in the real form:
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and u(k:Q) is a formfactor of the separable inter-
action potential (in the momentum representation)
V (k, k") = X|u(k?))(u (k' ?)|. The crossed integral
in (1) means the principal value of the integral in a
vicinity of the point p’ = k. The expression
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on the left-hand side of Eq. (1) has no singularities.
If the function F (k,p) is found from Eq. (1), then
the phase shift is determined by the relation

(k cot 6y a (k)" = F(k, k). (3)

In Eq. (1), the triplet two-particle scattering am-
plitude f(k?) = (kcotd(k) — ik)™" continued onto
negative energies is indicated explicitly. The function
F(p, k) in Eq. (1) is real.
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3. Model-Independent Equation
for the Quartet nd-Scattering Amplitude

We assume the formfactor of the separable potential
to have such a form that, at small radius of forces,
there exists an expansion

1
u (k%) =1+ (0) K2R* + §u[2] (0)

_Zn' ™ (0

where ul™! (kQ) denotes the n-th derivative with re-

(k2R2)2 +.=

0) (*RY", (4)

spect to k2, and ul%(0) is assumed to be 1.

If one keeps only the main term of the expansion for
U (kQ), then, instead of (1), there appears the model-
independent (i.e., independent of a specific model of
forces) equation [4]

1
F(p, k) =) f Ca? =3 (7 = i) +
oo ,2
ﬂfd / k2 Uo(p’p/)F(p/’k)inO (pak)v (5)
0

which contains the two-nucleon amplitude (at nega-
tive energies), and which is shown below to be a good
approximation to Eq. (1). Here, we denoted

Uo(p,p') = Lim Ulp,p') =

1 1
477/ p?+p?+ (P, p) +a? — Jk?

1 P’ +p? +pp +a® — 3k2
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In Eq. (5), the principal value of the integral is taken
in a vicinity of p’ = k, as well as near the points,
where the function

C(pz—

(6)
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may become zero. Thus, the solution of Eq. (5) may
have a pole singularity.

To find the quartet scattering length a3/, and effec-
tive range r3/o, we obtain the expressions in terms of
the solution of Eq. (5) at the zero energy. We denote
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F(p) = F(p,0), and we further measure momenta in
units of «. Thus, we have:
a3/2 == *F(O),
3 8 C1(0) .
a§/2 T3/2 = _iF(O) <1 + g C(O) > - 4F[1](0) -

- ;/ Z]; (%(g)) (1 + 2p2> F(p) — F2(0)> -

el

where Cl11(p?) and FIU(p?) denote the first deriva-
tives with respect to p? taken from C(p?) and F(p?),
respectively. We assume that C’(pz) # 0 at finite p,
and, thus, the solution F(p) obtained from Eq. (5)
has no poles. Otherwise, the last integral from ex-
pression (8) should be regularized by extracting the
main singularity from the integrand.

Consider the properties of the solution of Eq, (5)
in the limit of the zero range of forces, when Eq. (5)
transforms to the STM one. From the low-energy ex-
pansion, one has

C(p* k) =

3 1 1

K 1+\/1+Z(pQ—kz)_QMO_(2+i(p2_k2)>f "
Z (( (» —k2)> 1) X, 9)

where we took into account that 1/f (—1) = 0. Here,
ro, f = (aTO)SP, X, — are the effective range and the
form parameter etc., respectively.

Equation (5) in the limit of the zero range of forces
is solvable under the condition

oo

2 2
1 + ;f dp 2 k‘2 (pa k) = 07
0

(10)

the solution Fy(p, k) having a power asymptotics at
large momenta ~1/p** [4], where e = 0.1662219... is
determined from the secular equation

(1—e)m
1 cos (7)
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Equation (11) contains only real roots, and the
main ones of them are ¢1 = 0 and g9 = & =
= 0.1662219.... The analysis of the STM equation at
p — oo reveals the main term of the asymptotics to
be dy/p?T¢, while the more slowly decreasing term
~1/p? is absent. From a qualitative point of view,
condition (10) and the law of asymptotical decrease
~1/p?T€ mean that, due to the Pauli principle, an
effective potential of the neutron interaction with
the deuteron at small distances p ~ R looks like a
centrifugal barrier £/p?, and the wave function for
such a potential approaches zero at small distances
as ~plte,

A correction term of the first order in the radius
of forces Fi (p, k) to the STM equation can be found
as an iteration of Eq. (5) with respect to ro with the
account for expansion (9). This function obeys the
following condition:

o0

p2
OfdPMFl(Pak) =0,

(12)

and it decreases at p — oo as Fy(p,k) — di/p'*e,
where
d v3

4 = —0.127413....

d 1-L(1+e) (13)

Corrections of higher orders in the radius of forces
have the following asymptotics: of the second order,
Fy(p, k) ~ 1/p%; of the third order, F3(p,k) ~ p'=¢;
and a similar correction function of the fourth order
does not exist due to a too slow decrease of the inho-
mogeneous term of the corresponding equation.

Now, let us discuss the accuracy of the quartet
phase shift which can be obtained within the model-
independent equation (5) (i.e., let us estimate the or-
der in the radius R of forces of the correction terms
to the phase shift derived from Eq. (5)). Using expan-
sion (4) and the perturbation theory in the radius of
forces, we obtain from Eq. (1) for a correction term to
F (k, k) which is proportional to u[1(0), the following
expression:

Sy F(k, k) = —2uM(0) R? A%(k), (14)
where
Ak) =1+ 2jd LF( k) (15)
= p ppg 52 L2, k).
0
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The correction term proportional to u/?(0) equals

S F(k, k) = 202 (0)R* A(K)x

X ( - ikQ) A(k) — ;dep%(p, k) |. (16)

The rest correction terms (in particular, propor-

tional to (ul!l (O))2 and uf(0)), we do not present
here. They have a somewhat more complicated struc-
ture, but similar to (14) and (16).

Using conditions (10), (12), and the law of decrease
of the functions Fy(p, k) and Fi(p, k) at p — oo, one
has that A(k) defined by (15) is of the order of R*¢
at R — 0. Then the correction term (14) at small
radius of forces is of the order of O(R‘H%). It can
be shown that the same order of smallness is inher-
ent in the correction term (16), as well as the correc-
tions proportional to (ul'(0))2, ul®l(0) etc. Thus, we
have ultimately that F(k, k) found from the model-
independent equation (5) (but not (!) the total func-
tion F(p,k) at p # k), and, consequently, the phase
shift 3/ (k) may have corrections depending on the
details of the interaction potential only of the order
of 0(R4+28). We omit a detailed cumbersome con-
sideration of the same important statement proved
by ourselves in the case of separable potentials of an
arbitrary rank [4], as well as in the case of local poten-
tials of the general type (acting in the s-state). The
latter is demonstrated using the Faddeev equations
and some identities for integral equations. But we
omit these space consuming sophisticated transfor-
mations and calculations and restrict ourselves with
a qualitative explanation of this result. We only note
that, from the very first view, it might seem that the
model dependence should reveal itself in the phase
shift d3/5 (k) already in terms of the order of R?,
because the two-nucleon amplitude is known to be
model-independent up to and including the first or-
der in the radius of forces. But the effect of an ad-
ditional suppressing of the role of interaction po-
tential details lies in the fact that the contribution
of the potential into the phase shift is proportional
also to a probability density to find the nucleons to-
gether at short distances, and this probability den-
sity is small due to the Pauli principle. More exactly,
since the wave function of the system in an effec-
tive potential ¢/R? behaves itself at short distances
as ~R1T¢, this probability density given by the wave
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function absolute value squared appears to be propor-
tional to R?*2¢. Together with the smallness ~ R2
of the model-dependent effects originating from the
two-nucleon amplitude, one has the general result
O (R4+25) for the order of smallness of the effects
depending on the model of interaction.

4. Model-Independent Explicit
Solution for the Quartet nd-Scattering
Length and Effective Range

Now, we find the solution of Eq. (5) to determine the
quartet scattering length and effective range. In ex-
pansion (9), we consider only the scattering length a,
the effective range 7o, and the “form parameter” f (of
the order of ~R?). The account for the higher order
terms from expansion (9) could lead us to a contribu-
tion to the answer of higher orders than O (R**%).

The iteration solution of Eq. (5) in the small pa-
rameter ro/(2a) (further, we use the triplet experi-
mental parameters a; and rq;) gives for the quartet
scattering length ass:

2 3
a
37/2=CSTM+C1LS;+CQ (mt) +Cs (TOt> +

2(1t 2at

+Cafi+ Cufo g2 + O(R™™), (17)
t

where the coefficients (for the integer powers of the
small parameter)

Cstm = 1.179066, C7 = —0.071901,

Cy 2 —0.02979, C5 = 0.15319,
C, 20.9279, C5220.425, C4 = 0.685.

(18)

One should also account for the known relation be-
tween the two-particle parameters

ftzl—i—laTOt—&—(’)(R‘r’).

19
aa; 2 (19)

The asymptotic expansion (17) is a series in inte-
ger powers of the radius of forces only up to the
fourth power of the small parameter, and then, due
to the appearance of divergencies of the integrals over
dp from F,(p) at large momenta for n > 4 (where
F.(p) = F.(p,0)), the power series transforms into
an expansion in ~R°. The model-independent con-

stants C,, are expressed in terms of solutions ﬁ’n(p)
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(for n = 0,1, 2, 3) of the limit equations similar to the
STM one. The constant Cyty is the well-known STM
constant, the values C'; and Cy were determined first
in [5]. Note an important detail: although the solu-
tion Fy does not exist, nonetheless, the constants C
and C4 can be completely determined.

For the problem under consideration, it is a happy
coincidence that expansion (17) contains a rather
small parameter ro¢/(2a;) = 0.16 (also f; is as-
sumed to be near zero), and coefficients (18) of ex-
pansion (17) are not large. As a result, the exact so-
lution (17) gives not only a correct qualitative re-
sult for the quartet scattering length, but even a
rather accurate quantitative answer for this value. If
one uses the experimental two-particle values a; =
= 5.424 fm and ro; = 1.759 fm, then, already in
the zero range of forces (STM approximation), one
has azjy =~ Cstvmar = 6.395 fm. The account for
the terms up to the fourth order in (17) results in
az/p = 6.34 fm, and this result coincides with the cal-
culations with the use of the Faddeev equations with
pair potentials fitted in such a way that to repro-
duce simultaneously the correct experimental values
of the deuteron binding energy, the triplet scattering
length, and the triplet effective range. The account
for small errors in experimental values of a; and rq;
results in the ultimate theoretical estimation of ag/;
to be 6.34 £ 0.01 fm. This value is within the experi-
mental gap: ag/o = 6.35+ 0.02 fm.

The consideration of the quartet effective range on
the basis of Eq. (5) using (8) results in the expansion

T3/2 Tot

2
"2 po4p, T L, ()+ (20)

2at 2&15 2at
where the model-independent constants appear to be
Dy = —0.01914, D; =2 1.05581, Dy =2 0.19753. (21)

It should be noted that, unlike the STM approxima-
tion for the quartet scattering length, the approxima-
tion of the zero range of forces for the quartet effec-
tive range is insufficient even from qualitative point of
view, since, within this approximation, rz/; is small
and negative. Thus, the account for at least the first
correction term ~rg;/(2a;) is very important. Within
approximation (20), we have r3/5 ~ 1.71 fm. This re-
sult is in a qualitative concordance with the numerical
calculations of 13/, carried out with the use of Fad-
deev equations (rg/, = 1.75+0.01 fm [5]) (the gap in
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the 73,5 value is present due to small experimental er-
rors in a; and ro;). To achieve a better (quantitative)
coincidence with the result obtained within the Fad-
deev equations formalism, one has to find the next
terms in expansion (20).

5. Conclusions

To summarize, we note that the model-independent
solutions are obtained for the low-energy parameters
of the quartet nd-scattering phase shift in the form
of explicit expressions in terms of the two-nucleon
triplet low-energy parameters. These explicit formu-
lae for the three-nucleon parameters have the form of
expansions in powers of the experimental two-nucleon
values ratio to be the correction terms to the STM
approximation of the zero range of forces. It is ex-
plained why the quartet nd-scattering phase shift is
model-independent to the fourth power in the radius
of forces.
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E.€. I'purox, I.B. Cumenoe

MOJEJTBbHO-HE3AJIEXKHNN PO3B’A30K
SAIAYI nd-PO3CISAHHSA B KBAPTETHOMY CTAHI

OO6r'pyHTOBAHO TOYHICTH MOJIEJIBHO-HE3AJIEKHOIO onucy asu
MIPY2KHOTO Nd-PO3CisTHHSI B KBAPTETHOMY CTaHi 1 OTPUMAHO siB-
Hi PO3B’A3KHU /1] HU3bKOEHEPTETUYHUX IapaMeTPiB PO3CIAHHSA
(KBapTETHO! JIOBXKUHH PO3CISIHHS a3 /2 Ta e(EeKTUBHOIO pa/iiy-
ca r3 /2) Yy BHUIVIAAl aCUMITOTHYHO TOYHHUX PO3KJIaJIiB depe3
BIJIHOIIIEHHSI €KCIIEPUMEHTAJIbHUX JBOHYKJIOHHUX HU3bKOEHEP-
PeTUYHUX [TapaMeTpiB.

Katwwoei caoea: nd-poscisHHs, KBADTETHUIN CTaH, MOIEJIb-
HO-HE3AJIEKHUM PO3B’I30K.
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