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We calculate the probability of the creation of a circular phonon
(c-phonon) in He II by a c-photon of the resonator. It is shown
that this probability has sharp maxima at frequencies, where the
effective group velocity of the c-phonon is equal to zero; the den-
sity of states of c-phonons strongly grows at such frequencies. For
He II, these frequencies correspond to a roton and a maxon. From
the probability of the c-roton creation, we calculate the roton line
width which is found to approximately agree with the experimental
one. We conclude that the roton line observed in the super-high-
frequency (SHF) absorption spectrum of helium is related to the
creation of c-rotons. A possible interpretation of the Stark effect
observed for the roton line is also proposed.

1. Introduction

In the recent works [1, 2], an unconventional effect was
discovered. In a dielectric disk-shaped resonator placed
in liquid 4He, the azimuth (l-)modes were excited. These
modes are of the “whispering-gallery” type and rep-
resent a superposition of standing and running reso-
nance electromagnetic (EM) waves of the SHF range
in a narrow frequency interval. At the roton frequency
νrot = Δrot/2π~ = 180.3 GHz, the supernarrow absorp-
tion line with the width 4ν ' 50 kHz was observed in the
SHF spectrum of the resonator. This width is by six or-
ders less than that of a roton peak measured in neutron
experiments and is comparable with the width of lines
in the Mössbauer effect. It was assumed in [2] that the
line is related to the Van Hove singularity caused by a
high density of states of plane (p-) rotons near the roton
minimum of the dispersion curve. In this case, however,
one is faced with the problem to satisfy the momentum
conservation law, since the p-roton momentum is greater
than the momentum of a p-photon with the same energy
by six orders. Therefore, it was supposed [2] that the ex-
cess momentum of a p-roton is transferred to helium as
a whole.

To clarify this and other points, it is necessary to cal-
culate the probability of the creation of a roton and the

widths and the forms of lines for various possible pro-
cesses, and then to choose a process explaining the ex-
periment. It is necessary to take into account that the
EM field of a disk-shaped resonator has the circular (c-)
symmetry and is concentrated only near the disk ac-
cording to measurements [1] and the theory [3]. Since
namely the EM field induces the transition, the latter
must be characterized by the c-symmetry. In [3], it was
shown that a phonon near a disk possesses also the c-
symmetry. Therefore, we assume that the narrow line
corresponds to the creation of a c-roton by the EM field
of the resonator. Below, we will find the probability of
this process and the width of the corresponding absorp-
tion line.

A number of results required for calculations was ob-
tained in [3]; formulas (N) from that work will be de-
noted here by (N∗). A part of the results of the present
work was briefly published in [4].

2. Probability of the Creation of a Circular
Phonon by the Field of a Resonator

To calculate the line width, it is necessary to know the
probability of the c-photon → c-phonon process. No
problems concerning the conservation laws appear for
this process, because both c-photon and c-phonon have
no momentum, but have angular momenta Lz = ~l and
Lz = ~lc, respectively [3]. Moreover, the condition l = lc
is easily satisfied. As will be seen, the field of the res-
onator contains ∼ 1012 photons with close frequencies.
At such occupation number, the photon field can be con-
sidered as an external classical perturbing harmonic field
with frequency ν acting on helium. We now calculate
the probability of the creation of a c-phonon by this
field. The width of the azimuth mode, on which the
roton line is observed, is about 2.5 MHz, the line width
∼ 0.1 MHz, and the frequency ν = 180.3 GHz. It is seen
that the mode width is very small as compared with the

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 1 49



V.M. LOKTEV, M.D. TOMCHENKO

frequency; therefore, the latter can be considered con-
stant.

It is worth noting that, while calculating the transi-
tion amplitude, we can take no care of the conservation
laws. They are satisfied automatically (if a transition
contradicts some conservation law, this will manifest it-
self in the disagreement of the symmetries of the initial
and final states, and the amplitude will become equal to
zero).

The probability (per unit time) of the creation of a
c-phonon in He II due to the action of the EM field of a
resonator is [5]

δwfi =
2π
~
|Ffi|2δ(Ef − E(0)

i − ~ω), (1)

Ffi =
∫

Ψf F̂ΨidΩnucdΩel, (2)

where dΩnuc = dR1 . . . dRN and dΩel =
dR(1)

1 dR(2)
1 . . . dR(1)

N dR(2)
N are the phase volumes

of all nuclei and all electrons, Ψi and Ψf are the wave
functions (WFs) of the initial and final states of helium,
respectively, Ef −E(0)

i = Ec is the energy of a c-phonon,
and ω = 2πν. The explicit formula for F̂ follows from
the perturbation operator

V̂ = F̂ e−iωt + F̂+eiωt. (3)

If the wavelength λ of the EM field is much more than
the size of the system, then the problem is solved in the
dipole approximation [6]. In our case, this approxima-
tion is not suitable, since the system size exceeds λ by
one order. In addition, a photon is spent on the excita-
tion of fluid helium as a whole, i.e. on the creation of
a c-phonon which is related to the motion of atoms as
united objects, rather than on the excitation of electron
shells of a single atom or many atoms. Therefore, we will
use a general approach, by considering the action of the
EM field directly on the charged particles in an atom,
i.e., on electrons and the nucleus. But the atoms inter-
act with one another. As a result, the EM field creates
the collective excitation, a phonon which is electrically
neutral as a whole. It should be noted that a sound wave
is associated with a variable concentration gradient. In
this case, a variable local electric field arises in the inter-
atomic space, since helium atoms polarize one another
[7, 8]. However, this gives only a negligible correction to
the effect. For a charged particle in the EM field, we
have [5]

V̂ = − q

2mc
(Ap̂ + p̂A) +

q2

2mc2
A2 =

= − q

mc

(
Ap̂− i~

2
divA

)
+
q2A2

2mc2
, (4)

where p̂ = −i~∇r, and q and r are the charge and the
radius-vector of a particle, respectively. The term with
A2 induces two-photon transitions which will not be con-
sidered here. The field A should be real and can be
presented in the form

A(r, t) = A0(r)e−iωt + A∗0(r)e
iωt + Ã(r). (5)

The quantity divA is calculated in [3], formula (6∗).
Since we are interesting in the field A in helium, we
set ε⊥ = εz ≡ εh in (6∗). As a result, we obtain
divA = fd(r), i.e. the divergence is determined by the
field Ã(r), i.e. the time-independent part of A. It can
be always set to zero, by adding a gradient of the cor-
responding function to A. In this case, the measurable
quantities E and H are not changed. Therefore, we set
Ã(r) = 0, so that divA = 0. In what follows, we omit
index 0 in A0 (5). So, we have

F̂ =
i~q
mc

A∇r. (6)

Consider the set of He II atoms in the field A. An atom
of 4He consists of the nucleus with the charge qn = −2e
and two electrons, each possessing the charge qe = e.
Therefore, for He II, we have

F̂ =
∑
j

i~
c

(
qn
mn

A(Rj)
∂

∂Rj
+

qe
me

A(R(1)
j )

∂

∂R(1)
j

+

+
qe
me

A(R(2)
j )

∂

∂R(2)
j

)
. (7)

Here, Rj are coordinates of the nucleus of the j-th atom,
R(1)
j and R(2)

j are coordinates of the electrons of this
atom, mn ≈ m4 is the nucleus mass of 4He atom, and
me is the electron mass.

To calculate Ffi, we need to know the WFs Ψf and
Ψi. Let the initial state characterized by the WF Ψi be
the ground state of helium, and let the final state with
Ψf be the ground state plus one c-phonon. Then

Ψi ≡ Ψ0({Rj ,R
(1,2)
j }) = Ψnuc

0 ({Rj})Ψel
0 ({R(1,2)

j }), (8)

where Ψel
0 is the WF of all electrons, and Ψnuc

0 is the WF
of all nuclei of helium atoms. The modern microscopic
models describe the properties of He II well enough. Ac-
cording to them, a helium atom is a very elastic object.
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Therefore, we can consider with a good accuracy that
the electron shell of each atom follows the nucleus with-
out inertia and is not deformed by the interaction with
neighboring atoms. In this case, Ψnuc

0 (Rj) coincides with
Ψ0(Rj) written as a function of the coordinates of atoms,
and the electron part looks as

Ψel
0 =

N∏
j=1

ψj(R
(1)
j ,R(2)

j ) ≈
N∏
j=1

ψ1s2(r
(1)
j , r(2)

j ) ≈

≈
N∏
j=1

ψ̃1s(r
(1)
j )ψ̃1s(r

(2)
j ), (9)

where r(1)
j = R(1)

j −Rj , r
(2)
j = R(2)

j −Rj . For the WF
of the ground state of 4He atom, we use the well-known
one-parameter approximation with ψ̃1s(r) = 1√

πa3 e
−r/a

(a = 0.313 Å). In reality, the electron shells of atoms are
perturbed by neighbors and, as a result, are somewhat
deformed [7, 8]. These deformations are “directed” to
the atom, with which the interaction occurs. Since the
adjacent atoms surround the given atom from all sides
and chaotically on the average, the polarizations induced
by them cancel one another to a significant degree. As a
result, the mean polarization of an atom in He II turns
out small, d ' 3× 10−4|e|aB [9], though it is greater by
one order of magnitude than the polarization induced by
a single atom located at the mean interatomic distance
R̄ ≈ 3.6 Å. The literature presents the assertions that
the presence of large-amplitude zero oscillations of He II
with the amplitude ∼ R̄ implies that the electron shell of
a helium atom is strongly deformed and “smeared” over
several interatomic distances. However, this should not
be accepted: zero oscillations mean only that, due to the
strong interatomic interaction, the helium atoms move
with a large (even at T = 0) mean velocity, which leads
to a small density of helium and exhausts the condensate.
But the electron shells of atoms are deformed slightly in
this case, as follows from the smallness of d. We will
neglect these deformations and apply formula (9).

For the WF of a state with a single c-phonon, we use
the formula [3]

Ψf = Ψ0Ψc(lc, kz, kρ). (10)

In view of it, we obtain

Ffi ≈
2i~|e|N
cm4

∫
Ψ0Ψ∗c

(
A(R1)

∂

∂R1
−

− m4

me
A(R(1)

1 )
∂

∂R(1)
1

)
Ψ0dΩnucdΩel. (11)

Let us take into account that

∂Ψ0

∂R1
= Ψel

0

∂Ψnuc
0

∂R1
+ Ψnuc

0

∂Ψel
0

∂R1
, (12)

∂Ψel
0

∂R(1)
1

=
∂ψ̃1s(r

(1)
1 )

∂r(1)
1

Ψel
0

ψ̃1s(r
(1)
1 )

, (13)

∂Ψel
0

∂R1
= −

[
∂ψ̃1s(r

(1)
1 )

∂r(1)
1

1

ψ̃1s(r
(1)
1 )

+ (r(1)
1 ↔ r(2)

1 )

]
Ψel

0 .

(14)

Then

Ffi = F nuc
fi + F el

fi, (15)

F nuc
fi =

i~|e|N
m4c

∫
Ψ∗cA(R1)

∂

∂R1
(Ψnuc

0 )2dΩnuc, (16)

F el
fi = −2i~|e|N

m4c

∫
Ψ∗c(Ψ

el
0 Ψnuc

0 )2
∂ψ̃1s(r

(1)
1 )

∂r(1)
1

1

ψ̃1s(r
(1)
1 )

×
(
A(R1 + r(1)

1 )
m4

me
+ 2A(R1)

)
dΩnucdΩel. (17)

2.1. Calculation of F nuc
fi

We note that the matrix element Ffi in (1) is constructed
on the basis of the WFs Ψi and Ψf not containing the
time factor (the latter is included into the δ-function).
In formula (50∗) for Ψc, the coordinates of atoms can
be considered as the coordinates of nuclei. Omitting the
factor e−iωt, we present Ψc in the form

Ψc ≈
N∑
j=1

Ψc(j), Ψc(j) =
clc,kz,kρ√

N
eilcϕj+ikzZjJlc(kρρj),

(18)

below clc,kz,kρ ≡ c̃. Whence, with regard for (56∗) and
(58∗), we get

F nuc
fi =

i~|e|N
m4c

{∫
dR1Ψ∗c(1)A(R1)

∂

∂R1

1
V

+

+(N−1)
∫
dR1dR2Ψ∗c(2)A(R1)

∂g(|R1−R2|)
V 2∂R1

}
. (19)
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Since ∂
∂R1

1
V = 0, the first integral in (19) is equal to zero.

As for the second integral, the integration is carried on
over the region, where the helium atoms are positioned,
i.e., over the region outside of the disk. Therefore, we
describe the field A with the use of solution (31∗)–(33∗)
without the factor e−iωt (taken into account in (5)). De-
noting |R1 −R2| = R, we have

A(R1)
∂g(R)
∂R1

= Ame
ilϕ1

[
a1(ρ1, Z1)

(
∂

∂ρ1
+

i

ρ1

∂

∂ϕ1

)
+

+ a2(ρ1, Z1)
(
− ∂

∂ρ1
+

i

ρ1

∂

∂ϕ1

)]
g(R). (20)

Using (72∗) and the relation qR1 = qzZ1 +
qρρ1 cos (ϕ1 − ϕq), we obtain

A(R1)
∂g(R)
∂R1

=
Ame

ilϕ1

(2π)3n

∫
dq[S(q)− 1]iqρ×

×
[
a1(ρ1, Z1)e−i(ϕ1−ϕq) − a2(ρ1, Z1)ei(ϕ1−ϕq)

]
×

×e[iqz(Z1−Z2)+iqρρ1 cos (ϕ1−ϕq)−iqρρ2 cos (ϕ2−ϕq)], (21)

where n = N/V. In the cylindrical coordinate system,
dRj = dϕjdZjρjdρj and dq = dϕqdqzqρdqρ. The rela-
tion

Jl(x) =
il

2π

π+β∫
−π+β

e−ix cosψ±ilψdψ (22)

(β is arbitrary) yields

2π∫
0

dϕ1e
[ilϕ1±i(ϕ1−ϕq)+iqρρ1 cos (ϕ1−ϕq)] =

= 2πil±1eilϕqJl±1(qρρ1), (23)

2π∫
0

dϕ2 exp [−ilcϕ2 − iqρρ2 cos (ϕ2 − ϕq)] =

= 2πi−lce−ilcϕqJlc(qρρ2). (24)

With regard for (32∗), (33∗), and (18), we write the re-
quired matrix element as

F nuc
fi =

iδl,lc~|e|nc̃Am
m4c
√
N

∫
dZ1dZ2ρ1dρ1ρ2dρ2dqz×

×q2ρdqρJl(qρρ2)Jl(kρρ2)[S(q)− 1]e[iqz(Z1−Z2)−ikzZ2]×

× [a1(ρ1, Z1)Jl−1(qρρ1) + a2(ρ1, Z1)Jl+1(qρρ1)] . (25)

Integrating R2 over the whole volume (including the
disk), we obtain∫
dqzdZ2e

[iqz(Z1−Z2)−ikzZ2][S(qz, qρ)− 1] =

= 2πe−ikzZ1 [S(−kz, qρ)− 1]. (26)

We pass in (25) to discrete qρ, by replacing
∫
dqρ →

π
R∞−R̃d

∑
nρ

and using the quantization conditions for qρ

[3]:

kz =
2πnz
H − hd

, nz = ±1,±2, ..., (27)

kρ =
πnρ

R∞ − R̃d
, nρ � l. (28)

Here, hd = 0.1 cm and Rd = 0.95 cm are, respectively,
the height and the radius of a disk resonator, and H ≈
4.2 cm and R∞ ≈ 2.1 cm are the same for a chamber with
helium; the numbers are indicated for the experiment
[11]. The quantity R̃d is defined in [3]: for small kρ,
R̃d > Rd (in particular, for the smallest kρ, we have
R̃d ≈ 1.5Rd), and R̃d decreases down to Rd with increase
in kρ. With regard for (64∗), we will take the integral
required in the calculations of (25):

Ip ≡
∫
ρ2dρ2q

2
ρdqρ[S(−kz, qρ)− 1]×

×Jl(qρρ2)Jl(kρρ2)Jl±1(qρρ1) ≈

≈ kρ[S(k)− 1]Jl±1(kρρ1)
B(kρR∞, l)
1− R̃d/R∞

, (29)

B(x, l) = πx

1∫
0

ydyJ2
l (y · x). (30)

At greater kρ, the function B(kρR∞, l) ≈ 1, whereas it
is close to 1 ( >∼ 0.9) at lower kρ (kρR∞ <∼ l) and can be
calculated numerically.

Taking the disk into account gives Ip →
Ip

(
1− hd

H
Rd
R∞

B(kρRd,l)
B(kρR∞,l)

)
. Since hd/H ' 1/42,
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Rd/R∞ ' 1/2, and B ≈ 1, this consideration
changes Ip only slightly, which can be neglected. From
(25)–(29), we now obtain

F nuc
fi = iδl,lcξ

√
k3
ρInuc, (31)

ξ =
2π~|e|nc̃Am
m4c

√
Nkρ

B(kρR∞, l)
1− R̃d/R∞

[S(k)− 1], (32)

Inuc =
∫
dZ1ρ1dρ1e

−ikzZ1 [a1(ρ1, Z1)Jl−1(kρρ1) +

+ a2(ρ1, Z1)Jl+1(kρρ1)] . (33)

As is seen, we must integrate with respect to the vari-
ables Z1 and ρ1 over the region outside of the disk with
regard for the distribution of the EM field calculated in
[3]. We denote the values of the integral Ic taken over
regions I and II from (32∗)–(33∗) by, respectively, indices
1 and 2:

Inuc = I(1)
nuc + I(2)

nuc. (34)

It will be seen below that values of the functions F nuc
fi

and F el
fi are maximum in two limiting cases: kρ → ∞

and kz →∞. In the first case, the simple, but sufficiently
bulky calculations give

I(1)
nuc ≈

cosαl(kρRd)
k2
ρtg

2θ0

√
2Rd
πkρ

O

(
kz + κz +Q1tgθ0

kρ

)
,

(35)

I(2)
nuc ≈ −

(2l − 2) sinαl(kρRd)
k2
ρ

√
2

πkρRd
Iz(kz, Rd), (36)

Iz(kz, ρ) =
Jl−1(Q1Rd) sin

[
(π/h̃d − kz)h̆d

]
π/h̃d − kz

+

+(kz → −kz), (37)

where αl(kρRd) = kρRd − πl/2− π/4, h̆d = hd/2 + (ρ−
Rd)ctgθ(ρ), h̃d ≈ 1.087hd, and θ is the effective angle.
Using the latter, we set the line of sewing z(ρ) in (32∗),
(33∗) at z > 0 in the form ρ = Rd + (z − hd/2)tgθ(z).
The condition θ0 = θ(z = hd/2) determines this angle
at the beginning of the line of sewing. In calculations,

we used the properties Jl−1(Q1Rd) = clJl+1(Q1Rd) and
nl−1(Qh1Rd) = blnl+1(Qh1Rd), as well as the asymptotics
of the Bessel and Neumann functions. Since kz + κz +
Q1tgθ0 � kρ, the relation |I(1)

nuc| � |I(2)
nuc| is valid.

Consider the case where kz → ∞. Now, kρ is small.
The smallest kρ are determined by the equality k

(j)
ρ =

µ
(j)
l /Rd (see (46∗)), where l = lrot = 66. Using the for-

mulas [10]

µ
(1)
l ≈ l + 1.856 l1/3 + 1.033 l−1/3, (38)

µ
(2)
l ≈ l + 3.245 l1/3 + 3.158 l−1/3, (39)

µ
(3)
l ≈ l + 4.382 l1/3 + 5.76 l−1/3, (40)

we determine three first zeros of the Bessel function:
µ

(1)
66 ≈ 73.756, µ(2)

66 ≈ 79.895, and µ(3)
66 ≈ 85.134. In order

to calculate I(1)
nuc and I(2)

nuc, we take into account that, at
small kρ, the component kz =

√
k2 − k2

ρ ≈ k − k2
ρ/2k ≈

k. Then we have

I(1)
nuc(kz →∞) ≈ −f (1)

nuc

sin (khd/2)
4k

, (41)

f (1)
nuc =

∫
ρdρ [Jl−1(Q1ρ)Jl−1(kρρ) +

+ clJl+1(Q1ρ)Jl+1(kρρ)] . (42)

For three smallest k
(j)
ρ (j = 1; 2; 3), we determined

numerically the following values: f
(1)
nuc/R2

d = 0.0023,
–0.00049, and 0.00029. By calculating integral (33), we
have

I(2)
nuc(kz →∞) ≈

cos
[
(π/h̃d − kz)hd/2

]
Jl−1(Q1Rd)

(π/h̃d − kz)2ctgθ0
×

×Rd [Jl−1(kρRd) + Jl+1(kρRd)] + (kz → −kz), (43)

which implies that I(2)
nuc is negligible: |I(2)

nuc(kz → ∞)| ∼
|I(1)

nuc(kz →∞)|/kRd � |I(1)
nuc(kz →∞)|.

2.2. Calculation of F el
fi

The electron part, F el
fi, of the total matrix element (15)

can be calculated analogously. The nonzero value of F el
fi

is determined by the difference

A(R + r)−A(R) = eϕ(R) ·
(
∂Aϕ
∂R

r
)

+
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+eρ(R) ·
(
∂Aρ
∂R

r
)
−A(R)

y sinϕ+ x cosϕ
ρ

+

+Aϕ
−yi + xj

ρ
+Aρ

xi + yj
ρ

+O(r2), (44)

where R = (ρ cosϕ, ρ sinϕ,Z), r = (x, y, z), and we took
into account that, as R is much more than the atom size
(R� r),

eϕ(R + r) ≈ eϕ(R)
(

1− y sinϕ+ x cosϕ
ρ

)
− y

ρ
i +

x

ρ
j,

(45)

eρ(R + r) ≈ eρ(R)
(

1− y sinϕ+ x cosϕ
ρ

)
+
x

ρ
i +

y

ρ
j.

(46)

Representing A in the form

A = Aρ(ρ, ϕ, Z)eρ +Aϕ(ρ, ϕ, Z)eϕ, (47)

we obtain

F el
fi =

i~|e|nc̃
mec
√
N

(I1 + I2), (48)

I1 =
∫
dRe−ilcϕ−ikzZJl(kρρ)×

× [Aρ + ∂Aϕ/∂ϕ+ ρ∂Aρ/∂ρ] /ρ, (49)

I2 = n

∫
dR1dR2g(R1 −R2)e−ilcϕ2−ikzZ2×

×Jl(kρρ2)
ρ1

[
Aρ(R1) +

∂Aϕ(R1)
∂ϕ1

+
ρ1∂Aρ(R1)

∂ρ1

]
. (50)

Using relations (72∗), (22)–(30), we can verify that

I2 ≈ I1[S(k)− 1]
B(kρR∞, l)
1− R̃d/R∞

, (51)

I1 = 2πAmδl,lcIel, (52)

Iel =
∫
dZdρJl(kρρ)e−ikzZ {(1− l)a1(ρ, Z) −

− (1 + l)a2(ρ, Z) + ρ∂/∂ρ (a1(ρ, Z)− a2(ρ, Z))} , (53)

where the integration is carried on over the volume occu-
pied by helium. Analogously to (34), we divide Iel into
the sum of integrals over regions I and II. Then we have

Iel = I
(1)
el + I

(2)
el , (54)

I
(1)
el =

 −hd/2∫
−∞

+

∞∫
hd/2

 dZ

8
e−ikzZ−κz(|Z|−hd/2)I

(1)
el,ρ(Z),

(55)

I
(1)
el,ρ(Z) =

R̆d∫
0

dρJl(kρρ) [(1− l)Jl−1(Q1ρ)−

−(1 + l)clJl+1(Q1ρ) +Q1ρJ
′
l−1(Q1ρ)−

− clQ1ρJ
′
l+1(Q1ρ)

]
, (56)

I
(2)
el =

∞∫
Rd

dρIz(kz, ρ)Jl(kρρ)
[
(1− l)nl−1(Qh1ρ)−

−(1 + l)blnl+1(Qh1ρ)+

+ Qh1ρn
′
l−1(Q

h
1ρ)− blQh1ρn′l+1(Q

h
1ρ)
]
, (57)

where Iz(kz, ρ) is defined above, R̆d = Rd + (|Z| −
hd/2)tgθ(Z), J ′l (x) = ∂Jl(x)/∂x, and n′l(x) =
∂nl(x)/∂x. The integrals I

(1)
el and I

(2)
el are calculated

analogously to I(1)
nuc and I(2)

nuc. Eventually, we get

I
(1)
el (kρ →∞) ≈ − lJl−1(Q1Rd)

2k2
ρtgθ0

√
2

πkρRd
×

× cosαl(kρRd) cos (kzhd/2)
{

1− Q1Rd
2lJl−1(Q1Rd)

×

×
[
J ′l−1(Q1Rd)− clQ1ρJ

′
l+1(Q1Rd)

]}
, (58)

I
(2)
el (kρ →∞) ≈ 2l − 2

kρ

√
2

πkρRd
sinαl(kρRd)×
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×Iz(kz, Rd) = −kρI(2)
nuc(kρ →∞). (59)

At k � 1/hd, the integral I(1)
el is negligible: |I(1)

el | ∼
|I(2)

el |/kρhd � |I(2)
el |. Formulas (35) and (58) do not

involve the condition Ψc = 0 for the disk sur-
face. For its consideration, we need to make replace-
ments cos (kzhd/2) → sin (kzhd/2), cosαl(kρRd) →
sinαl(kρRd)/kρRd ≈ 1/kρRd � 1 in the formulas, which
decreases I(1)

nuc and I(1)
el still further.

At small kρ, we obtain

I
(1)
el (kz →∞) ≈ −f (1)

el

sin (khd/2)
4k

, (60)

f
(1)
el =

Rd∫
0

dρJl(kρρ) [(1− l)Jl−1(Q1ρ) −

−(1 + l)clJl+1(Q1ρ) +Q1ρJ
′
l−1(Q1ρ)−

− clQ1ρJ
′
l+1(Q1ρ)

]
. (61)

For k(j)
ρ with j = 1; 2; 3, we get numerically: f (1)

el /Rd =
−0.17, 0.039, and −0.025. In addition,

I
(2)
el (kz →∞) ≈

cos
[
(π/h̃d − kz)hd/2

]
(π/h̃d − kz)2ctgθ0

×

×Jl−1(Q1Rd)Jl(kρRd)×

×
{
(1− l)nl−1(Qh1Rd)− (1 + l)blnl+1(Qh1Rd)+

+Qh1Rd[J
′
l−1(Q

h
1Rd)− blJ ′l+1(Q

h
1Rd)]

}
+

+(kz → −kz) ∼
I
(1)
el (kz →∞)

kRd
� I

(1)
el (kz →∞). (62)

With regard for (31), (32), (48)–(52), the performed
calculations allow us to write finally

F el
fi = δl,lcb(kρ, l)ξ

√
kρIel, (63)

b(kρ, l) =
m4

me

(
1− R̃d/R∞

[S(k)− 1]B(kρR∞, l)
+ 1

)
. (64)

2.3. Total matrix transition element Ffi

We have

Ffi = F el
fi + F nuc

fi ≈ δl,lcξ
√
kρ[kρInuc + b(kρ, l)Iel], (65)

whence the total probability of the creation of a c-
phonon with “momentum” k is

wfi =
∑

lc,nz,nρ

δwfi =

=
2π
~

∑
lc,nz,nρ

|Ffi|2δ(Ef − E(0)
i − ~ω) =

=
2π
~
∑
nz,nρ

|ξ|2kρ[kρInuc+b(kρ, l)Iel]2δ(Ec(k)−~ω). (66)

Moreover, k2 = k2
ρ + k2

z in all formulas. The main con-
tribution to sum (66) is given by the regions (kz → 0,
kρ → k) and (kρ → 0, kz → k). We now determine these
contributions.

a) Region of small kz (here, kρ → k). According
to (34)–(37) and (54), (58), (59), we have Inuc(kρ →
∞) ≈ I

(2)
nuc(kρ → ∞), Iel(kρ → ∞) ≈ I

(2)
el (kρ → ∞).

In (66), we now pass from the sum
∑
nρ

to the integral∑
nρ

→ R∞−Rd
π

∫
dkρ and then, with the help of the re-

lation kdk = kρdkρ, to an integral over k. Due to the
δ-function, this integral is easily calculated. After some
transformations, we obtain

wfi(kz → 0) = S1
2b20|ξ0|2h2

d(R∞ −Rd)
Rd~k2∂E/∂k

, (67)

S1(k) =
8(l − 1)2

πh2
d

∑
nz

k3

k3
ρ

sin2 αl(kρRd)I2
z (kz, Rd) ≈

≈ (2/π) [(l − 1)Jl−1(Q1Rd) sinαl(kRd)]
2×

×
∑
nz

{
sin (πhd

2h̃d
− nz πhd

H−hd )
πhd
2h̃d
− nz πhd

H−hd

+ (kz → −kz)

}2

≈

≈ 4.3(H − hd)
πhd

[(l − 1)Jl−1(Q1Rd) sinαl(kRd)]
2
, (68)
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where nz = ±1,±2, . . . , b0 = b(B = 1, R̃d = Rd) =
m4
me

S(k)−Rd/R∞
S(k)−1 , ξ0 = ξ(B = 1, R̃d = Rd), and the value

of k is determined from the condition Ec(k) ≡ E(k) =
~ω. For kz, we used the quantization laws (27), which
assumes the zero boundary conditions on the container
walls.

b) Region of small kρ. With the use of kz = 2πnz
H−hd (see

(27)) and k(j)
ρ = µ

(j)
l /Rd, relations (34), (41)–(43), (54),

(60)–(62) yield

∑
nz

f(k)δ(E(k)− ~ω) =
H − hd

2π

∞∫
−∞

dkzf(k)×

×δ(E(k)− ~ω) =
H − hd
π

k

kz

f(k)
∂E/∂k

, (69)

wfi(kρ → 0) = S2
2(H − hd)Rdb20|ξ0|2

~k2∂E/∂k
, (70)

S2(k) =
∑
j=1,...

k

kz

k
(j)
ρ

Rd

1− f
1− fj

×

×

∣∣∣∣∣ S(k)− f
S(k)− 1 +B−1(k(j)

ρ R∞, l)(1− fj)

∣∣∣∣∣×

×

{
k

(j)
ρ kInuc(k

(j)
ρ )

b0
+ kIel(k(j)

ρ )×

×S(k)− 1 + (1− fj)B−1(k(j)
ρ R∞, l)

S(k)− f

}2

≡

≡ a(k, l) sin2

(
khd
2

)
. (71)

where f = Rd/R∞, fj = R̃d(k
(j)
ρ )/R∞.

Formulas (68) and (71) include sinαl(kRd) and
sin (khd/2). Due to the zero boundary conditions,
sinαl(kρRd) ≈ ±1, whence sinαl(kRd) ≈ ±1. In view
of the same conditions, we set sin (khd/2) ≈ ±1.

Using (31), (32), (75∗), and the formula for the volume
of helium V = πR2

∞H, we obtain finally:

wfi ≈ wfi(kz → 0) + wfi(kρ → 0) ≈

≈ 2π2(1− hd/H)n~(eAm)2|S(k)− f |
c2k2m2

e∂E/∂k
×

×
(

8.6hd
πRd

[(l − 1)Jl−1(Q1Rd)]
2 +

2f a(k, l)
1− f

)
. (72)

We note that the main contribution to wfi(kρ → 0)
and wfi(kz → 0) is given by the electron part of Ffi, and
the transition probability wfi is determined by the quan-
tities wfi(kz → 0) and wfi(kρ → 0), i.e., by the creation
of c-phonons with the smallest kz and large kρ and with
the smallest kρ and large kz (almost plane c-phonons).
We now evaluate these contributions quantitatively for
the roton line and conditions of the experiment [1, 2].
According to [3], the relation Jl−1(Q1Rd) ≈ 1/27.831 is
valid at l = lrot = 66. To calculate a(k, l) in (71), we
use the roton value S(k) ≈ 1.3 (for T <∼ 1.4K). More-
over, we consider that the relation kz/k ≈ 1 holds as
kρ → 0, R̃d ≈ 1.5Rd at j = 1 [3], and the quantity
R̃d decreases down to Rd with increase in j. We calcu-
lated values of B(kρR∞, l = 66) numerically by formula
(30): B(k(1)

ρ R∞, 66) ≈ 0.91, B(k(2)
ρ R∞, 66) ≈ 0.93, and

B(k(3)
ρ R∞, 66) ≈ 0.94. The contribution of the follow-

ing kρ (with j > 3) to a(k, l) is small. Whence we
find a(krot, l) ≈ 0.2. Moreover, since B ≈ 1, the func-
tions a(k, l) and S2 are almost independent of k. But if
k are such that S(k)→ f, then the coefficient a(k, l) in-
creases by several orders of magnitude, approximately as
|S(k)− f |−1, and becomes � 0.2. But, for the probabil-
ity wfi, such a growth is canceled by the factor |S(k)−f |
in (72) in front of the large parentheses.

Using these numbers, the relation R∞ ≈ H/2 ≈
2.1 cm, and (71), we obtain that the probability of the
creation of c-phonons with large kρ is ∼ 5 times more
than that for the almost plane ones (with small kρ).
Thus, a resonator creates c-phonons mainly of two “ex-
treme” types: almost completely circular and almost
plane. The high probability of the creation of c-phonons
with an almost plane structure is a somewhat unex-
pected result. At the same time, it is clear that the
completely plane phonons cannot be created due to the
angular momentum conservation law: a phonon must
possess a certain “twist” (l 6= 0, kρ 6= 0) in order to carry
away the angular momentum of a c-photon.

3. Width of the Roton Absorption Line

As was mentioned above, the spectrum of the SHF emis-
sion of a disk resonator contains the very narrow absorp-
tion line at the roton frequency (~ω = Δrot = 8.65 K kB).
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Let the line width be the distance between the points,
which are located on both sides from the line center, and
for which the intensity of a signal is about 0.8 of the back-
ground one (the signal far from the line). Then it follows
from the experiment [1, 2] that the line width is about
50 kHz at T = 1.8 K and decreases, at lower T, to the
resolving power of a spectroscope (' 30 kHz). Moreover,
the width stops to decrease at T <∼ 1.6 K and approaches
a constant ' 30 kHz. The minimum experimental tem-
perature T = 1.4 K, but formula (72) is applicable, if
there are no c-rotons in the initial state of helium, i.e.,
at T = 0. Because the width does not depend on T al-
ready at T <∼ 1.6 K, we may assume that the width at
T = 0 is the same as that at T = 1.4 K.

The creation of a c-phonon (or a c-roton) is caused
by the c-photon → c-phonon transition. In order to cal-
culate its probability, we should divide wfi (72) by the
number of c-photons in a resonator, Nphot. We can cal-
culate the latter by dividing the total energy of the EM
field of the resonator,

W =
∫
dV

DE + BH
8π

=
∫
dV

ε⊥Ȧ
2
/c2 + (rotA)2

8π
,

(73)

by the energy of a c-photon, ~ω. Since the field outside
of the disk is weak, we will consider only the field inside
the disk determined by formulas (17∗) and (18∗). Since

Rd∫
0

ρdρJ2
l−1(Q1ρ) ≈

R2
d

2

[
J ′l−1(µ

(1)
l−1)

]2
≈ 2×10−3R2

d (74)

and cos (πhd/2h̃d) = 1/8, we obtain

W ≈ 10−3A2
mR

2
dhd

[(
ε⊥ω

2

c2
+
Q2

1

2

)(
1 +

h̃d
4πhd

)
+

+
π2

h̃2
d

(
1− h̃d

4πhd

)]
, (75)

where the small terms contributing to W are omitted.
Using (75), it is easy to evaluate the total energy and
the number of c-photons in the pumping band 4νpump '
50 kHz) for the roton mode (l = 66) and at the roton
frequency:

W ≈ 9.2A2
mhd(Rd/0.95 cm)2 ≈ 3.87× 108 eV, (76)

Nphot =
W

~ω
≈ 5.19× 1011. (77)

In a vicinity of the roton minimum, we have
∂E(k)/∂k = ~2|k − krot|/mrot with mrot ≈ 0.165m4,

krot = 1.93 Å
−1
. Then the probability w̃fi = wfi/Nphot

of the c-photon → c-roton process for the experimental
width 4ν = 30 kHz is

w̃fi ≈
4π2

9.2
(1− hd/H)ne2ωmrot|S(k)− f |

m2
ek

2c2hd|k − krot|
×

×
(

4.3hd
πRd

[(l − 1)Jl−1(Q1Rd)]
2 +

fa(k, l)
1− f

)
×

×
(

0.95 cm
Rd

)2

≈ 3.36× 10−7ωrot. (78)

This process weakens the flow of photons propagating
from the resonator. We now determine the absorption
line width. To this end, we consider properties of the
resonator. In the experiment [11], the pumping signal
with the frequency band 4νpump and the power w0

pump '
10−3 W was firstly switched-on. But, as a result of losses,
the resonator received wpump ' 10−4÷10−5 W. The res-
onator accumulates and amplifies the pumping signal,
but, in this case, the energy losses in the resonator in-
crease also, until a stationary equilibrium state is estab-
lished. In this state, the losses in the resonator due to the
emission are equal to the pumping. In other words, the
condition of equilibrium for the EM field of the resonator
with frequencies in the pumping band is the equality of
the pumping energy flow and the losses:

wpump = Nphot~ω/τren. (79)

Here, Nphot and τren are, respectively, the number of c-
photons in the resonator and the mean emission time of a
c-photon by the resonator (obviously, it is also the period
of renewal of EM modes of the resonator). By the value
of wpump, we can estimate the electrical signal formed by
an antenna catching photons emitted by the resonator
as w ' 4 × 10−8 W. It follows from the distribution of
the stationary EM field of the resonator [3] that this
field induces the signal w <∼ 4× 10−21 W in the antenna
which is weaker by 13 orders. In other words, the signal
generated by the antenna is due to photons emitted by
the resonator, rather than to the stationary EM field of
the latter.

When the frequency of the EM field approaches the
roton one, then, according to (78), the probability
of the emission of c-rotons by the resonator becomes
large. We now consider the frequency interval 4ν0 =
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Intensity of the signal received by the antenna vs the frequency
near a narrow roton absorption line, T = 1.63 K. ••• — experiment
[1], dotted line — theory (by the present work). The frequency is
equal to that indicated in the figure plus 175.7 GHz (this number
is the roton energy at T = 1.63K)

4νpump/100 ' 0.5 kHz, which is much less than the line
width and the pumping band, but it contains a macro-
scopic number of quanta. If the emission of c-rotons
occurs, then the condition of equilibrium for the band
4ν0 takes the form

0.01wpump = 0.01Nphot~ω/τren +N0
rot4rot/τem, (80)

where τem = 1/w̃fi is a duration of the emission of a
c-roton by a c-photon of the resonator, and N0

rot is the
number of c-rotons emitted for a time interval τem by c-
photons from the band 4ν0. In this case, the losses of the
resonator are separated into the channels of emission of
c-photons and c-rotons. Respectively, the flow of emitted
c-photons decreases, which is manifested in the resonator
spectrum as the absorption. As was mentioned above,
the signal is equal to 80% of the background one on the
edge of lines. Hence, 20% of the losses of the resonator
are transferred into c-rotons, whereas 80% pass into c-
photons. Thus, each c-photon of the resonator in the
frequency band 4ν0 for the time τren emits a c-photon
with a probability of 0.8 and a c-roton with a probability
of 0.2. This yields τem = 4τren, which allows us to write
the following condition for the line edge:

w̃fi ≡
1
τem

=
1

4τren
. (81)

Relations (77), (79) yield τren ' 6.25(10−7 ÷ 10−6) s,
which corresponds to the experimental value τren '
10−6 s. Using the last value of τren and (81), we obtain

w̃fi for the line edge: w̃fi = 1/4τren ' 2.5 × 105 s−1 ≈
2.2× 10−7ωrot, which is only by a factor of 1.5 less than
the theoretical value of w̃fi (78).

The theoretical and experimental lines are shown in
Figure. At ν > νrot, the amplitude of the former is

given by the formula a ≈
(
1 +

√
4.4 kHz
ν−νrot

)−1

. In this
case, the error of the line width is about one order;
it is related to the approximate character of the solu-
tions for the WF of a c-phonon (not completely cor-
rect consideration of boundary conditions) and for the
EM field of the resonator, as well as to the neglect of
a deviation of a symmetry of the system far from the
disk (antenna, container’s wall, etc.) from the cylindri-
cal symmetry. As is seen from Figure, the theoretical
line corresponds approximately to the experimental one
by width, but does not by shape. The density of states
%(E) =

∫
δ(E(k)− ~ω)dk = 4πk2

∂E/∂k is high in the region

above the energy Δrot of a roton (%(E) = 4πk2mrot
~2|k−krot| →∞

at k → krot). Below Δrot, no roton states are present,
and the density of states decreases sharply to a value
corresponding to the linear phonon curve: %(E) = 4πk2

u1~ .
Therefore, for the c-photon → c-roton transition, the
line must sharply fall on the side of lower frequencies,
whereas the experimental line is almost symmetric. This
difference means that the process is more complicated
and involves at least two particles, rather than one par-
ticle (c-photon → c-roton), as was accepted above. In
particular, one more c-phonon can be created, or a part
of the angular momentum of a c-photon can be absorbed
by the disk. We hope to clarify the mechanism in the
future investigations.

It is necessary also to take into account that a spread-
ing of the c-roton energy due to the interaction between
quasiparticles can also contribute to the line width.
However, this leads to a very large line width of the order
of magnitude of the width ∼ 0.1Δrot in neutron exper-
iments. This value is larger by 6 orders than the width
of the narrow SHF line and by 4 orders than the mode
width. Therefore, this spreading cannot be observed for
a single mode, but it is revealed as a “pedestal” (base)
on many modes [2].

The number of photons approaching the receiver is
diminished not only due to the creation of c-rotons by
the field of the resonator, but also due to their cre-
ation by c-photons already emitted by the resonator.
The time-of-flight of these photons to the receiver is
∼ 4λ/ch ≈ 3 × 10−11 s ' 10−5τem, which is less by 5
orders than the duration of the emission of a c-roton by
a photon of the resonator. In this case, the probabilities
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of the emission of a c-roton for a standing photon of the
resonator and a running photon are of the same order,
because a standing c-photon is simply a superposition
of two radial c-photons propagating toward each other.
Therefore, the line is formed not due to the absorption
of running photons, but, as we have assumed, due to the
absorption of “standing” photons of the resonator.

4. Discussion

While calculating formula (78), we used the solution
for the EM field [3], for which the sewing in the corner
region (|z| ≥ hd/2, ρ = Rd ÷ ∞) is approximate. In
this region, the EM field is weak. But, nevertheless, it
influences the value of w̃fi. To evaluate this effect, we
calculated the probability w̃fi for two other distributions
of the EM field in the corner region: Ah = 0 and Ah =
Ame

i(lϕ−ωt) [a1(ρ, z)(eρ + ieϕ) + a2(ρ, z)(−eρ + ieϕ)] ,
{a1(ρ, z), a2(ρ, z)} = 1

8Jl−1(Q1Rd)e−κz(|z|−hd/2) ×
×{nl−1(Qh1ρ), blnl+1(Qh1ρ)}. The latter can be sewed
with solutions in other regions, but it does not com-
pletely satisfy the equation. Moreover, if we use Q1

instead of Qh1 , then the equation is satisfied, but the
sewing cannot be executed. The value of w̃fi for such
solutions differs from (78) by several times; therefore,
w̃fi is not very sensitive to the sewing. The analysis
indicates that it is of importance to correctly set the
solution in the corner region near the joint with adjacent
regions, and it is not so important in bulk. Solution
(32∗), (33∗) satisfies this condition, so that its use is
justified.

As was mentioned above, probability (78) of
the c-photon → c-roton process grows strongly at
∂E(k)/∂k → 0, i.e., near the points of an extremum
of the dispersion curve E(k). This peculiarity explains
why the narrow line is observed namely at the ro-
ton frequency and predicts the possibility to find one
more line at the frequency of the maxon maximum,
νmax ≈ 287 ± 2 GHz [12] (up to now, the frequencies
ν ≈ 40 ÷ 200 GHz were studied). Let us substitute the
maxon parameters (kmax = 1.12 Å

−1
, mmax ≈ 0.54m4,

S(k) ≈ 0.3) in (78), and let us take into account that, in
the denominator, the number 9.2 ∼ ω2, and, according
to (19∗) and (20∗), it should be l ∼ ω for the resonance
mode. We obtain w̃fi ≈ 5.9 × 10−7ωmax. Thus, with-
out regard for an additional factor (see above), we have
that if τren is approximately identical for the maxon and
roton lines, then the width of the maxon line must be
larger by a factor of 1.7 (at T = 0) than the width of the
roton line.

The peculiarity at ∂E(k)/∂k → 0 is well known in
solid-state physics as the Van Hove singularity. At
|∂E(k)/∂k| → 0, the states of c-rotons falling in the
small given energy interval are strongly concentrated.
Respectively, the transition probability in this energy
interval sharply increases. In crystals, the narrow lines
of light absorption [13] and neutron scattering [14] were
registered a lot of times. However, the width of the lat-
ter is larger by several orders than those of SHF lines
in helium and corresponds to the pedestal. Thus, the
narrow SHF line in helium is related to the Van Hove
singularity, like the lines of crystals, but its widening is
caused by another mechanism.

In neutron experiments with liquid helium, the anal-
ogous very narrow peaks must be observed on the scat-
tering curve S(k = const, ω) at the frequencies of the
roton and maxon extrema. However, the high error of
neutron measurements (δω ≈ 0.1 K) does not allow one
to register these peaks.

In addition to the processes considered above, one
more channel is possible: c-photon → p-phonon + the
transfer of a momentum to the disk and the transfer of
an angular momentum to the disk or for the creation of a
vortex rotating around the disk. Such processes must be
less probable, since the greater the number of quasiparti-
cles participating in a process, the less is the probability
of the process. Moreover, what is more important, the
overlapping of the wave functions of the EM field and a
p-phonon is insignificant due to different symmetries.

In order to explain the appearance of the narrow line
of absorption, the authors of work [2] proposed to con-
sider the following process: p-photon → p-roton + the
transfer of a momentum to helium as a whole. In our
opinion, the transfer of a momentum to the disk can be
more probable in such an approach, since the disk is a
tougher system as compared with helium. The approach
with a plane photon and a plane phonon is the main al-
ternative to the above-considered process with c-rotons.
But the latter is, apparently, more probable by two rea-
sons.
1) As was mentioned above, the line is formed by the
stationary EM field of the resonator, rather than by run-
ning photons. The EM field outside of the resonator can
be represented as a superposition of plane waves (wave
packets). But the total EM field of the resonator is a
sum of c-photons localized outside and inside the disk
(see [3]). At the creation of a c-roton, a c-photon dis-
appears as a whole inside and outside of the disk. But,
due to different values of ε of helium and the disk, such
a c-photon cannot be presented in the form of a super-
position of photons which are plane in both helium and
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the disk (a photon is not plane or in helium, or in the
disk). In other words, we must be based in the input
equations on the circular field of the resonator. In addi-
tion, the properties of this field are unlike those of plane
waves, because the field of the resonator sharply drops
with increase in the distance to the resonator.
2) In addition, the approach with p-photons requires the
expansion of the field in multipoles. Here, the main con-
tribution is given by the term with the dipole moment
(DM) d0 of a roton. It was assumed in work [2] that
such a stationary DM arises in a roton due to the mu-
tual polarization of atoms, and the probability of the
p-photon → p-phonon transition is proportional to d0.
It was also proposed in [15] that a vortex ring possesses
an intrinsic DM. However, both quasiparticles create the
reciprocal motion of atoms: a part of atoms moves for-
ward, but the similar part moves backward. In this case,
the separated direction is set by the velocity of a quasi-
particle. Therefore, the appearance of a DM is related to
the asymmetry of a quasiparticle relative to the forward-
backward directions. The question about the presence of
such an asymmetry can be clarified with the help of the
following reasoning (which belongs to Yu. V. Shtanov).
By definition, the stationary DM of a quasiparticle is
equal to

dqp =
∫
dR1dR

(1)
1 dR(2)

1 . . . dRNdR
(1)
N dR(2)

N Ψ∗qpΨqp×

×e(R(1)
1 + R(2)

1 − 2R1 . . .+ R(1)
N + R(2)

N − 2RN ), (82)

where Ψqp = Ψqp(R1,R
(1)
1 ,R(2)

1 , . . .RN ,R
(1)
N ,R(2)

N ) is
the WF of a quasiparticle. Let us make inversion of time
t→ −t. In this case, we have Ψ→ Ψ∗ [5], and DM (82)
is not changed. But the DM must be directed along the
velocity of a quasiparticle, i.e., it should change the sign.
This implies that the DM is zero. It was considered in
[15] that, by the CPT-theorem, the charges also change
their signs at t → −t, which gives dqp 6= 0. However,
the change t → −t in the equation can be performed
formally without any connection with the time arrow.
Then the charges conserve their signs at t → −t, and
the DM turns out zero.

The real quasiparticle is a wave pocket, but it is clear
that, in this case, dqp = 0 as well.

Such a consideration is not valid if the state of a quasi-
particle is degenerate. In other words, at given E and k,
there are the states with DMs dqp and −dqp which can
transit to each other at t→ −t. However, we have no rea-
sons to consider that a roton or a ring has such a degen-
eration. For dqp 6= 0, there appears another possibility, if

the reflected state is unstable and transits in a stable one
with the inverse DM. This internal irreversibility can be
related to the ordering of deformations of the electron
shells of atoms induced by the interaction with neigh-
bors. For clearness, we note that this is similar to a flag
on a moving car. Such a flag points out always the di-
rection opposite to one of the motion. At t → −t, we
obtain a flag indicating the direction of motion, i.e., we
obtain the unstable state. A similar structure of a ring
or a roton is possible in principle. But it is improbable,
especially for a roton representing reciprocal oscillations
of the density. It is of importance that such a change
of the symmetry, like that at t → −t, will happen at
the reflection of a quasiparticle from the wall. At each
reflection, the quasiparticle must loss energy. Hence, it
will be unstable. Such an instability is possible for rings,
and it could explain why the rings are not discovered in
the spectrum of quasiparticles or by the contribution to
the heat capacity till now. But such an instability seems
impossible for phonons and rotons. Thus, a roton has
no stationary DM. This is also the case for a ring, most
probably. This reasoning implies that, while explaining
the narrow line, the circular symmetry of the problem
must be taken into account already in the input equa-
tions.

5. The Line Spectrum of Liquid 4He

As is known from the general theorems of quantum me-
chanics, a many-particle system located in a finite vol-
ume possesses a discrete energy spectrum. Liquid 4He
in a vessel is a system of this kind. The energy levels
of He II can be determined from the WF of He II cal-
culated for the zero boundary conditions. From here,
it is obvious that the real energy spectrum of He II is
not a Landau continuous curve, but it is a collection of
separate disconnected points very densely lying on this
curve. According to (27), (28), the observed roton line
[1, 2] consists of ∼ 105 individual roton lines. If the ex-
periment will be executed with a film of helium ∼ 100 Å
in thickness, the distances between lines increases by 6
orders of magnitude, and they will become resolvable.
In this case, instead of a single roton line, we will mea-
sure many lines in the wide range of the frequencies:
ν = 0÷ 2Δrot/2π~. Thus, it will be possible to observe,
for the first time, the line spectrum of a fluid consist-
ing of a huge number of discrete lines, like the spectrum
of an atom. It is only necessary that the intensities of
lines be sufficiently high. However, if the resonator disk
is only covered by a helium film, no lines will be ob-
served. Indeed, by (72), the intensities of lines will be of
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the same order of magnitude as those for a thick layer
of helium [1, 2]. But the line registered for such a layer
consists of ∼ 105 individual lines which are too weak to
be observed separately. To resolve them, one needs to
increase their intensity by 4-5 orders of magnitude. This
is a task for future studies.

6. Quantization of the Amplitude of the Roton
Line

The experiment [16] revealed one more unusual effect:
as the power Q̇ of a heat gun increases, the amplitude
AR of the roton absorption peak decreases, and this oc-
curs stepwise. This fact testifies to the “quantization”
of the roton line amplitude. It was noted in [16] that
this effect can be related to the quantization of the az-
imuth velocity vs (around the resonator), but the nature
of this connection is not clear yet. Since the growth of
AR means a decrease in the number of c-rotons created
by SHF-photons, we assume that each step of AR means
a decrease in the number of created c-rotons by some
integer.

In He II near the resonator, two competing processes
occur: c-photons create c-rotons and vice versa. In this
case, a c-roton can transit only in a c-photon with the
same energy and the same l. From the state |Nphot, Nrot〉
with Nphot c-photons and Nrot c-rotons, the transition
in two following states is possible: i) the state |Nphot +
1, Nrot − 1〉, if a c-roton creates a c-photon; ii) the state
|Nphot − 1, Nrot + 1〉, if a c-photon creates a c-roton.

Since circular photons and rotons are bosons, we can
associate the creation operators with them. Within the
formalism of secondary quantization for bosons, we ob-
tain the transition probability (i)

w(rot 7→ phot) = G(Nphot + 1)Nrot. (83)

For (ii), we have

w(phot 7→ rot) = G(Nrot + 1)Nphot, (84)

whence

4w ≡ w(rot 7→ phot)− w(phot 7→ rot) =

= G(Nrot −Nphot), (85)

where G = w(phot 7→ rot) at Nphot = 1, Nrot = 0. In
other words, G is the above-calculated probability (78) of
the c-photon→ c-roton transition in the case where there
is a single c-photon in the initial state of the system, and
there are no c-rotons. If 4w < 0, then the roton line in

the spectrum of an SHF signal is a line of absorption
of photons; but if 4w > 0, the roton line is a line of
their emission (“maser” effect). In the experiment, the
absorption line becomes weaker, as the power of a heat
gun increases, and transits to the emission line at Q̇ =
Q̇c ≈ 0.5 W/cm2. We assume that these facts are related
to the forced creation of c-rotons by a gun. Though
all details of the mechanism are unclear up to now, we
indicate several points.

a) A gun is directed along a tangent to the disk, i.e.,
so that the transfer of an angular momentum should be
maximum. The p-rotons have no angular momentum,
but the c-rotons have (Lz = ~lc). Therefore, their cre-
ation is accompanied by the transfer of both the energy
and the angular momentum. It was noticed in [16] that a
step of Q̇ corresponds to an increase in vs on the output
of a gun by a value coinciding with the quantum ~/m4Rd
of a circular velocity of helium near the resonator, ac-
cording to the formula vϕs = nc~/m4Rd. The maximum
experimental number of steps was nmax

c ∼ 3× 105. Such
a quantization of the velocity can mean that a gun cre-
ates a vortex in the superfluid component near the disk,
whose axis coincides with the disk axis, and each step
corresponds to the increase of the circulation by 1. On
the other hand, the action of the operator of azimuth
momentum − i~∂

ρj∂ϕj
on the factor eilϕj of the WF of a

c-roton gives ~l/ρj . Dividing it by the 4He atom mass,
we obtain the azimuth velocity vϕ = ~l/m4ρj . Thus, a
c-roton induces the quantized rotation of helium atoms
around the resonator with the velocity vϕ = ~l/m4ρ, like
a vortex. But this rotation is accompanied by simulta-
neous oscillations. In turn, an increase in the circular ve-
locity of helium vϕ by an external factor must stimulate
the creation of c-phonons (including c-rotons). Appar-
ently, a gun creates a macroscopic vortex in helium (or
a superposition of vortices) and many plane and circular
phonons and rotons, so that the ensemble of quasiparti-
cles near the disk is quite complicated. Moreover, some
processes (e.g., decays) are allowed for c-phonons and
forbidden for p-phonons.

b) The results of experiments with a gun testify un-
ambiguously that an EM wave creates namely c-, rather
than p-rotons. If the latter would be created, then a
decrease in the amplitude of the roton absorption line
would be related, according to (85), only to that a gun
increases their number. But it increases also at a sim-
ple increase in the temperature (without switching-on
a gun); however, the measurements show that this does
not cause a weakening of the roton line and its transition
into an emission line.
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c) In a disk resonator, “left” (L) and “right” (R) c-
photons differing by the sign of l are created. A wave-
guide captures the total signal from the resonator, i.e.,
the summary field of L- and R-waves. In this case, the
amplitude of one of these waves in the resonator is ∼ 100
times greater than another one [11]. However, a gun
creates c-rotons with only a single polarization, L- or R-
, which depends on the position of a gun. Since an L
c-photon can induce only an L c-roton (the same is true,
respectively, for right ones), Eq. (85) should be written
separately for L- and R-quanta. Then we obtain that
the summary absorption line disappears if the relation
Nrot = Nphot holds true for the dominant photon mode.
A gun is able to weaken the line if the signs of l for a
c-roton and the dominant c-photon coincide and cannot
weaken if the signs do not coincide. Thus, let a gun
weaken the line at a given configuration of the EM field.
But if a gun is reoriented so that it twists He II in the
opposite direction, it must stop to weaken the line. It
seems to us that this assertion can be easily verified in
experiments.

7. Stark Effect

Finally, we mention the observation of the linear Stark
effect in helium-II — the roton absorption line splits into
two lines in a constant electric field E0 directed in the
disk plane. The distance between them increases ∼ E0

[17]. In [18, 19], the authors advanced the idea of the
relation of the effect to a possible quadrupole or in-
stantaneous dipole, respectively, moment of a p-roton.
We agree that a p-roton as a wave packet can possess
an instantaneous DM drot with fluctuating (or pulsing)
value and direction. This DM is due to, in particular,
the interaction of the roton with neighboring quasiparti-
cles located nonuniformly. Such a DM induces an addi-
tion ∼ drotE0 to the roton energy. Since the projection
of drot on E0 takes the values in the continuous band
[−d̄zrotE0, d̄

z
rotE0], the mentioned addition transforms the

roton level to the band. However, experiments demon-
strate the splitting of the line into two ones, rather than
a single band. Thus, the instantaneous DM of a roton
cannot explain the observed line splitting.

According to quantum mechanics, the effect can be
explained if the roton energy level possesses at least a
twofold degeneration which is taken off by the field E0.
In our opinion, the effect is determined by the existence
of right (l = lrot) and left (l = −lrot) c-rotons with
the same energy, whose superposition is described by
the wave function C1ψ

cir
rot(l) + C2ψ

cir
rot(−l). Since a per-

turbing potential is obviously proportional to the applied

field E0, we obtain the splitting of a twofold degenerate
energy level which is proportional to E0. It can be evalu-
ated by the well-known formulas of perturbation theory
for a degenerate state. The field E0 induces the polariza-
tion of the dielectric resonator, which is directed along
E0, and takes off the degeneration, by breaking the cir-
cular symmetry. But the multiple degeneration by kz
remains (several tens of small kz significantly contribute
to the line). So, if the field E0 will be directed along the
Z axis, then the line must be split into two lines due to
the removal of the degeneration relative to a change in
the sign of kz.

At the switching-on of a heat gun, we may expect
the following. In the field E0, the eigenfunctions of the
Hamiltonian of He II are not the R- and L-functions,
ψcir

rot(l) and ψcir
rot(−l), but their superpositions ψcir

rot(l) ±
ψcir

rot(−l) characteristic of a twofold degenerate level [20].
The gun oriented along a tangent to the disk creates the
quantized rotation of helium in a single direction and
increases the number of c-rotons with one (R or L) po-
larization. It is obvious that, in this case, the gun cannot
excite the states ψcir

rot(l)±ψcir
rot(−l) (R±L-superposition

of two c-rotons with the counter rotation). Therefore,
if the field E0 was already switched-on (earlier than the
gun), the gun will not decrease the peaks of the split
roton line and will not induce the maser effect. It would
be of interest to verify this prediction in experiments in
similar fashion.

8. Conclusion

It is seen from the above-presented analysis that the
experiment [1, 2] has revealed the existence of partic-
ular excitations in He II — circular rotons which are
azimuth sound waves. In the present work, we have ap-
proximately calculated the probability of the creation of
a circular roton by the EM field of the resonator and,
on its basis, have evaluated the width of the absorp-
tion line at the roton frequency. The theoretical line is
close to the experimental one by width but differs by
shape.

We have also advanced the assumption that the split-
ting of the line into two ones in a constant electric field
is caused by the presence of right and left c-rotons and,
respectively, by the twofold degeneration of the energy
level of a circular roton.

The authors are grateful to V.N. Derkach, E.Ya. Ru-
davskii, and A.S. Rybalko for numerous discussions of
the experiment and to Yu.V. Shtanov for valuable re-
marks and advices.
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ДО ПРИРОДИ ВУЗЬКОЇ РОТОННОЇ ЛIНIЇ ПОГЛИНАННЯ
В СПЕКТРI ДИСКОВОГО НВЧ РЕЗОНАТОРА

В.М. Локтєв, М.Д. Томченко

Р е з ю м е

Обчислено iмовiрнiсть народження “круговим” фотоном (к-
фотоном) резонатора к-фонона в He II. Показано, що вона
має рiзкий максимум на частотах, за яких ефективна групо-
ва швидкiсть фонона обертається на нуль та густина станiв
сильно зростає. Для He II такi частоти вiдповiдають ротону i
максону. На основi iмовiрностi народження к-ротона знайдено
ширину ротонної лiнiї, яка наближено узгоджується з експери-
ментальною. Зроблено висновок, що спостережувана в надви-
сокочастотному (НВЧ) спектрi поглинання гелiю-II ротонна лi-
нiя пов’язана з народженням кругових ротонiв. Запропонована
також можлива iнтерпретацiя ефекта Штарка, який спостерi-
гався для ротонної лiнiї.
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