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The work considers the thermodynamics and the kinetics of initial
decomposition stages in a supersaturated binary solid solution in
the framework of the modified nucleation theory. The specific sur-
face energy is considered as a function of intensive state parameters
of both the cluster and the matrix, which allows one to uniformly
describe clusters of critical, subcritical, and supercritical size. The
analysis was performed in two stages. On the first one, the optimal
size dependences of the compositions of new phase clusters were
determined by analyzing the macroscopic equations of growth of
nuclei. On the second stage, we solved a kinetic equation to de-
scribe the evolution of the size distribution function of new-phase
clusters along this optimal composition line. The effect of various
kinetic factors on the behavior of the distribution function and
characteristics of new-phase clusters was studied. The obtained
distributions demonstrate a possibility of the existence of bimodal
size distributions of new-phase clusters.

1. Introduction

A huge experimental material accumulated in the field of
the theory of phase transitions in solid bodies cannot be
understood without theoretical researches and numerical
modeling. With regard for the intensive development of
the computational technique, the method of numerical
simulation of processes with phase transitions acquired
the highest importance for studying the nature of physi-
cal properties of solid bodies aimed at the creation of new
substances with preassigned physical characteristics. In
this respect, a special role is played by first-order phase
transitions and, particularly, the alloy decomposition.

In theory and experiments, one distinguishes three
successive stages of the alloy decomposition: nucleation,
independent growth of new-phase particles, and coales-
cence (or Ostwald ripening stage) [1–4]. On the first
stage, a metastable homogeneous alloy is transformed

into a two-phase (heterogeneous) one by means of the
initiation of new-phase particles and the simultaneous
growth of already formed supercritical clusters. On the
second stage, the volume of the new phase increases due
to the growth of supercritical clusters. Moreover, their
number remains almost invariable. Nuclei grow inde-
pendently until the diffusion regions of different new-
phase particles start overlapping or the supersaturation
becomes so small that it will impede the further growth
of all clusters. The last evolution stage of new-phase par-
ticles at the decomposition is the coalescence that has
been experimentally known for a long time and was first
described qualitatively by Ostwald. On this stage, the
volume fraction of the new phase is approximately con-
stant, the supersaturation becomes very small, whereas
the process is accompanied by the growth of large par-
ticles due to the dissolution and the vanishing of small
nuclei. In the case of infinite small supersaturations, the
coalescence is described by the Lifshitz–Slyozov–Wagner
(LSW) solution, in which it is assumed that new-phase
particles are located so far from each other that they
interact only through the matrix. The LSW theory de-
termines the law of nucleus growth and yields a unified
size distribution function of new-phase particles. At the
same time, due to the necessity of considering the prop-
erties of critical, subcritical, and supercritical clusters
that can depend on their size and composition, the prob-
lem of description of initial stages of the decomposition
in many-component media remains unsolved and urgent
[5–9].

In this work, we consider a generalization of the Gibbs
approach to the case of homophase fluctuations in order
to describe the kinetics of first-order phase transitions in
the case of the decomposition of a binary solution. This
field was studied in a number of works [10–13] demon-
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strating that the growing new-phase particles can have a
composition differing both from the composition in the
solution and that of the new macroscopic phase, whereas
the critical size, nucleation barrier, and nucleation rate
can differ from the respective parameters determined by
the classical Gibbs theory for heterophase systems.

The purpose of this paper is to study the main thermo-
dynamic and kinetic characteristics of a binary system
on the initial stage of nucleation of a new phase based on
theoretical assumptions and a numerical modeling of the
corresponding kinetic equations. It will be shown that
the situations, where the particle size distribution on the
transient stages of nucleation and new phase growth be-
comes bimodal, can be realized.

The paper is organized as follows. First, we briefly
consider the problem statement in the thermodynamic
approximation (Section 2). After that, we will solve the
problem of description of a new phase composition as
a function of the size (Section 3). Then the basic ki-
netic equations and the quantities under study will be
put down in the framework of the mean-field model and
the calculation algorithm will be described (Section 4).
In the last part, we present the main result of this prob-
lem in the case of the invariable initial supersaturation
(Section 5) and the concluding remarks (Section 6).

2. Thermodynamic Approximation — Modified
Gibbs Nucleation Theory

Let us imagine that a two-component system is trans-
ferred to a metastable state between the binodal and
spinodal curves. Under such conditions, the system must
decompose sooner or later, and this process will start
from the nucleation of a new phase with the following
growth of such particles. The composition of the grow-
ing new-phase clusters will differ from that of the initial
matrix and will acquire the composition and structure
of the new phase in the process of evolution.

The Gibbs classical nucleation theory (CNT) deter-
mines the characteristics of a critical new-phase nucleus
in the approximation of heterophase fluctuations and
compositions differing from the parent one [14]. When
using the CNT for the description of the phase forma-
tion, the free energy of the system is approximately con-
sidered in the one-dimensional space of sizes of new-
phase nuclei. Moreover, such an inclusion of the new
phase has all macroscopic properties of the newly formed
phase (with the constant surface tension and specific
bulk free energy). The classical approximation can be
valid only in the case where the linear dimensions of
such nucleus are much larger than the thickness of the

surface layer. But the linear size of a nucleus is not a
parameter of the theory; it is determined from the max-
imum condition of the energy of the whole system. In
addition, the classical approximation often appears in-
accurate for the quantitative description. For example,
in the case of the condensation from the vapor phase
(where all data are known with good accuracy), the em-
pirical nucleation rates differ from those calculated ac-
cording to the CNT by several orders of magnitude (for
nonane (C9H20), this difference is equal to five orders of
magnitude [15]). The CNT based on the Gibbs approx-
imation for an abrupt interface between a nucleus and a
metastable parent phase predicts a nonzero energy bar-
rier of transformation for any supercoolings and appears
invalid for the description of the spinodal decomposi-
tion. J.W. Gibbs understood that the capillary approx-
imation is inappropriate for small new-phase particles.
Therefore, he introduced a surface tension dependent on
the surface curvature. This idea was subsequently de-
veloped by R.C. Tolman who introduced an additional
parameter [15, 16]. However, its determination also en-
counters a number of problems, as it changes depending
on the supersaturation (size), and even the sign of this
parameter is doubtful [17].

In the authors’ opinion, a whole number of the men-
tioned problem questions can be solved using the re-
cently proposed modified nucleation theory. For new-
phase clusters, this theory specifies a dependence of the
nucleus surface energy on the concentrations inside a
nucleus and in the matrix [10–13]. Another essential
difference of this consideration from the Gibbs classical
approach is that it takes clusters of arbitrary composi-
tions and sizes into account. In the framework of this
modification, one can determine the compositions of nu-
clei of all sizes, while the resulting composition curve
is called an optimal trajectory. The obtained trajecto-
ries allow one to proceed from solving a two-dimensional
problem to the quasione-dimensional analysis. In the
general case, one should solve a two-dimensional prob-
lem in the space of the number of atoms of a certain sort
[18].

First, we consider the thermodynamics of the decom-
position of a supersaturated binary solid solution that
occurs by means of the nucleation and the growth of
clusters of a new α-phase in the matrix of the parent
β-phase. In this case, the appearance of a new-phase
particle results in the classical change of the Gibbs po-
tential of the system [10–13]

ΔG = −nΔµ+ σA, (1)
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Fig. 1. (а) Thermodynamic driving force of transformation as a
function of the composition of a new-phase nucleus; (b) Surface of
variation of the Gibbs potential of the system at the formation of
a new-phase nucleus as a function of the numbers of atoms of the
first and second sorts, respectively. Point K is a “saddle point”
corresponding to the critical nucleus and the nucleation barrier

where n denotes the number of atoms in a new-phase
nucleus consisting of n1 atoms of the first component
and n2 atoms of the second one, Δµ is the thermody-
namic driving force of transformation per one atom of a
nucleus, σ is the surface energy density of the interface,
and A is the surface area.

The thermodynamic driving force of the phase trans-
formation is presented by the expression for a regular
solid solution [10–13, 19]:

Δµ = −kBTf (xα, xβ) , (2)

f (xβ , xα) = (1− xα)
[
ln
(

1− xα
1− xβ

)
+ 2

Tc
T

(
x2
α − x2

β

)]
+

+xα

{
ln
(
xα
xβ

)
+ 2

Tc
T

[
(1− xα)2 − (1− xβ)

2
]}

. (3)

Here, kB is the Boltzmann constant, T is the absolute
temperature, Tc is the critical temperature of the de-
composition dome, xα stands for the composition of a
new-phase nucleus, and xβ denotes the composition of
the parent phase.

For the sake of simplicity, we consider that nuclei of
the new α-phase have a spherical form and neglect the
effects related to elastic deformations and their energy
contribution. In this work, we consider the initial decom-
position stages, on which the depletion of the medium
still can be neglected, and the average composition of the
parent β-phase can be considered constant. The specific
surface energy depends on the difference in the compo-
sitions of the new and parent phases [11, 12] and has the
form of the square dependence

σ = σ̃ (xα − xβ)
2
. (4)

The following thermodynamic analysis is performed for
such parameters: T

Tc
= 0.7; σ̃c−2/3

α

kBT
= 0.53, where cα is

the volume density of the new phase (number of atoms
in unit volume); and xβ = 0.17. For these parameters,
the number of atoms in the critical nucleus amounts
to n1c = 36.25 atoms of the first sort and n2c = 62
atoms of the second sort. The barrier value is equal to
ΔGc = 3.86kBT , whereas the critical nucleus composi-
tion is xαc = 0.61.

The thermodynamic driving force for the chosen pa-
rameters and the surface of variation of the Gibbs po-
tential of the system in the case of the formation of a
new-phase nucleus are presented in Fig. 1. The region
of the parent phase represents a “narrow” (right side of
Fig. 1,b) and goes along the ray xβ . A characteristic
feature of the “narrow” is a zero variation of the Gibbs
potential (1) along it and the composition corresponding
to the parent phase. The new phase is presented by a
“valley” (left side of Fig. 1,b), in which the variation of
the Gibbs potential is negative for large sizes. The nu-
cleation of new-phase particles represents a fluctuation
transition of nuclei from a “narrow” of the parent phase
to a “valley” of the new phase by means of overcoming the
energy barrier (saddle point K in Fig. 1,b). The growth
of new-phase particles can be presented by some curve
on the surface of variation of the Gibbs potential. This
curve must correspond to the composition of the parent
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phase for small-size nuclei and to the macrophase compo-
sition for large-size ones. Moreover, it is supposed that
this trajectory passes through the critical point corre-
sponding to the “saddle point” of the surface of variation
of the Gibbs potential of the system. The question of
interest is which way of overcoming the barrier will be
optimal for all nuclei?

3. Search for Optimal Concentrations in
Dependence on the Size of Nuclei

The optimal trajectory is found by solving a system of
equations of growth and dissolution of nuclei in the sub-
critical and supercritical regions, respectively:

dni
dt

= −ω(+)
ni,ni+1

1
kBT

∂ΔG (n1, n2)
∂ni

, (5)

where t is the time. The index i corresponds to the sort
of atoms and takes two values in the binary case. The
frequency of attachment of atoms of the i-th component
ω

(+)
ni,ni+1 is determined by the expression [10–13, 19]

ω
(+)
ni,ni+1 =

D∗
i

a2
β

4πR2c
(s)
iβ , (6)

where D∗
i is the diffusion coefficient of the i-th compo-

nent in an immediate vicinity of the nucleus surface, R
is the particle radius, aβ is determined by the relation
4
3π (aβ)

3 = 1
cβ

, and cβ is the volume density of the par-
ent phase. The volume density of the i-th component
close to the nucleus surface c(s)iβ is determined from the
quasistationarity condition:

c
(s)
iβ =

ciβ

1 + D∗
i

Di
R
aβ

, (7)

where Di stands for the diffusion coefficient of the i-th
component in the volume of the parent phase, and ciβ is
the volume density of the i-the component in the parent
phase.

We consider, for simplicity, that the diffusion coeffi-
cients of the i-th component in an immediate vicinity
of the nucleus surface and in the volume of the parent
phases are equal to each other (D∗

i = Di) and so are the
volume densities of the parent and new phases: cβ = cα.

The calculation of the optimal trajectory according to
the system of equations (5) starts from the critical point
and its neighborhood and is performed independently for
the subcritical and supercritical regions. Calculations in
the supercritical region are limited only by the dimen-
sion of the computational scheme or the computer power

(of the order of 108 atoms). In the subcritical region,
the trajectory ends at a point on the straight line corre-
sponding to the parent phase concentration xβ = 0.17.
At this point, the cluster contains the number of atoms
n0 = n10 + n20, where n10 and n20 are the numbers of
atoms of the first sort and the second one, respectively.

Let us consider the effect of diffusion mobilities of
atoms on the shape of optimal-composition lines (Fig. 2).
As one can see from the presented results, the difference
between the trajectories is very significant in the subcrit-
ical region and almost inessential for supercritical nuclei.
In addition, one can see that, for the considered cases
D1
D2

= 1 and D1
D2

= 10, the composition xα depends on
the number of atoms n ambiguously, which testifies to a
possibility of the existence of nuclei of equal sizes (with
equal n = n1 +n2), but of different compositions (differ-
ent n1, n2, xα).

The obtained ambiguous correspondence of the com-
positions and the dimensions of new-phase clusters can
become a “stumbling-block” for considering the kinetics
of the decomposition process. That is why, in our fur-
ther analysis, we proceed to the study of the quasione-
dimensional problem in the space of the number of atoms
of the second sort n2 (the least numerous in the sys-
tem) at the known relations between the compositions
of various-size clusters according to the obtained opti-
mal trajectories (Fig. 3). This will allow us to properly
put down the kinetic equation of evolution for the cluster
distribution function and to actually consider not only
the size distribution of nuclei, but also the composition
one.

It is also worth paying attention to the following in-
teresting fact observed in the case of high mobilities of
the first component. Comparing the obtained optimal
trajectories with respect to the critical point (point K in
Fig. 2), one can see that there exist subcritical new-phase
nuclei, whose composition considerably differs from that
of the critical cluster, whereas their dimensions exceed
the critical one (the composition line lying to the left
and above the point K in Fig. 2,a for D1

D2
= 10. In such

subcritical nuclei, n > nc, n1 > n1c, and n2 < n2c).

4. Evolution of New-Phase Clusters

In order to describe the kinetics of the phase transition,
we consider the distribution function N (n1, n2, t) that
represents the number of new-phase nuclei in unit vol-
ume of the alloy at the time moment t consisting of n1

atoms of the first component and n2 atoms of the second
one. To use a kinetic equation of the “master-equation”
type, it is necessary that the growth process occurs “step-
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Fig. 2. (а) Optimal trajectories calculated for various relations between the diffusion coefficients of the components in the matrix; (b)
Compositions of new-phase nuclei as functions of the total number of atoms in the nucleus determined along the optimal trajectories
for various relations between the diffusion coefficients of the components in the matrix. Point K shows the parameters of the critical
nucleus. The dotted line xβ = 0.17 corresponds to the parent phase composition. The dotted line xα = xα∞ corresponds to the
equilibrium composition of a new macrophase after the decomposition

Fig. 3. Compositions of new-phase nuclei as functions of the num-
ber of atoms of the second component determined along the op-
timal trajectory for various relations between the diffusion coeffi-
cients of the components in the matrix

by-step” by means of the attachment or detachment of
separate structural components. The optimal trajectory
corresponds to a certain relation of the components in
new-phase nuclei n1 = n1 (n2). This gives a possibility

to proceed to the consideration of the distribution func-
tion of nuclei over the number of atoms of a certain sort,
as the amount of the second component is determined by
the above relation for the optimal trajectory. Perform-
ing the further analysis with the use of the distribution
of nuclei over the number of atoms of the second compo-
nent N(n2, t), we obtain the unambiguous dependences
n1 (n2) and xα (n2) (Fig. 3).

The evolution of the size distribution function of new-
phase clusters along the optimal trajectory is determined
by a kinetic equation of the “master-equation” type [19]:

∂N (n2, t)
∂t

= ω̃
(+)
n2−1,n2

N (n2 − 1, t)− ω̃(+)
n2,n2+1N (n2, t) +

+ω̃(+)
n2,n2+1N (n2 + 1, t) exp

ΔG (n2 + 1)−ΔG (n2)
kBT

−

−ω̃(+)
n2−1,n2

N (n2, t) exp
ΔG (n2)−ΔG (n2 − 1)

kBT
. (8)

Equation (8) is put down in terms of the number of
atoms of the second component n2. Nevertheless, the
frequency of atom attachment ω̃(+)

n2,n2+1 should be consid-
ered with regard for the relation between the frequencies
of attachment of atoms of the both components along the
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Fig. 4. Evolution of the distribution function of new-phase par-
ticles over the number of atoms of the second component for the
case D1

D2
= 0.1. The distribution function is determined by the

relation N
(
n2
n2c

)
= N (n2) n2c

obtained trajectory [13]:

ω̃
(+)
n2,n2+1 =

v2
2α

2∑
j=1

v2jα

ω
(+)
nj,nj+1

, (9)

where the quantities viα = dni
dn characterize the variation

of the composition xα of the new-phase cluster due to
the change of the whole number of atoms in it and are
calculated along the optimal composition trajectory.

Problem (8) is solved numerically with the use of the
following initial and boundary conditions:

N (n2, 0) =
{
N0, n2 = n20,
0, n2 > n20,

(10)

N (n20, t) = N0, (11)

where n20 is the minimal number of atoms of the second
sort in the new-phase nucleus obtained from calculating
the optimal trajectory in the subcritical region, and N0

is a constant.
The obtained system of equations (1)–(4), (8)–(11)

allows us to obtain a self-consistent solution and to con-
struct the size distribution functions N (n2, t) of new-
phase clusters for various time moments. The problem
was solved with the help of the Euler finite-difference
scheme. To simplify the model, we introduced the di-

mensionless time τ = 4πD∗
2cβ

a2
β

(
3

4πcα

)2/3

t.

Fig. 5. Evolution of the distribution function of new-phase parti-
cles over radii for the case D1

D2
= 0.1, where Rc is the radius of the

critical nucleus

5. Results and Discussion of the Solutions of
the Kinetic Problem

The evolution of the distribution function of new-phase
nuclei for the particular case D1

D2
= 0.1 is presented in

Fig. 4. In the following description, the time variable
τ in the designation of the distribution function will be
omitted. The distribution functions over the number
of atoms N (n) or N (n2) monotonously decrease and
develop toward larger sizes. The maximum at the left
boundary corresponds to subcritical nuclei and is deter-
mined by the boundary condition (11).

The obtained distributions can be presented by the de-
pendences in other units: in the size space, volume space,
and so on. It is interesting to present the distribution
function N (R) in the space of sizes (radii) of new-phase
particles, where N (R) = 4πR2cβN (n). In contrast to
the distributions N (n) over the number of atoms inside
a nucleus, the size distribution functions N (R) have a
maximum in the supercritical region (Fig. 5). With in-
crease in time, this maximum shifts to the right and
grows in absolute value. The demonstrated results for
the evolution of the distribution function do not quali-
tatively differ from those obtained earlier [19, 20].

Let us investigate the influence of various kinetic fac-
tors on the behavior of the distribution function and the
characteristics of new-phase clusters. Of interest is the
case of a high-mobility first component: D1

D2
= 10. For

this case, we used the composition profiles (Figs. 2 and
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Fig. 6. Evolution of the distribution function of new-phase par-
ticles over the number of atoms of the second component for the
case D1

D2
= 10

3) and derived the respective solution. The form of the
distribution function significantly depends on the choice
of the space of variables. In particular, in the space of
the number of atoms n2, the behavior of the distribution
function of new-phase particles (Fig. 6) is similar to the
previous one (Fig. 4).

At the same time, the shape of the radius distribu-
tion function N (R) has a significant difference. In the
region of sizes exceeding the critical one, there are two
maxima (Fig. 7,a). Therefore, we call such a shape of
the distribution function bimodal. The indicated bi-
modality is also characteristic of the size distribution
function of the new phase volume V (R) = n

nc
N (R)

(Fig. 7,b). The peculiarity of such a bimodality con-
sists in that the first maximum corresponds to nu-
clei supercritical in size and subcritical in composition
xα < xαc, while the second one is related to those su-
percritical both in size and in composition xα > xαc.
Let us consider this peculiarity from the viewpoint of
the evolution of new-phase particles. A subcritical nu-
cleus appears with the composition close to that of
the parent phase xα ≈ xβ and the size n > nc. In
the process of evolution, the concentration of the sec-
ond component in the nucleus grows with a simulta-
neous decrease of the size (Fig. 2) due to the fact
that more mobile atoms of the first sort leave the nu-
cleus. This process lasts until it reaches the critical
region. In the supercritical region, the size grows si-
multaneously with the concentration. A detailed anal-

Fig. 7. Evolution of the relative size distribution function for the
case D1

D2
= 10: (а) — distribution of new-phase particles; (b) –

distribution of the new phase volume

ysis of the distribution function in the space of radii
demonstrates that the maximum for n2 < n2c does
not change in time due to the establishment of the
stationary distribution of subcritical nuclei. The sec-
ond maximum corresponding to supercritical particles
n2 > n2c shifts toward larger sizes and grows in absolute
value.

Thus, the mechanism considered here can lead to bi-
modal size distributions of new-phase clusters already on
the initial stage of the phase transition.
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EVOLUTION OF NEW PHASE CLUSTERS

6. Conclusions

We simulated the behavior of the distribution function
of new-phase particles in the case of a first-order phase
transition (decomposition) in a binary supersaturated
solid solution. The model uses the generalized Gibbs
nucleation theory to obtain the optimal compositions of
new-phase clusters. Such an approximation in the kinet-
ics of the process can yield bimodal distribution func-
tions (with no regard for the zero point) and demon-
strates a possibility of the existence of the bimodality
of the distribution functions related to a variation of
the composition of new-phase nuclei on the nucleation
stage. The problem of experimental verification of the
presented theoretical results remains as yet open.

The work is performed in the framework of projects
of the Ministry of Education and Science of Ukraine
(Contract M/235-2009) and the joint German-Ukrainian
Project of the Federal Ministry of Education and Science
of Germany (BMBF UKR 08/020).
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ЕВОЛЮЦIЯ КЛАСТЕРIВ НОВОЇ ФАЗИ НА ПОЧАТКОВИХ
ЕТАПАХ РОЗПАДУ БIНАРНОГО СПЛАВУ
У МОДИФIКОВАНIЙ ТЕОРIЇ
ЗАРОДКОУТВОРЕННЯ

М. Пасiчний, А. Шiрiнян, J. Schmelzer

Р е з ю м е

У роботi розглянуто термодинамiку i кiнетику початкових ста-
дiй розпаду в пересиченому бiнарному твердому розчинi у рам-
ках модифiкованої теорiї зародкоутворення нової фази. Пито-
му поверхневу енергiю розглянуто як функцiю iнтенсивних па-
раметрiв стану як кластера, так i матрицi, що дозволяє опису-
вати кластери критичних, докритичних i закритичних розмi-
рiв єдиним чином. Аналiз проведено у два етапи. На першому
етапi визначено оптимальнi залежностi складу кластерiв нової
фази вiд розмiрiв шляхом аналiзу макроскопiчних рiвнянь ро-
сту зародкiв. На другому етапi розв’язано кiнетичне рiвняння
для опису еволюцiї функцiї розподiлу кластерiв нової фази за
розмiрами вздовж оптимальної лiнiї складу. Дослiджено вплив
рiзних кiнетичних факторiв на поведiнку функцiї розподiлу i
характеристики кластерiв нової фази. Отриманi розподiли де-
монструють можливiсть наявностi бiмодальних розподiлiв за
розмiрами кластерiв нової фази.
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