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Based on the calculation of the quasiequilibrium statistical sum
by means of the functional integration method, we obtained a
nonequilibrium statistical operator for the electron subsystem of a
semibounded metal in the framework of the generalized “jellium”
model in the Gaussian and higher approximations with respect to
the dynamic electron correlations. This approach allows one to go
beyond the linear approximation with respect to the gradient of
the electrochemical potential corresponding to weakly nonequilib-
rium processes and to obtain generalized transport equations that
describe nonlinear processes.

1. Introduction

Equilibrium characteristics and nonequilibrium pro-
cesses of diffusion, adsorption, and desorption for spa-
tially inhomogeneous electron-atom systems are de-
scribed with the help of various theoretical approaches,
both available and being developed ones. In particu-
lar, one widely uses the time-dependent density func-
tional theory (TDDFT) [1-13]. During the years of its
development, the TDDFT has demonstrated significant
achievements and still extends its limits of application
[13] though with certain problems [14]. The basis of
the TDDFT is the Kohn—-Sham density functional theory
[15-19]. Another theoretical approach is related to the
hydrodynamic model of surface plasmons for a spatially
inhomogeneous electron gas proposed in [20-22] with the
use of the response theory [23] based on the Boltzmann
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kinetic equation. The quantum statistical theory for
the description of nonequilibrium processes in “metal—
adsorbate—gas” systems was developed in works [24-26]
using Zubarev’s method of nonequilibrium statistical op-
erator (NSO) [27,28|. In particular, a self-consistent de-
scription of nonequilibrium processes in the atomic and
electron subsystems was presented in [24] on the kinetic
level of the description of electron processes. In the pro-
cesses of adsorption, desorption, and surface diffusion, a
metal surface undergoes a reconstruction accompanied
by a variation of nonequilibrium properties of both elec-
tron and ion subsystems. In this case, the electrodiffu-
sion, viscothermal, and electromagnetic properties of the
electron subsystem change in the field of metal surface
ions. To study the ion and electron structures of a semi-
bounded metal, a generalized approach that takes the ef-
fect of discreteness of the ion subsystem into account and
is based upon the model of semibounded “jellium” [29, 30]
was proposed in [25,26]. It is worth noting that the in-
fluence of the discreteness of an ion density on the char-
acteristics of a semibounded “jellium” was considered in
[19,31-33] by means of constructing a perturbation the-
ory with respect to the electron-ion interaction pseu-
dopotential. However, the linear response of the elec-
tron subsystem to the lattice potential did not take the
effects of inhomogeneity of the electron subsystem into
account. The approach described in [25, 29, 30] allows
one to model the formation of a surface potential and
to calculate a large statistical sum for the generalized
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model in terms of the cumulant averages of the “jellium”
model. In [25], the generalized “jellium” model served as
a basis for the statistical description of electrodiffusion
processes for the electron subsystem of a semibounded
metal with the use of the NSO method, where the only
parameter of the reduced description was the nonequi-
librium average value of the electron density. For such
a system, the quasiequilibrium statistical sum was cal-
culated by means of the functional integration method
for the case of the local electron-ion interaction pseu-
dopotential of the metal surface. In principle, it allowed
one to obtain expressions for the nonequilibrium statis-
tical operator in the Gaussian and higher approxima-
tions with respect to the dynamic electron correlations.
In [25], the nonequilibrium statistical operator and the
generalized transport equation of inhomogeneous diffu-
sion were obtained for weakly nonequilibrium processes
(linear approximation with respect to the gradient of the
electrochemical potential). The same approximation was
used to deduce an equation for the “density-density” time
correlation function that determines the dynamic struc-
tural factor of the electron subsystem of a semibounded
metal and to demonstrate the connection of this elec-
trodiffusion model in the linear approximation with the
TDDFT [1-4].

The given study represents the continuation of work
[25]. We will obtain expressions for the nonequilibrium
statistical operator in the Gaussian and higher approx-
imations with respect to the dynamic electron correla-
tions, by calculating the quasiequilibrium statistical sum
by means of the functional integration method. This ap-
proach allowed us to go beyond the linear approximation
with respect to the electrochemical potential. For the
nonequilibrium statistical operator in the correspond-
ing approximations, we will obtain generalized transport
equations for the nonequilibrium average value of the
electron density for strongly nonequilibrium processes
for the electron subsystem of a semibounded metal.

2. Generalized “Jellium” Model.
Nonequilibrium Statistical Operator

2.1. Hamiltonian of the system

Consider an electron-ion system that describes a semi-
bounded metal with regard for the influence of the dis-
creteness of the ion subsystem. We present the Hamil-
tonian of the system in the form

R 1 Y e2
—om 2 it g D T
mi3 i#j=1"" J
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where the first two terms represent the electron kinetic
energy and the potential energy of electron-electron in-
teraction, respectively, the third term stands for the po-
tential energy of ion-ion interaction, and the last one is
the energy of electron-ion interaction. Electrons in the
ion field have the charge e, the mass m, and the coordi-
nates r;, 2 = 1,..., N. By Njon, we denote the number
of metal ions with the charge Ze and the coordinates
R; (—o0 < X;,Y; < 400, Zj < 29, Zp = const, z = Z
is the division plane), j =1,..., Nion. We suppose that
ions are immobile in the system volume V = SL, where
S is the surface area of the semibounded metal, and L
determines the region of variation of the electron coor-
dinate normal to the metal surface: z € (—L/2,4+L/2),
S — 00, L — 0o. We consider that the system is elec-
troneutral, i.e.

ZNion = N. (2)

In [25], Hamiltonian (1) was presented in terms of the
collective variables of the electron subsystem of a semi-
bounded metal specifying the Hamiltonian of the “jel-
lium” model as a reference system:

H =" E.(p)al(p)

a,(p)+

ZSLZ ZVk a)p—k(—q)—

ZNIOII

Z vi(a)Sk(a)pr(a)+

prla) — 5o 32 vlal0)+

q

eNlon Z Sk

Nion

DIED I

l#] 1 q

v(alZi - Z;)e' R, (3)

W+

where the primed sums mean the absence of terms with
q = 0 due to the electroneutrality condition (2), v(q) =
4me?/(¢* + k?) and fr(q) are the three-dimensional
Fourier transforms of the Coulomb potential and the lo-
cal part of pseudopotential (4):

Zq(rHi_rHj)JFik(zi_Zj)’
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zq r;— R“J)+ik(Zi72j)7

f(ri —Ry)

SLka

Ry, = (X;,Y)), v(alz) = 2me?e 1/q is the two-

dimensional Fourier transform of the Coulomb potential:
2 2,2
e

1 hp
c_ 2 —ar| [ —
r S %:Z/(q\z)e » B (p) 2m

of an electron in the state (p, @),

+¢€4 is the energy

Nion

1 e—iqRHj—iij (5)

Nion

Sk(aq) =

j=1

stands for the structural factor of the ion subsystem and
the Fourier transform of the electron density:

pr(@) = Y (aa]e™*|ag)al, (p)ag,(p — ), (6)
where (a1]...|ae) = /dz 00, (2) 0 00y (2). @alz)

and e, are the eigenfunctions and eigenvalues of the
Schodinger equation, respectively,

K2 d2
[‘gmzz

v<z>] pa(z) = capal2),

V(r) = V(2) is the surface potential depending only on
the electron coordinate normal to the division plane.

The same way as in [25], the electrodiffusion processes
in the formulated model are described choosing the av-
erage value of the electron density operator as the main
parameter of the reduced description of nonequilibrium
processes in the electron subsystem of a semibounded
metal. It is connected with the corresponding inhomo-
geneous electric field,

V- E(r;t) = e{o(r))", (7)

where ((...))" = Sp(...)p(t), p(t) denotes the nonequi-
librium statistical operator of the generalized “jellium”
model that satisfies the Liouville equation with the
Hamilton operator (3). With regard for the chosen ge-
ometry of the model, the value of (o(r))? will correspond
to the mixed Fourier representation {px(q))!. To find
p(t) (the solution of the Liouville equation), we employ
Zubarev’s NSO method [27, 28] and obtain, in the gen-
eral case,

t
p(t)=¢ / S =N (=) 5 (1)dt, (8)
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where ¢ — 40 after passing to the thermodynamic
limit, and Ly is the Liouville operator corresponding
to Hamilton operator (3). The quantity p,(t) denotes
the quasiequilibrium statistical operator determined by
the Gibbs method at fixed values of the parameter of the
reduced description {px(q))*, and the normalization con-
dition Sppg(t) =1 hold. In our case, it has the following
form [25]:

palt) = exp | — B(t)—

(HZZuk q; 1)pk(a ) 9)

where ®(t) = In Z(t) is the Massieu—Planck functional,
and Z(t) is the statistical sum of the quasiequilibrium
statistical operator,

Z(t)=Spexp[—ﬁ<H—ZZuk q;t)pr(a )]

(10)

b (q;t) = pk(q;t) + epr(q; t) denotes the Fourier trans-
form of the electron electrochemical potential, g (q;t) is
the Fourier transform of the electron chemical potential,
and ¢ (q; t) is the Fourier transform of the local electric
potential. The quantity fix(q;t) is determined from the
self-consistency condition

(pr(a))’ = (pr(a))y,

and the thermodynamic relations

o) .
@t (pr(a@))", (12)
ost) B
Sontay LAY
(13)
oS _ B
Sep(@) —ﬁsﬁ’k(%t),
where S(t) is the Gibbs nonequilibrium entropy,
S(t) = =Sp(In pg(t))pq(t) =
= () + 6t~ o7 S manin@)) -
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= In Z(t) + B((H)'

Z ok (q, (@)~

*SfIL DY enla; t)<€pk(q)>t)7

kK q

(14)

{epr(Q))t = e(pr(q))? is the average electron charge den-
sity. As follows from the structure of the nonequilibrium
entropy, the transport processes in the system within
the used model are caused by the gradients of the local
chemical and electrochemical potentials.

With regard for the structure of py(t), the nonequilib-
rium statistical operator can be presented in the form

t
p(t) =¢ / st =D il (=) o =S(t) qy/

— 00

¢
= pq(t) + / st =) in (' =) o

— 00

St =InZ(t )+ﬁ<H—ZZuk (a; ) pr( q) (16)

is the entropy operator. In order to reveal the structure
of the entropy operator, it is necessary to calculate the
statistical sum Z(t) of the quasiequilibrium statistical
operator. With regard for the structure of Hamiltonian
(3), Z(t) can be put down as follows: [25]:

Z(t)=Sp {exp(ﬂ(Ho v(q)0)+

28
qa

where B(qa kat) = NionSk(q)wk(q) - ﬁk(qa t)v wk(q) =
—Zup(q) + efi(q), Hy =2, o Ea(p)al,(p)a,(p) is the
kinetic part of the Hamiltonian of the electron subsys-
tem.

Applying the functional integration method and con-
sidering the “jellium” model as a reference system, Z(t)
can be written down as [25]

Z(t) = exp {5;2 > ’u(q|0)} Zien AZ(1), (18)
where
Zien = Sp{ exp(—BHo)TS1(3)} (19)

is the statistical sum of the “jellium” model of the elec-
tron subsystem of a semibounded metal that corresponds
to the equilibrium state calculated in [29, 30];

51(5)=<3XP[ 2SL/ e} Z ZVk

ka(Q|ﬁl)Pk(_qﬁ/)1 (20)

is the contribution of the electron interaction, where
pi(alB’) = e o py(q)e=F Mo,

sp{ exp(—BHo)TS: (5)Sa(8: t)} _

AZ(t) = 5
je

= (S2(8;t))jen, (21)

—5p{ exp(~GHo)TS1(B)(.) };

—Texp{ /dﬁ ZB q.kt)p_i(— q?ﬁ)}' (22)

Using the cumulant representation, AZ(t) can be pre-
sented in the form

i ﬁ n
§;m<ﬂ>

n=

Y. Y Blankit)

AZ(t) = exp [
qi---dn ki...ky

XB(An, kn; )M gy — g, (=1 — qn)‘| , (23)
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where

My (A1) =

= 1" (Tpk, (q1]0), ...

are the cumulant irreducible average values of the elec-
tron density fluctuations calculated with the help of the
equilibrium statistical operator of the “jellium” model of
the electron subsystem of a semibounded metal [29, 30].
In particular, the second cumulant has the structure

Pk, (An |O)>jcell (24)

M, ko (A1, d2) = (P, (A1) Pres (A2) el —

—(pr (@1))jen(Prs (A2))jen (25)

and is connected with the static structural factor

S(k1,a15k2,d2) = (pr, (d1)pr,(92))jen of the electron
subsystem of a semibounded metal. In the Gaussian

approximation, we obtain

AZG()—exp[ ( )

B(agz, k2; t)M g, e, (—qu, %)]

Z Z B qlvkl’

Q192 kiks

(26)

is expressed in terms of the second cumulant of the “jel-
lium” model of inhomogeneous electron gas [29,30]. Ac-
cording to the definition of s-particle electron distribu-
tion functions [25,29,30], we obtain the quasiequilibrium
s-particle electron distribution functions in the form

Fy(ry,...,ry;t) = Fs(ry, ... ,I‘n)jcux
ﬁNlOn
xexplzn,( z > sl
nzl 15--5Ank1,...,k
Blan, ks t)AMY)  (—au,...,—da)], (27)

where
Am(—sl)ﬁ,“.,—kn(iqla R 7qn) =
— m(s) o _ i

—k1,..4,—k~n( i, -- -, qn)
Mk, —k, (—a1, —dn).
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Relations (27) link the quasiequilibrium distribution
functions with the electrochemical potential fix(q;t)
through the corresponding cumulant averages of the “jel-
lium” model. In view of the structure of AZ(t) (26),
In Z(t) can be written as

N ,
InZ(t) = @% Z v(q|0) + In Zjen+
q

Y0 (s 3 Bk
n=1 ..dn ki..
XB(qnakn;t)m—kl“..—kn(_QL--- _qn)a (28)

where In Zjo1 can be calculated in various approxima-
tions with respect to the electron correlations [29, 30].
Based on (28) and (16), we obtain the expression for the
nonequilibrium statistical operator in the general form:

t

_ 1 e(t'—t) iLn(t' —t) f ﬁ "
P(t)—Pq(t)—i-/dte et {n! (SL> x

— 00

x Z Z 8t’( ql,kl;t’)...B(qn,kn;t’)>><

~dn k..

XM gy b (— Q1 — qn)}pq(t’)—

t
_LZZ /ea(t'—t)eiLN(t'—t)
kEoa

1
X / drp} (t') pr(a) py
0

where pr(q) = iLnpr(a) = —kq - Jk(q), and Jk(q) is
the Fourier transform of the microscopic electron flux.
The obtained expression represents a sum of the non-
dissipative and dissipative parts. The first one corre-
sponds to the operator p,(t), while the second one is
described by the terms that contain the time derivatives
of the functions B(q, k;t’) and the microscopic fluxes
pr(q). Moreover, the derivative -2 57 B(q, k;t') can be pre-
sented as

n
~

()i (g t)dt, (29)

O Blakit) = 2 (NouSi(awn(a) - n(a:t) =
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—— gpntast) = = SPED L)
where
AL~ @los-a), (30)
1
(@lp-r(-a), " = [{ (n(a) = on(a)})
0
< (prl-a7) ~ (p-s(-a)ly ) ) (31)

is the quantum quasiequilibrium correlation function,

pr(a; ) = pg (t)pr(@)py T (t).

With regard for (30), the time derivative of B(q,k;t’)
can be presented in the form

2 Blak:t) = (pel@lp(-a)), o lprla)’ =

= (pr(@)lp—r(—a)), " (pr(a))". (32)

Thus, the nonequilibrium statistical operator (29) is a
functional of the pair quasiequilibrium correlation func-
tions (31), equilibrium correlation functions (24), av-
erage values of parameters of the reduced description
{pr(q))?, and microscopic fluxes p(q) of the electron sub-
system of a semibounded metal. To make the description
complete, it is necessary to obtain the transport equa-
tion for (p(q))! with the help of the non-equilibrium
statistical operator (29). Based on the structure of p(t),
one can state that these equations will be nonlinear. The
parameters fix(q;t) in these equations should be found
with the use of the self-consistency conditions (11). The
obtained expression for the quasiequilibrium statistical
operator with the Massieu—Planck functional (28) allows
one to find the nonequilibrium statistical operator in the
corresponding approximations, particularly in the Gaus-
sian one.

3. Gaussian Approximation

Here, we will consider approximation (26), in which the
nonequilibrium statistical operator and the transport
equation for (pr(q))! will be obtained. The index G
in all cases means the description of a function in the
Gaussian approximation.

184

With regard for the structure of (26), we obtain the
entropy operator (14) in the form

(G) ﬂ Z

q|0 +1In Zjeu—

_% (;3]:)22 > (Nionsk1 (a1)wr, (q2) — fir, (on;t))x

k1,k2 41,92
X (Nionskg (d2)wk, (Q2) — fk, (Q2; t)) X

Xm*’ﬁ,*kz (_qh —Q2)+

(33)

+B<H— 72/% (a;t)pk(a )

In order to eliminate the parameters fix(q;t) from this
formula, we use the thermodynamic relation (12)

5Dty .
S o) (il (pr(a))

which yields

(@)’ = &7 %

X Z — e (95 8)) Mg —i(—aq, —q)Sk(q), (34)
where
Sk(q) = NionSk(q)w(q).

Defining the function 91~} "k (—q,—q’) inverse to

M_r,—r(—q, —q) by the relation
> (ad) Mk (4, ) = OO
k// !

and using (34), we obtain the Fourier transform of the
electron electrochemical potential as follows:

fir(a;t) = Sk(a) — (Sﬁl/)_l X

X Z Pk’ ( )m_i/ k(_q/v_q)' (35)
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One can see that the Fourier transform of the elec-
trochemical potential in the Gaussian approximation is
expressed in terms of the structural factor of the ion
subsystem and the Fourier transform of the local part of
the electron-ion interaction pseudopotential. The time
dependence is described by the average nonequilibrium
value of the electron density renormalized through the
structural factor of the ion subsystem, the pseudopoten-
tial wg(q), and the function fm:,lc,ﬁk(—q’, —q) inverse
to the pair irreducible cumulant average value of the
electron density fluctuation. Substituting (35) into the
expression for the Massieu—Planck functional, we obtain

() = Z%(t) = 252 v(q|0) + In Zjen —

7% SN (o (@)’ Sy ) x

k1,k2 91,92

X fmi;lﬁ,_kz(—ql, —Q2)5;§21(Q2)<Pk2 (Q2)>t'

In this case, the entropy operator (33) takes the form

390 =353

(36)

v(q|0) + In Zjen—

)E)in:]lch,]€2 (—Q1, _q2) X

5 o (@) (@

k1,k2 91,92

< 5 () (o (@2) 4+ <H_

x Z P (@) St ()M (= q’7q)}pk(<1)>-

(37)

Instead of using the nonequilibrium statistical operator
in the form (29) to obtain the transport equations for
{pr(q))t, we apply the nonequilibrium statistical oper-
ator with regard for the projection, which allows us to
eliminate the time derivatives of thermodynamic param-
eters [25,27,28]. We obtain

p(t) = py(t)-

t

_ / T (451) (1 - Py(t'))iLnp(t))at,

— 00

(38)
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where
t
Ty(t, ') = exp,. —/ (1= Py(t"))iLndt"
b
denotes the generalized evolution operator with regard

for projection and P, (t') is the generalized Kawasaki-
Gunton projection operator, whose structure depends on

the quasiequilibrium statistical operator p,(t). In our
case, P,(t) has the form
5pq t /
Py(t)p Z Sty (@) | Sp+
5pq /
+Z 5T (px(@)p) (39)
and the operator properties: P, (t)p(t) = pg(t),

Py(t)pq(t) = pg(t), Py(t)Py(t') = P,(t). In order to cal-
culate the nonequilibrium statistical operator according
to (38) in the Gaussian approximation for p( )( t), we
must find, first of all, the Kawasaki-Gunton projection
operator. Taking into account that

N
péc) (t) = exp { — (625 zq: 'v(q|0) + In Zjen—

_% S ok (1)) Sy an) %

k1,k2 91,92

XMy, (—drs —a2) Si (a2) (prs (a2)) '+

+/3<H— ST {Sk<q> ~(gz) Tt

k’ ,a’

xS M QM- (—d, _Q)}Pk(Q))> } (40)
and

ooyt ,

o)y~ 2 w(n-
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we obtain the following expression for the Kawasaki—
Gunton projection operator:

PO (t)p = (o ()+

+ZZ pr(d',7)

k,q k' ,q

— {pw (d))' S () x

xM 4 o (=d, =) S (@) (o (@) o (1) Spp’ —

=Y > (owld,m) = (e (@) S () x

k.q’' k.9’

XMy, (=d', =) S (@)Sp(pr(a)p) ol (t)-

With regard for (41) and the relation

) =Y WD (k,q;t)x

k.q

(41)

iLNpq(t

(42)

AN )
- <5L> > _{ow (@) St (@M}, i (—a, —q>},

k'q
(43)

the nonequilibrium statistical operator can be written
down in the form

P( _ pq Z / e(t’ 7t)TG t t)
Ed o
1
x / ar (ol (¢))7 L (k, q: ') x

< (S ENTTW D (k, g ) dt

186

where

I(k,q;t') = (1= P ) iLnpr(q) (45)

is generalized diffusion flow, P(%)(t) is projection oper-

ator acting on the operator

PABHA=D" > bpw(dst)x (46)
k/,q/ k//’q/l
——1 PN
XMt — o (—a's =) S (4" (4”) A) G,

-1

where Sp (a3 ) = pie () = (@) (£5)  Si' (@),
<()>’EIG) = Sp(..p{@(#)) is the averaging with the
quasiequilibrium statistical operator in the Gaussian
approximation. In its structure, the nonequilibrium
statistical operator is a functional of the microscopic
fluxes pr(q), the observable quantities {px(q))?, and the
quasiequilibrium and equilibrium correlation functions
of the electron subsystem of a semibounded metal. With
its help, we obtain the transport equation for (px(q))*
in the form

0 ¢ . .
(@) = (nla)’ =
:_Z /E(t 7t)D(G (k' q,kl7q t t)W(G)(k q,t)dt7
KL o
(47)
where
D(G)(k q; k', d;t,t') =
t/
= (Lp(k, Ty (1), (K i) ) =
= <Jk( )T, (t ) (d'; T)>t, K =
(G)
= ka- DY (ks K. d'st,t') - K, (48)

(G)(k q; k', q';t,t') is the generalized diffusion coefli-
cient of electrons in a semibounded metal calculated us-
ing the quasiequilibrium statistical operator in the Gaus-
sian approximation.
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4. Approximation By (q;t)Bg (q’;t) B (q”;t)

Let us consider the next approximation after the Gaus-
sian one for the quasiequilibrium statistical sum or the
Massieu—Planck functional (28). In this case, we obtain
the following expression for the entropy operator:

A N /
S'(t) = ﬁﬁ > v(ql0) +In Zien—
qa

- (SBL)Z S Blai kiit)B

1,92 ki1,k2

(d2, ka;t) x

Xm*kh*]% (_qh —Q2)+

( ) Z Z B(qu, k1;t)B(qg, ka: t) x
q1,d2,43 k1,k2,k3
B(as, k3; )M g, —ky,—ks (—d1, —d2, —q3)+
(H— 72#16 qa;t)pr(a ) (49)

In order to eliminate the parameters fix(q;t) from this
formula, the thermodynamic relation (12) will be applied
once again:

6B(t) ,
52 rn(at) (pr(@))".

From here, we derive the equation for fig, (qi;t):

(@)t =~ 50 S (S () — i (s )

q1,92 k1,k2

X Sy (A2)M gy 1y (— 1, —q2) —

G2V S (Sutan )

q1,d2,43 k1,k2,k3
X (S]%(q?) - /j’kQ(q2;t)) Ska(q3)x

XM k) —ko,—ks (—d1, —d2, —q3). (50)

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 2

In its structure, this equation is square with respect to
the functions fig(q;t). To solve it approximately, we re-
place one of the quantities fig,(q;;t) on the right-hand
side of the quadratic form by its value found in the Gaus-
sian approximation (35). Then we obtain a linear equa-
tion for the function fix(q;t):

p

(@)’ = =<7 > (Sw(a) — i (a’51)) x
k’,q

xG _pr —k(—q, —q;t), (51)
where
G ky— ko (—a1, —ap;t) =
= Sk, (@2)M_py —kp (—a1, —q2)+

Eﬁ MWt Q=1 7
+ SN ow(@)! St (d) %

2SL

q’,q3 k’,k3

XM g (—d, —q2)x
X Sk (A3)M k) —ky,—ks (—Q1, —Q2, —Q3)- (52)

As is seen, the function G_y, _k,(—q1, —q2;t) depends
on time through the observable quantities {px/(q))t. It
also depends on the structural factor of the ion subsys-
tem Sy (q), the Fourier transform of the local part of
the electron-ion interaction pseudopotential wy(q), and
the cumulant irreducible average values of the electron
density fluctuations: pair 9M_s _g,(—q, —q2) and triple
ones M_k, g, —ks(—d1, —d2, —q3). The second term on
the right-hand side of Eq. (52) involves the renormaliza-
tion of the triple electron correlations through the pair
ones that make the dominant contribution in the Gaus-
sian approximation (see the previous section).

Defining G:,lm_kz(fql, —qqo;t) as a function inverse
to G_k, —k, (—d1, —q2; 1) by the relation

> G (A, =4 )G, gy (—d
k// 1"

—qa;t) =

= 51@1,1625011,(12

and using Eq.(51), we derive the following expression
for the Fourier transform of the electron electrochemical
potential:

fr(q;t) = Sk(q)—
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a (fL) Z<Pk'(ql)>tG:i/,_k(*q/,*q; t). (53)

k'a
Now, with regard for (53), the entropy operator (49) can

be presented in the form

N
S'(t) = Pyg > 'w(gl0) +In Zien—
q

"N+

L Yo

k' k”q q//

ey ku(q q”;t)(pr(q

32 2

k/ KR 9,9 ,q!

k, k,, wr(dq”, g5 )%

x (pw ()" (prr (a”))" {pro (d")) +

<Sk<q> -( SﬁL)_l 3 (ow (@)

k:’,q’

1
+ﬁ<H—SL

NEWACRYE t)) Pk-(Q)) , (54)
where
GI(C/)]C” q q t Z Z Gk;/ kl q ql? )

k1,k2 41,92

Xm*lﬁ,*]% (_q17 _qQ)G];;kN (qQa q /I; t)v

3
G](i'l)k,/ k.l// (q q q,// )

/»Q1;t)><

Z Z Gl:’?kl (q

k1,k2,k3 d1,92,93
-1 " . —1 " .
XG it 1, (@’ a2 )G (@ dsst) x

Xm_kh—kg,—k?, (_q17 —q2, _q3)

These functions involve the dynamic renormalization
of the cumulant irreducible average values of the elec-
tron density fluctuations: pair MM _p _,(—q, —q2) and
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triple ones M _k, _ky,—ks (—Q1, —Q2, —q3) through func-
tions (52). With regard for the entropy operator (49),
the quasiequilibrium statistical operator reads

N
pEHI(t) = exp ( - <ﬂﬁ > v(dl0) + In Zje—
q

LY St

k/ k! q q//

k:’ k”(q q’; t)

< (prr(d"))"+

3 2. > ¢

k?/ kII 4 q q// q///

k./ k// k/// q q q/I/ )
< (pwr () (prr (a”)) prrr (d")) "+

5 <H S (Skla - (4r) D (ol

k.q k'.q’

xGp(a,ds t))%(q))) : (55)

where the index “(G + 1)” denotes the third order with
respect to the observable parameters in the quasiequilib-
rium statistical operator. In addition to the pair (Gaus-
sian) one, it also allows for the cubic dependence on the
parameters of the reduced description {px(q))? with dy-

. o . ~(2
namic renormalizations in the functions Gi,?k,/(q’ ,q";t)

and G,(j?k,,’k,,, (d',q”,q"';t). Since

ZW (G+1) (k q; )

k.q

Z-LNp(G+1)

< [ @) 0 (56)
0

where

WD (kg t) = %ﬁk(q; t) = SﬁL{Sk(Q)_

- (fL) %q:@w(q»tG_i/,_k(—q’,—q;t)}, (57)
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we obtain the following expression for the nonequilib-
rium statistical operator in approximation (55):

p(t) = POV (1) Z / S -OTGHD (¢ )
x (1= PG (¢)) /(pE,G“))T(t')ﬁk(q)(p§G+1))1’T(t')><
0

x WG (b, q; t')dt’, (58)

where the Kawasaki-Gunton projection operator

Pq(G+1)(t') and the respective evolution operator

Tq(GH)(t,t' ) are calculated with the quasiequilibrium
statistical operator in approximation (55). Moreover,

Pq(GH)(t’ ) has the following structure:

G+1 _ G+1
P (1) = (pé T (t)-

-> { (ﬁpk' (d.7)G(a,d1)—

k.a

(o (@) Gl as))

23S pwela ) owr ()

k/ k!’ q q//

G (o @)} (@) o7 (1)Sp(p') x
+Z{ pi (4, 7) G (@ a5 ) —
~(pw (@)1 G (@ 1)

><* Z > {pow(a ")) x

k/ k! q q//

) (o (a

<G (dd" g t)}Sp(pk<q>p’)ng+”<t>. (59)

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 2

As compared to the result of action of the operator
Pq(G) (t) in the Gaussian approximation, it already in-
cludes the third order with respect to the parameters of
the reduced description. With the help of the nonequi-
librium statistical operator (55), we obtain the transport
equation for (pi(q))! in the form

0

a(ﬂk(qw = (pr(@)) (1)~

t
-y /ee(t"”D(ﬁH)(hq; K,dq'st,t)x
k/-,q/ioo
x WG (K q;t)dt' +

T(G)(t t)p(G+1)( t')x

+z/

ELa' o

< prr (@' 7)) by WD (K o5 ) dt (60)
where
DS (k,q; k', q';t,t') =
= (pr(@) TS (t, ) prr (q’77)>2'c+1) =
= kq(Ie(@TC (1, )T (o5 7)) gy d K =
= kqDS T (k, q K, q'st,t) g K, (61)

DS€+1)(]€, a; k', q;t,t') is the generalized diffusion coef-
ficient of electrons in a semibounded metal calculated
with the quasiequilibrium statistical operator in approx-
imation (55). With regard for the structure of functions
(52) and (57) and the Kawasaki-Gunton projection op-
erator (59), we can conclude that Eq. (60) is nonlinear
with respect to {(px(q))’.

5. Conclusions

Electrodiffusion processes in the electron subsystem of a
semibounded metal are described on the basis of the gen-
eralized “jellium” model with the use of the NSO method,
where the only parameter of the reduced description is
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the nonequilibrium average value of the electron den-
sity. Applying the functional integration technique, we
have calculated the quasiequilibrium statistical sum for
such a system in the case of the local pseudopotential
of electron-ion interaction in a metal in the Gaussian
and higher approximations with respect to the dynamic
electron correlations. They are used to obtain expres-
sions for the nonequilibrium statistical operator in the
Gaussian and higher approximations with respect to the
dynamic electron correlations, which makes it possible to
go beyond the linear approximation with respect to the
electrochemical potential. In the respective approxima-
tions for the nonequilibrium statistical operator, we have
derived the generalized transport equations (generalized
diffusion equations) for the nonequilibrium average value
of the electron density that can be applied to the descrip-
tion of strongly nonequilibrium processes for the electron
subsystem of a semibounded metal. The generalized dif-
fusion coefficients for electrons in a semibounded metal
that enter the corresponding transport equations are cal-
culated with the quasiequilibrium statistical operator in
the respective approximations: Gaussian one (40) and
approximation (55). An important point in such an ap-
proach is that the time correlation functions and the
generalized diffusion coeflicients are calculated with the
quasiequilibrium statistical operator in the correspond-
ing approximation and represent functionals of the ob-
servable quantities (pr(q))’ of a certain order. Of special
interest in this approach are the investigations of the dy-
namic structural factor for the nonequilibrium electron
subsystem of a semibounded metal.
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JIO CTATUCTUYHOT'O OIINCY EJNEKTPOANDYIIMHNX
[IPOIIECIB EJIEKTPOHHOI ITIJJCUCTEMU
HAITIIBOBME2KEHOTI'O METAJIY

B V3ATAJIbHEHIN MOJAEJII “2KEJIE”

II.1I. Kocmpobiti, B.M. Mapxosuu, A.I. Bacunaernxo,
M.B. Toxapuyx

Peszmowme

3a 101oMoroo MeToy GyHKIIIOHAIBHOIO iHTErPyBaHHS OTPUMAHO
HepiBHOBaXKHUI CTATUCTUYHUII ONlepaTop ISl eJIEKTPOHHOI IiAcu-
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cTeMU HalliBOOMEXKEHOI'0 MeTaJly B y3araJjbHeHill Momesni ‘>kese” y
raycoBOMY Ta BHINUX HAOJMUYKEHHSX 33 JUHAMIYHUMU €JIEKTPOH-
HUMU KOPEJIAIisIMU IIPH PO3PaXyHKY KBa3ipiBHOBarKHOI CTATUCTH-
9HOl cyMu. Takuil migxis Ja€e MOXKJIMBICTH BHHATH 3a MexKi JIiHiii-
HOrO HAOJIM>KEHHS 3a I'DAJIEHTOM €JIEKTPOXIMIYHOI'O IMOTEHIaJLY,
sdKe BiAOBi/Ia€ €/1ab0 HEPIBHOBaXKHUM IIPOIECAM, Ta OTPUMATH
y3arajbHeHi PpiBHSHHS HeJstiHifH]

IIepeHocy, $Ki OIUCYIOTb

IIpornecu.
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