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A possible microscopic explanation for the exhaustion of ps in
helium-II at the wall at " > T, ~ 0.5 = 1 K has been proposed,
and a possibility for the “dry” friction to exist in He-IT at T' < T,
has been predicted. Both effects are related to the fact that the
energy of 2D-rotons is lower by 2 K than that of 3D-rotons, so
that the wall is a potential well for the latter.

At wetting, helium atoms stick to a wall. However, tak-
ing into account that rot vy = 0, the velocity vy can-
not grow permanently, when moving away from the wall.
From this reason, V.L. Ginzburg drew conclusion [1] that
Vs has a jump near the wall and, therefore, there must
be “dry” friction in He II. However, such friction was
not found experimentally [2], whence it follows [3] that
ps = 0 at the wall. Later, this hypothesis was confirmed
experimentally [4]. To our knowledge, the microscopic
reason of such an “exhaustion” of ps; has not been elu-
cidated yet. In addition, the helium temperature was
not specified in work [2]. However, if ultralow temper-
atures are not required, experiments with helium-II are
usually carried out at T' > 1.2 K, which is associated
with a cooling procedure. Below in this work, simple
microscopic reasonings are proposed, which can explain
the exhaustion of pg at the wall and allow us to predict
“dry” friction at T' < 1 K.

By definition, p; = p — p,. Therefore, the exhaus-
tion of ps at the wall can originate from the behavior
of either p or p,. It is known that the p corresponds
to the atomic density, and p,, does to the quasiparticle
one. The properties of p can ensure the equality p; = 0
in two cases. First, it can be, if p = 0. However, the
exact zero is impossible, because the wall is not an in-
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finitely high energy barrier, so that the wave function
of He II, together with p, must be different from zero.
Second, it can take place as a result of the exact equal-
ity p = pn. However, nothing forces atoms to arrange in
such a manner that the equality p = p, be satisfied just
at the wall. The following variant is also possible: the
p-value is very low near the wall, so that py is also small;
in this case, dry friction does exist, but it is too low
to be detected. However, in this case, ps must be close
to zero only in a close vicinity to the wall, at distances
not farther than the average interatomic one (because
nothing prevents atoms from approaching so closely).
However, in accordance with the experiment [4, 5], ps is
close to zero at larger distances from the wall (approx-
imately 2 atomic layers). Whence it follows that it is
more likely the properties of p, rather than p that are
responsible for the equality p; = 0 at the wall. In other
words, ps — 0 near the wall as a result of the quasi-
particle behavior rather than the atomic one: owing to
a certain reason, the highest possible concentration of
quasiparticles is attained at the wall, and the condition
for A-transition, ps = 0, is realized. Let us examine this
variant. The fact that the thickness of a helium layer,
for which ps =~ 0 (about 2 atomic layers), approximately
coincides with the effective radius of a roton [6] (about
1.5 atomic layers) testifies in favor of this hypothesis.
The following simple mechanism is possible. From the
results of microscopic calculations [7, 8] and the experi-
ment [9], it follows that the energy Asp of a surface (2D)
roton is lower by approximately 2 K than the energy of a
bulk (3D) roton. From the dispersion curves for 2D- and
3D-rotons (see Figure), it is evident that two processes
may run near the wall: (a) a direct one, i.e. a 3D-roton
creates a 2D-roton and a 3D-phonon, and () an inverse
one: a 2D-roton and a 3D-phonon merge to create a
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3D-roton. One may choose an arbitrary point in the
3D-curve in a vicinity of the roton minimum and draw
two straight lines from it downwards to the right and to
the left at a definite angle with respect to the vertical,
which is equal to the slope angle of the phonon branch.
The intersection points of those straight lines with the
2D-roton curve determine possible states of a 2D-roton,
whereas the vector connecting those points determines a
required 3D-phonon. In this case, the conservation laws
for energy and momentum can be satisfied. The only
restriction is that the z-component of the 3D-roton mo-
mentum has to be small. The binary process 2D-roton
— 3D-roton and the inverse one, as well as the ternary
process 2D-roton — 3D-roton + 3D-phonon and the in-
verse one, are forbidden by the conservation laws. There
may also be quaternary and higher-order processes, but
their probabilities are low.

Therefore, two processes, (a) and (b), dominate
among the roton-assisted ones running near the wall.
Every 3D-roton that approaches the wall can decay into
a 2D-roton and a 3D-phonon with a certain probabil-
ity. Accordingly, every 2D-roton can merge, with a cer-
tain probability, with a 3D-phonon to create a 3D-roton.
However, those probabilities are evidently different: the
former is governed by the process itself, whereas the
latter is also proportional to the concentration of 3D-
phonons with a momentum that corresponds to the tran-
sition. While a 3D-roton can decay immediately, a 2D-
roton has to wait until a required 3D-phonon appears
around it. Therefore, the characteristic time of the lat-
ter process has to be larger. As a result, the creation
of a 2D-roton must occur more frequently than its de-
cay. At T' 2 1 K, the number of rotons is large, and
those 3D-rotons which come to the wall will decay into
3D-phonons and 2D-rotons, until the highest possible
concentration of 2D-rotons is attained, so that p, be-
comes equal to p at the surface and ps vanishes here.
It is what is observed in the experiment. At very low
T < 0.1 K, the number of rotons is several orders of
magnitude smaller than the number of phonons. In this
case, the equality T = T) at the wall is impossible. To
prove it, let us suppose the contrary, i.e. let the con-
centration of 2D-rotons at the wall be maximum, and
let T = Ty. It is evident that, in this case, process (b)
prevails for 2D-rotons, because its probability is propor-
tional to the considerable concentrations of 2D-rotons
and 3D-phonons, whereas the probability of process (a)
is proportional to the concentration of 3D-rotons, which
is very low at T' < 0.1 K. Process (b) continues until the
concentration of 2D-rotons reduces to a certain equilib-
rium value which is to be calculated. However, even
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Experimental dispersion curve for bulk quasiparticles in He II
(solid curve), theoretical dispersion dependence for surface quasi-
particles [7, 8] (crosses), and experimental dispersion dependences
for surface rotons [9] (circles and triangles)

without calculations, it is clear that the temperature T'
of the walls is much lower than 7). One may expect
that the equilibrium concentration of 2D-rotons would
be of the same order of magnitude as the concentration
of 3D-rotons, i.e. very low. In addition, if one takes
into account that, at low temperatures, phonons with
low energies, for which the dispersion curves for 3D- and
2D-phonons (the theoretical one) [7, 8] coincide, play a
crucial role, we come to a conclusion that, if the bulk
temperature T3p < 0.1 K, the helium temperature at the
wall has to be close to the former; accordingly, ps ~ p
near the wall.

The critical temperature T, at which the exhaustion
of ps at the wall disappears, is probably a little lower
than the temperature of transition from the roton dom-
ination to the phonon one and equals to 7T, ~ 0.5+ 1 K.

Note that our conclusions do not demand any calcu-
lations. It is enough to know that processes (a) and (b)
run with different rates; therefore, the number of 2D-
rotons will either decrease until the wall temperature
falls to the phonon one (of about 1 K) or grow until the
concentration of 2D-rotons at the wall reaches the max-
imum with 7" = T and ps = 0. The experiment (ps = 0
at the wall) testifies that the latter scenario is realized.
Since the energy of 2D-rotons is lower by 2 K than that
of 3D-rotons, the wall is a potential well for the latter.

From those reasons, it follows that, in the first helium
layers near the wall, there exists a temperature gradi-
ent. From the symmetry viewpoint, it can emerge as
a result of the system isotropy violation near the wall.
This violation is also responsible for the pressure gradi-
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ent near the wall [4]. Note that, as early as in 1941,
P.L. Kapitsa [10] observed a temperature jump in a
helium layer < 0.01 mm in thickness located near the
heater, when the latter was heated up. This jump was
explained in work [11] as a result of the high thermal
conductivity in helium-II. However, in the calculations
of work [11], the surface excitations of helium were not
taken into account. In accordance with the arguments
presented above, those excitations give rise to a temper-
ature jump in a much thinner helium layer near the wall,
namely, of a few atomic sizes. This jump has a different
nature. It does not require for the heat to be pumped
from outside, and, despite the presence of a tempera-
ture gradient, the state is equilibrium, of course, and the
heat flow is absent. Owing to a high thermal conductiv-
ity of helium, the equilibrium is established, first of all,
in the bulk and near-surface helium, whereas the heat
exchange with the wall is much slower. Nevertheless, a
weak heat exchange between surface helium excitations
and the wall must evidently take place. Therefore, there
must exist a small jump of the temperature between the
wall and the helium bulk, even in the absence of a ther-
mal pumping to the wall or helium. It can be verified in
the experiment. In so doing, one has to take into consid-
eration that such a jump of 7" must exist both between
a heater and helium, and between a thermometer and
helium.

It is of importance that, at T' < T, ps # 0 at the wall.
Therefore, there must exist “dry” friction [1] which can
be tested in a direct experiment of the type proposed in
work [2] or by measuring the dependence of the width of
the surface roton peak on the temperature [9] (at T' = T,
the width should jump). In experiments with the third
sound [5], it was obtained that the restoration length
of ps grows with the temperature at T 2 1 K and is
constant at 7" < 1 K. As far as we know, those depen-
dences have not been explained yet, and the temperature
T =~ 1 K, at which the dependence changes its character,
may probably be T..

The properties of the free helium surface are some-
what different from those of helium near the wall. How-
ever, the energy difference between the surface and
bulk rotons is associated, first of all, with the geomet-
ric factor. Therefore, for the free surface, the equality
Asp >~ Azp — 2 K should probably be valid as well. In
this case, the arguments presented above are valid, and,
at T3p > T,., rotons must condensate on the surface, so
that ps = 0 and T" = T}, there. In view of a probable
high temperature (~ T)) of the surface helium layer, an
issue arises concerning the temperature of free He atoms
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above the He II surface. For He II, “temperature” means
“quasiparticles”. From the conservation laws, it is evi-
dent that, in the case of atoms above the He II surface,
the probability of the energy exchange with He II quasi-
particles is high for quasiparticles in the bulk and low
(however, nonzero) for near-surface ones. Therefore, the
helium vapor temperature has to be higher than that
in the bulk of He II by a small value, which is to be
calculated.

Only the qualitative arguments were presented above.
It seems that the processes in helium-II near the wall
and near the free surface are of interest, being not quite
trivial. They remain to be not clear enough and deserve
a more attention from theorists and experimenters.
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IIPO MOKJIMBICTD “CYXOI'O” TEPTY
YV HAOIIJIMHHOMY He?

M.JT. Tomuernxo
Peszmowme

3amponoOHOBAHO MOXKJIMBE MIKPOCKOIIYHE IOSICHEHHS “BHCHAYKEH-
us’ ps reqito-1I Gims crinku mpu T > T, ~ 0,5-1 K Ta mepenba-
qeHo MoxJuBicTh icHyBanus y He II “cyxoro” Teprst npu T < Te.
Ob6uzasa edexTn moB’s3aHi 3 THUM, 0 eHepria 2D-poronis Ha 2 K
MeHIIa 3a eHeprito 3D-poToHiB, TOMy CTiHKa € HOTEHIIITHOIO SIMOIO
JIJIsT OCTAHHIX.
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