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An investigation of charging a spherical particle in partially ion-
ized nonisothermal plasma is carried out on the basis of the numer-
ical solution of the BGK (Bhatnagar–Gross–Krook) model kinetic
equation. Stationary values of the particle charge and the electron
and ion currents are calculated for various collisional regimes. It
is verified that, for the strongly collisional regime, the effective
potential has a Coulomb form at large distance from the particle
surface. A new BGK-type model for binary gas mixtures is pro-
posed. It is shown that this model satisfies all the basic properties
of Boltzmann collision integrals including the correct exchange co-
efficients. A high-order implicit numerical method for solving the
kinetic equations is developed. The method is conservative with
respect to the collision integrals for arbitrary values of the Knud-
sen number.

1. Introduction

Studying the grain charging and screening in a plasma
background is an important problem in dusty plasma
physics. The process of grain charging is governed by
ion and electron currents. For typical plasma parame-
ters that are recorded in experiments on dusty plasmas,
the collisions between charged particles can be neglected.
Consequently, the ion and electron fluxes to the grain
surface are influenced mainly by electron-neutral and
ion-neutral collisions. The frequency of these collisions
depends on the density of neutrals. The grain charging
in a weakly collisional background is considered in many
works, e.g., [1, 2]. The opposite limit of a strongly col-
lisional background is investigated in [3] on the basis of
a drift-diffusion approach. In addition, the ion velocity
distribution and the ion current on a particle in plasma

are calculated in [4, 5] on the basis of the BGK model
kinetic equation for ions.

The aim of this work is to study the charging and the
screening of a spherical grain in all collisional regimes,
including the transient one. In this regime, the electron-
neutral and ion-neutral mean free paths are comparable
with the Debye length. The charging process is inves-
tigated on the basis of kinetic equations for ions and
electrons in the sphericaly symmetric case. Boltzmann
collision integrals in these equations are replaced with
BGK-type model collision integrals that satisfy all ba-
sic properties: conservation laws, correct equilibrium
state, entropy inequality, and correct exchange coeffi-
cients. The last property is crucial for particles with
different masses (e.g., electron-neutral systems). The
kinetic equations are solved numerically by means of a
high-resolution implicit conservative scheme that is de-
scribed below in detail. For simplicity, He is considered
as the example of a plasma background. In all com-
putations, the plasma background temperature equals
T0 = 0.1 eV, plasma background density equals n0

e =
n0
i = 1010 cm−3, electron-neutral collision cross section

equals σen = 5 × 10−16 cm2, ion-neutral collision cross-
section equals σin = 27.9× 10−16 cm2 (charge exchange
cross section), and grain radius equals r0 = 10−2 cm.
The density of background neutrals varies in the range
n0
n = 1015 ÷ 1018 cm−3.

2. Basic Equations

As mentioned above, we consider only two types of
plasma particles: ions and electrons. Moreover, let us
consider, for simplicity, only singly ionized ions. In view
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of a low density of charged particles, we can neglect col-
lisions between them and assume that electron-neutral
and ion-neutral collisions do not change a state of neu-
trals. Hence, let us consider the kinetic equations for
ions and electrons with regard for the spherical symme-
try. In this case, the distribution functions for ions fi
and electrons fe depend on time t ≥ 0, radius r > 0,
radial velocity −∞ < ξr <∞, and absolute value of an-
gular velocity ξ =

√
ξ2ϕ + ξ2θ ≥ 0, where ξϕ and ξθ are

components of the angular velocity. The kinetic equa-
tions have form

∂fe
∂t

+ ξr
∂fe
∂r

+
(
ξ2

r
− eE

me

)
∂fe
∂ξr
− ξrξ

r

∂fe
∂ξ

= Jen, (1)

∂fi
∂t

+ ξr
∂fi
∂r

+
(
ξ2

r
+
eE

mi

)
∂fi
∂ξr
− ξrξ

r

∂fi
∂ξ

= Jin, (2)

where Jen and Jin are electron-neutral and ion-neutral
collision integrals, respectively. The equation for the
self-consistent electric field E reads as

1
r2

∂

∂r

(
r2E

)
=

e

ε0
(ni − ne) , (3)

where ne and ni are the electron and ion densities, re-
spectively. The grain charge emerges due to a difference
between the electron and ion mobilities. The equation
for the grain charge can be written as follows:

dQg
dt

= −4πr20e (niui − neue)r=r0 , (4)

where Qg is the grain charge, and ue, ui are electron
and ion velocities, respectively. The electron and ion
macroscopic parameters (density, velocity, temperature,
etc.) at each value of radius r are calculated as the
moments of the distribution functions fe and fi:

nα = 2π

∞∫
−∞

∞∫
0

fα ξ dξrdξ, (5)

uα =
2π
nα

∞∫
−∞

∞∫
0

ξrfα ξ dξrdξ, (6)

Tα =
2π

3knα

∞∫
−∞

∞∫
0

mα (ξr − uα)2 fα ξ dξrdξ, (7)

where α = e, i, and Tα is the temperature of charged
particles.

The problem for Eqs. (1)–(4) is considered in the
domain r0 ≤ r ≤ R, t ≥ 0. It is assumed here that
the point r = 0 coincides with the grain center, and a
value of R is large enough to suppose that plasma at this
boundary is undisturbed. At the left boundary (on the
grain surface) r = r0, the following boundary condition
is used:

fe = 0 , fi = 0, ξr ≥ 0; E = Qg/(4πε0r20). (8)

It should be noted that the distribution functions for
falling particles at this boundary, i.e., for ξr < 0, are
obtained from the solution of Eqs. (1)–(2) in accordance
with the classical problem statement for the Boltzmann
equation. Thus, the ion and electron fluxes on the grain
surface, i.e., at the point r = r0, in Eq. (4) are calculated
with the use of Eqs. (5) and (6).

At the right boundary r = R, the undisturbed back-
ground distribution functions are maintained:

f0
e = n0

e

(
me

2πkT0

)3/2

exp
(
−me(ξ2r + ξ2)

2kT0

)
, (9)

f0
i = n0

i

(
mi

2πkT0

)3/2

exp
(
−mi(ξ2r + ξ2)

2kT0

)
, (10)

where ξr ≤ 0. Here again, the distribution functions for
ξr > 0 are obtained by solving Eqs. (1)–(2).

For the initial moment t = 0, we assume that the rela-
tions fi = f0

i , fe = f0
e , and Qg = 0 hold. In the present

work, we are mainly interested in the steady-state solu-
tion of Eqs. (1)–(4). In that case, the final steady-state
value of the grain charge is obtained as the steady-state
solution of Eq. (4), the final radial distributions of ion
and electron macroscopic parameters are obtained from
the steady-state solution of Eqs. (1)–(2) and (5)–(7),
and the final radial distribution of the electric field is
obtained from (3).

3. Model Collision Integrals

Further, let us consider the BGK-type model collision
integrals Jen and Jin. For brevity, only electron-neutral
systems are considered. Thus, the electron-neutral
model collision integral reads as

Jen = ωe
(
M1
e − fe

)
+ ωe

4µen
(me +mn)

(
M2
e − fe

)
, (11)
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where ωe = ν1nn, µen is the reduced electron-neutral
mass, nn is the density of neutrals, and the coefficient
ν1 characterizes the electron-neutral collision frequency.
The functions M1

e and M2
e are as follows:

M1
e = ne

(
me

2πkT̂e

)3/2

exp
(
−me(c2en + ξ2)

2kT̂e

)
, (12)

M2
e = ne

(
me

2πkT̂en

)3/2

exp
(
−me(c2e + ξ2)

2kT̂en

)
, (13)

where cen = ξr − uen, ce = ξr − ue,

uen =
meue +mnun
me +mn

,

T̂en =
Te + Tn

2
,

3kT̂e = 3kTe +me(ue − uen)2,

and un is the velocity of neutrals. It can be shown that if
the neutral-electron collision integral Jne is also written
in the form (11), then the model collision integrals Jen
and Jne satisfy all basic properties (conservation laws,
entropy inequality, correct equilibrium state) of Boltz-
mann collision integrals. In addition, the proposed form
of model integrals provides a correct expression for its
first moments, i.e., the correct exchange coefficients are
achieved.

4. Numerical Method

The equations (1)-(4) are solved numerically in dimen-
sionless form. The following dimensionless variables are
used for electrons: r̃ = r/r0, t̃ = t r0/ve, ñe = ne/n

0
e,

T̃e = Te/T0, ξ̃r = ξr/ve, ξ̃ = ξ/ve, ũe = ue/ve,
f̃e = fe v

3
e/n

0
e, where ve =

√
2kT0/me. For ions, we

use the dimensionless variables r̃ = r/r0, t̃ = t r0/vi,
ñi = ni/n

0
i , T̃i = Ti/T0, ξ̃r = ξr/vi, ξ̃ = ξ/vi, ũi = ui/vi,

f̃i = fi v
3
i /n

0
i , where vi =

√
2kT0/mi. The dimension-

less electric field is Ẽ = E (er0/2kT0), and the dimen-
sionless grain charge is Q̃g = Qg/(4πr30n

0
ee). The fi-

nal dimensionless form of the basic equations is omit-
ted for brevity, but it should be noted that, in the final
form, these equations contain three basic dimensionless
parameters: rD – non-dimensional Debye length, Ken –
electron-neutral Knudsen number, and Kin – ion-neutral
Knudsen number that have the form

rD =
1
r0

√
2kT0ε0
e2n0

e

,

Ken = veτen/r0,

Kin = viτin/r0.

The electron-neutral collision frequency is defined as
τ−1
en = n0

n

√
2EH/me σen, and the ion-neutral collision

frequency is defined as τ−1
in = n0

n(4/3)
√

8kT0/πµin σin,
where µin is the ion-neutral reduced mass.

In order to digitize the kinetic equations (1), (2) and
Eq. (3) we introduce a conventional finite-volume mesh
in the physical and velocity spaces. At that, the mesh
in the velocity space is uniform, and the radial mesh is
nonuniform with clustering at the grain surface. For the
time digitization of Eqs. (1) and (2), the implicit fac-
tored scheme [6] is used. Spatial derivatives are approx-
imated by means of the 5-th order finite-volume WENO
scheme [7]. Ion and electron macroscopic parameters are
calculated from Eqs. (5)-(7) by means of the second-
order central point quadrature rule. In order to make
the method conservative with respect to the collision in-
tegrals for arbitrary values of the Knudsen numbers, the
correction procedure proposed in [8,9] is used. Equation
(4) for the grain charge is solved by the one-step explicit
Euler method, and the electric field is obtained from the
integral form of Eq. (3) (by means of the Ostrogradskii–
Gauss theorem):

E(r) =
Q(r)

4πr2ε0
, (14)

where r0 ≤ r ≤ R, and

Q(r) = Qg + 4π

r∫
r0

e (ni − ne) r2dr (15)

is the total charge within a sphere with radius r. The
integral in (15) is calculated by means of the composed
trapezoidal method. In all computations, we took R =
50rD, where R is given in dimensionless form.

5. Numerical Results

Let us consider the results obtained from the numerical
solution of Eqs. (1)–(4). In all computations, the dimen-
sionless Debye length equals rD = 0.33, and the approx-
imate equality Ken ≈ Kin holds. Figure 1 illustrates the
final steady-state relative charge distributions Q(r)/Qg
for various Knudsen numbers. Here, Q(r) is calculated
with the help of Eq. (15), and Qg is the steady-state
solution of Eq. (4). The density, velocity, and temper-
ature radial distributions for various Knudsen numbers
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Fig. 1. Relative charge distribution for various Knudsen numbers

Fig. 2. Density distribution for various Knudsen numbers

Fig. 3. Velocity distribution for various Knudsen numbers

in the final steady-state regime are shown on Figs. 2-4,
respectively. It should be noted that all values presented
in these figures are obtained for dimensionless variables.
Thus, we refer the reader to the beginning of Section 4
for more details.

One can see from Fig. 2 that there exists a sheath
near the grain surface that ranges up to 10rD. For
the strongly collisional regime where Kea � 10rD, we
observe the Coulomb-type asymptotic behavior of the
screened field with some effective charge (see Fig. 1,
Kea = 0.17). This result correlates with that of [3].
In the opposite limit of a collisionless sheath where
Kea � 10rD, we observe a finite screening length (see
Fig. 1, Ken = 17). This result is also in agreement with
analogous calculations [1, 2]. For the transient regime
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Fig. 4. Temperature distribution for various Knudsen numbers

where the sheath is weakly collisional, we also observe
the Coulomb-type asymptotic behavior of the screened
field (see Fig. 1, Ken = 1.7). But, in this case, the value
of effective charge is smaller than that for the strongly
collisional regime.

Finally, Fig. 5 demonstrates the grain charging kinet-
ics for various Knudsen numbers. Here, the grain charge
Qg is measured in 4πr30n

0
ee, and the time te is measured

in r0/ve (see Section 4). The dotted line in this figure
represents a stationary value of the grain charge. One
can see from Fig. 5 that the stationary value of the grain
charge decreases with decrease in the Knudsen number.
In addition, one can observe a nonmonotonic behaviour
of the charging curve. As shown in Fig. 5, the grain

Fig. 5. Grain charging kinetics for various Knudsen numbers. Dot-
ted line shows the stationary value of the grain charge

charging is a two-stage process. The first stage is rela-
tively short. Its duration is approximately 10r0/ve, and
this stage corresponds to the establishment of the elec-
tron flow. The second stage is longer than the first one.
It corresponds to the establishment of the ion flow, and
its duration increases with decrease in the Knudsen num-
ber. Hence, the total duration of the establishment of
the steady-state regime depends mainly on the duration
of the second stage of the charging process.

6. Conclusions

In the present work, the grain charging kinetics is inves-
tigated numerically on the basis of model kinetic equa-
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tions for ions and electrons. A new BGK-type model for
binary gas mixtures is proposed. It is shown that this
model satisfies all the basic properties of Boltzmann col-
lision integrals including correct exchange coefficients.
A high-order conservative implicit numerical method for
solving the kinetic equations is developed.
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ЧИСЕЛЬНЕ ДОСЛIДЖЕННЯ КIНЕТИКИ ЗАРЯДЖАННЯ
ЧАСТИНКИ НА ОСНОВI КIНЕТИЧНОГО РIВНЯННЯ
БАТНАГАРА–ГРОССА–КРУКА

I.Л. Семенов, А.Г. Загороднiй, I.В. Кривцун

Р е з ю м е

Проведено дослiдження заряджання сферичної частинки в
частково iонiзованiй неiзотермiчнiй плазмi на основi чисель-
ного розв’язку модельного кiнетичного рiвняння Батнагара–
Гросса–Крука. Визначено стацiонарнi значення заряда частин-
ки, електронного та iонного струмiв для рiзних режимiв зi-
ткнень. Показано, що в континуальному режимi ефективний
потенцiал має кулонiвський вигляд на великих вiдстанях вiд
частинки. Запропоновано нову модель БГК типу для бiнарної
сумiшi газiв. Показано, що дана модель задовольняє основнi
властивостi iнтегралiв зiткнень Больцмана, включаючи коре-
ктнi рiвняння переносу. Розроблено неявну схему високого по-
рядку точностi для розв’язку кiнетичного рiвняння. Показано,
що метод є кiнетично консервативним при довiльних значен-
нях числа Кнудсена.
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