
ASTROPHYSICS AND COSMOLOGY

296 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 3

SCALAR FIELD POTENTIAL DISTRIBUTION
FOR A “THICK” NULL STRING OF CONSTANT RADIUS

O.P. LELYAKOV

V.I. Vernadskyi Taurida National University
(4, Vernadskyi Ave., Simferopol 95007, Ukraine; e-mail: lelyakov@ tnu. crimea. ua )

PACS 04.60.CF

c©2011

The general form of the scalar field potential distribution for a
“thick” null string of constant radius moving along the axis z and
completely lying in a plane orthogonal to this axis at every time
moment is proposed. The conditions, under which a contraction
of the field to a one-dimensional object (circle of radius R) re-
sults in the asymptotic coincidence of components of the energy-
momentum tensor of a scalar field with those of a closed null string
of the same radius, are found.

1. Introduction

String theories show the steady progress during several
recent decades. In spite of problems inevitable for any
developing theory, they arouse admiration both due to
the results already obtained and their great possibili-
ties in the future. On the one hand, the interest in
cosmic strings and other topological solutions is initi-
ated by the role possibly played by topological defects
in the process of evolution of the Universe (e.g., string
mechanisms of generation of primary inhomogeneities of
the matter density in the early Universe or ideas of the
topological inflation). On the other hand, it is due to the
physical properties of these objects significantly differing
from those of common matter [1]–[7].

Null strings realize the zero tension limit in the
string theory [5], [8]. The components of the energy-
momentum tensor for a null string have the following
form [8]:

Tmn
√
−g = γ

∫
dτdσ xm,τx

n
,τδ

4
(
xl − xl (τ, σ)

)
, (1)

where the indices m,n, and l take on the values 0, 1,
2, and 3, the functions xm = xm(τ, σ) determine the
trajectory of a null string, τ and σ are the parameters

on the light surface of the null string, xm,τ = ∂xm/∂τ ,
g = |gmn|, gmn is the metric tensor of the environment,
and γ = const.

In the cylindrical system of coordinates,

x0 = t, x1 = ρ, x2 = θ, x3 = z,

the functions xm(τ, σ) that determine the trajectory of
a closed string with constant (time-invariant) radius R
moving along the axis z and completely lying in a plane
orthogonal to this axis at every time moment have the
following form:

t = τ, ρ = R = const, θ = σ, z = ±τ, (2)

where the signs ± correspond to the choice of the direc-
tion of motion. For definiteness, the negative sign will
be supposed in (2) hereinafter. It is worth noting that
trajectory (2) is rather often realized for a closed null
string moving in background gravitational fields, for ex-
ample in the space-time of a plane gravitational wave [9]
and in Lorentz spaces with a nontrivial conform group
which describe the propagation of shock gravitational
waves [10].

Under conditions (2), the nonzero components of the
energy-momentum tensor (1) are as follows:

T 00 = T 33 = −T 03 =
γ√
−g

δ(q)δ(ρ−R), (3)

where q = t+ z.
For trajectory (2), all directions on the hypersurfaces

z = const are equivalent; therefore, the metric functions
gmn = gmn(t, ρ, z). Using the invariance of the quadratic
form with respect to the inversion of θ to −θ, we obtain

g02 = g12 = g32 = 0. (4)
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One can also see that the space-time quadratic form
must be invariant with respect to the simultaneous in-
version t→ −t, z → −z. Hence,

gmn(t, ρ, z) = gmn(−t, ρ,−z), (5)

which yields

g01 = g31 = 0. (6)

Finally, using the free choice of the systems of coordi-
nates in the general relativity theory, we partially fix it
by the requirement

g03 = 0. (7)

Thus, the quadratic form for the problem to be solved
can be presented as

dS2 = e2ν(dt)2 −A(dρ)2 −B(dθ)2 − e2µ(dz)2, (8)

where ν, µ,A, and B depend on the variables t, ρ, and z.
Since trajectory (2) must be one of the solutions of the

motion equations of a null string, additional restrictions
imposed on the metric functions can be obtained, whose
fulfillment provides the constancy of a trajectory of the
null string specified by (2).

The motion of a null string in the pseudo-Riemannian
space is determined by the system of equations [5]

xm,ττ + Γmpqx
p
,τx

q
,τ = 0, (9)

gmnx
m
,τx

n
,τ = 0, gmnx

m
,τx

n
,σ = 0, (10)

where Γmpq are the Christoffel symbols. Putting down the
first of Eqs. (10) for (8), one can make sure that it has
the form e2ν − e2µ = 0 for trajectory (2). Consequently,

ν ≡ µ, (11)

whereas the rest of equations of system (9), (10) for (2),
(8) under condition (11) are reduced to the single equa-
tion ν,t − ν,z = 0, which yields

ν = ν(q, ρ). (12)

Then, according to (4),

ν(q, ρ) = ν(−q, ρ), (13)

i.e., the function ν(q, ρ) is even in q.
Analyzing the system of Einstein equations con-

structed for (3), (8) and using conditions (11)–(13), the

dependence of functions of the quadratic form (8) can
be redefined as

A = A(q, ρ), B = B(q, ρ). (14)

In this case, the Einstein system itself is reduced to the
equations

A,qq
A

+
B,qq
B
− 2ν,q

(
A,q
A

+
B,q
B

)
−

−1
2

((
A,q
A

)2

+
(
B,q
B

)2
)

= −2χT00, (15)

2ν,ρρ + 2(ν,ρ)2 +
B,ρρ
B
− 1

2

(
B,ρ
B

)2

+

+ν,ρ

(
B,ρ
B
− A,ρ

A

)
− 1

2
A,ρ
A

B,ρ
B

= 0, (16)

B,qρ
B

+ 2νq,ρ − ν,ρ
(
A,q
A

+
B,q
B

)
−

−1
2
B,ρ
B

(
A,q
A

+
B,q
B

)
= 0, (17)

2ν,ρρ + 3(ν,ρ)2 − ν,ρ
A,ρ
A

= 0, (18)

(ν,ρ)2 + ν,ρ
B,ρ
B

= 0, (19)

where T00 = γ e2ν
√
AB

δ(q)δ(ρ−R).
With the use of the obtained conditions (11), (12),

and (14), expression (8) can be presented in the form

dS2 = e2ν
(
(dt)2 − (dz)2

)
−A(dρ)2 −B(dθ)2, (20)

where ν = ν(q, ρ), B = B(q, ρ), and A = A(q, ρ). It is
also worth noting that, according to (5), the functions
A(q, ρ) and B(q, ρ) in (20) are even in q, i.e.,

A(q, ρ) = A(−q, ρ), B(q, ρ) = B(−q, ρ). (21)

Equation (3) implies that, beyond the string, i.e., at
q 6= 0, ρ 6= R, all components of its energy-momentum
tensor are equal to zero, while the non-zero ones (tending
to infinity) appear directly at the string. This allows one
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to investigate the system of Einstein equations in two
directions:

1. By restricting oneself to the analysis of the “exter-
nal” problem in the region, where the components of the
energy-momentum tensor (right-hand sides of the Ein-
stein equations) are equal to zero.

2. By considering the components of the energy-
momentum tensor of a string as a limit of some “thick”
distribution and analyzing the Einstein equations for this
“thick” distribution.

As was shown in [11], the analysis of the “external”
problem results in a large number of vacuum solutions of
the Einstein equations that satisfy the problem symme-
try. However, the criteria allowing one to choose those
describing the gravitational field of a null string from
this totality of solutions remain unclear. When trying
to consider the components of the energy-momentum
tensor of the string as a limit of some “thick” distribu-
tion (e.g., simply replacing the delta functions in the
energy-momentum tensor by the corresponding delta-
function sequences), some errors can arise due to the
indeterminacy of considering the possible appearance
of terms (multipliers) tending to zero (constant) under
the contraction of this “thick” distribution into a one-
dimensional object. That is why it is more suitable
to start from some “well-determined” “thick” distribu-
tion such as, for example, a real massless scalar field
(as we consider a scalar null object) and then to con-
tract it to a string of the required configuration provided
that the components of the energy-momentum tensor of
the scalar field asymptotically coincide with those of the
null-string energy-momentum tensor.

2. System of Einstein Equations for the “Thick”
Problem

The components of the energy-momentum tensor for a
real massless scalar field have the form [2]

Tαβ = ϕ,αϕ,β −
1
2
gαβL, (22)

where L = gωλϕ,ωϕ,λ, ϕ,α = ∂ϕ/∂xα, ϕ is the scalar
field potential, and the indices α, β, ω, and λ take on the
values 0, 1, 2, and 3. To provide the self-consistency of
the Einstein equations and tensor (22), we demand that

Tαβ = Tαβ (q, ρ)→ ϕ = ϕ (q, ρ) . (23)

Putting down Eq.(22) for quadratic form (20), we obtain

T00 = (ϕ,q)2 +
e2ν

2A
(ϕ2
,ρ), T01 = T13 = ϕ,qϕ,ρ,

T33 = (ϕ,q)2 −
e2ν

2A
(ϕ2
,ρ), T03 = (ϕ,q)2,

T11 =
1
2
(ϕ,ρ)2, T22 = − B

2A
(ϕ,ρ)2. (24)

The system of Einstein equations for (20), (24) can be
presented as follows:

2ν,ρρ + 3(ν,ρ)2 − ν,ρ
A,ρ
A

= −χ
2

(ϕ,ρ)2, (25)

(ν,ρ)2 + ν,ρ
B,ρ
B

=
χ

2
(ϕ,ρ)2, (26)
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+
B,qq
B
− 2ν,q

(
A,q
A

+
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B

)
−

−1
2

((
A,q
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)2

+
(
B,q
B

)2
)

= −2χ (ϕ,q)
2
, (27)

2ν,ρρ + 2(ν,ρ)2 +
B,ρρ
B
− 1

2

(
B,ρ
B

)2

+

+ν,ρ

(
B,ρ
B
− A,ρ

A

)
− 1

2
A,ρ
A

B,ρ
B

= −χ
2

(ϕ,ρ)2, (28)

B,qρ
B

+ 2νq,ρ − ν,ρ
(
A,q
A

+
B,q
B

)
−

−1
2
B,ρ
B

(
A,q
A

+
B,q
B

)
= −2χϕ,qϕ,ρ. (29)

Let us consider system (25)–(29) for the distribution of
the scalar field already concentrated inside a “thin” ring
with the variables q and ρ taking values in the interval

q ∈ [−Δq,+Δq] , ρ ∈ [R−Δρ,R+ Δρ] . (30)

Here, R stands for the radius of a closed null string, while
Δq and Δρ are small positive constants that determine
the “thickness” of the ring, i.e.,

Δq � 1, Δρ� 1. (31)

With a further contraction of this “thin” ring into a one-
dimensional object (null string),

Δq = 0, Δρ = 0, (32)
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the space, where such a “thick” null string moves and for
which the variables q and ρ take on values in the inter-
val q ∈ (−∞,+∞), ρ ∈ [0,+∞), can be conditionally
divided into three regions:
– region I, for which

q ∈ (−∞,−Δq) ∪ (+Δq,+∞) , ρ ∈ [0,+∞) , (33)

– region II, for which

q ∈ (−Δq,+Δq) , ρ ∈ [0, R−Δρ) ∪ (R+ Δρ,∞) , (34)

– region III, for which

q ∈ [−Δq,+Δq] , ρ ∈ [R−Δρ,R+ Δρ] . (35)

Moreover, since the scalar field is concentrated inside
such a “thin” ring specified by (30)–(32), the scalar field
potential is equal to zero in regions I and II, contrary
to region III (inside the “thin” ring), where ϕ 6= 0.

Since the contraction of the scalar field into a string
must result in the asymptotic coincidence of system
(25)–(29) with the system for a closed null string (15)–
(19), we obtain for the regions specified by (33), (34)
(regions I and II):

ϕ = 0, ϕ,ρ = 0, ϕ,q = 0. (36)

For the region specified by (35) (inside the “thin” ring),
we have, in the general case,

ϕ 6= 0, ϕ,ρ 6= 0, ϕ,q 6= 0. (37)

Comparing the system of Einstein equations for a
closed null string (15)–(19) with system (25)-(29), we
may conclude that, under the contraction of the scalar
field into a string of the required configuration, i.e., at
Δq = 0, Δρ = 0,

(ϕ,ρ)2
∣∣
q=0,ρ=R

= 0, (ϕ,q)2
∣∣
q=0,ρ=R

→∞,

(ϕ,ρϕ,q)|q=0,ρ=R = 0. (38)

According to (36), the scalar field potential in region I
at any fixed value of q = q0 ∈ (−∞,−Δq)∪ (+Δq,+∞),
and all values of ρ ∈ [0,+∞)

ϕ(q0, ρ) = 0. (39)

Considering the scalar field potential distribution at any
fixed value of q = q0 ∈ (−Δq,+Δq) (regions II and III),
we obtain that the condition

ϕ(q0, ρ) = 0 (40)

must be realized if ρ ∈ [0, R−Δρ) ∪ (R+ Δρ,+∞) (re-
gion II), whereas, for ρ ∈ (R−Δρ,R+ Δρ) (region III),

ϕ(q0, ρ) 6= 0. (41)

3. Scalar Field Potential Distribution for a
“Thick” Null String

For the obtained conditions (39)–(41), it is suitable to
present the scalar field potential distribution in the form

ϕ(q, ρ) = ln
(

1
α(q) + λ(q)f(ρ)

)
, (42)

where the functions α(q) and λ(q) are symmetric with
respect to the inversion of q to −q, i.e.,

α(q) = α(−q), λ(q) = λ(−q), (43)

the function α(q) + λ(q)f(ρ) is bounded

0 < α(q) + λ(q)f(ρ) ≤ 1, (44)

and the scalar field potential specified by (42), in accor-
dance with (44), can assume values from

ϕ = 0, at α(q) + λ(q)f(ρ) = 1, (45)

to

ϕ→∞, at α(q) + λ(q)f(ρ)→ 0. (46)

Moreover, according to (39), (45),

α(q) = 1, λ(q) = 0 (47)

in region I.
Since the scalar field potential equals zero in region II,

the following condition must be met at q ∈ (−Δq,+Δq)
and any fixed value of ρ ∈ [0, R−Δρ) ∪ (R+ Δρ,+∞):

α(q) + λ(q)f(ρ0) = 1. (48)

In region III, ϕ 6= 0. Therefore, for the same values of
q ∈ (−Δq,+Δq) and at ρ ∈ (R−Δρ,R+ Δρ),

0 < α(q) + λ(q)f(ρ0) < 1. (49)

Equation (48) implies that, for all ρ ∈ [0, R−Δρ) ∪
(R+ Δρ,+∞), the values of the function f(ρ) are con-
stant

f(ρ)|ρ∈[0,R−Δρ)∪(R+Δρ,+∞) = f0 = const. (50)

Moreover, f0 6= 0, while the functions α(q) and λ(q) are
interconnected:

λ(q) =
1
f0

(1− α(q)) . (51)
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Substituting (51) into (49), we obtain

0 < α(q) + (1− α(q))
f(ρ0)
f0

< 1 (52)

for region III (ϕ 6= 0). This together with (46) and (52)
mean that, as ϕ→∞,

α(q)→ 0, f(ρ)→ 0. (53)

Thus, the functions α(q) and f(ρ) in the expression for
the scalar field potential (42) are bounded and, for any
q ∈ (−∞,+∞) and ρ ∈ [0,+∞), take on values in the
intervals

0 ≤ α(q) ≤ 1, 0 ≤ f(ρ) ≤ f0. (54)

Moreover, according to (47),

α(q)|q∈(−∞,−Δq)∪(+Δq,+∞) = 1 (55)

in region I, whereas conditions (53) with regard for the
symmetry of the function α(q) (Eq.(43)) yield

lim
q→0

α(q)→ 0. (56)

The distribution for the function f(ρ) at ρ ∈
[0, R−Δρ) ∪ (R+ Δρ,+∞) is determined by Eq. (50),
and, according to (53),

f(ρ)|ρ→R → 0. (57)

Differentiating (43) with regard for (51), we obtain

ϕ,q = − α,q(1− f(ρ)/f0)
α(q) + (1− α(q))f(ρ)/f0

,

ϕ,ρ = − (1− α(q))f,ρ/f0
α(q) + (1− α(q))f(ρ)/f0

. (58)

Using (47), (48), and (50) for (58), we obtain that ϕ,ρ =
0 and ϕ,q = 0 in regions I and II, which coincides with
(36). In region III as ρ→ R, the first of Eqs. (58) with
regard for (57) can be presented in the form

ϕ,q = −α,q/α(q). (59)

This, according to (38), yields

|α,q/α(q)|q=0 →∞ (60)

at Δq = 0,Δρ = 0.
With regard for (56), the second of Eqs.(58) as q → 0

can be presented as

ϕ,ρ = −f,ρ/f(ρ). (61)

According to (38), at Δq = 0,Δρ = 0,

f,ρ/f(ρ)|ρ=R = 0. (62)

On the other hand, considering Eqs.(58) in some small
neighborhood of the circle q = 0, ρ = R, i.e., inside
the region, where the scalar field is concentrated with
f(ρ)/f0 � 1, α(q)� 1 (according to (56), (57)), we can
put down

ϕ,qϕ,ρ =
(α,q/α(q))(
1 + 1

f0

f(ρ)
α(q)

) × (f,ρ/f(ρ))(
1 + f0

α(q)
f(ρ)

) . (63)

Then, according to (38), the following condition must be
satisfied at Δq = 0,Δρ = 0:(
α,q
α(q)

)
×
(
f,ρ
f(ρ)

)∣∣∣∣
q=0,ρ=R

= 0. (64)

As an example, the functions α(q) and f(ρ) satisfying
the found conditions can be chosen as follows:

α(q) = exp
(

−1
η + (ξq)2

)
, (65)

f(ρ) = f0 exp

(
−γ

(
1− exp

(
−1

(ζ(ρ−R))2

)))
, (66)

where the constants ξ and ζ determine the size (“thick-
ness”) of the ring with the scalar field concentrated in-
side with respect to the variables q and ρ, respectively.
Namely, as follows from (65), (66) as Δq → 0, Δρ→ 0,

ξ →∞, ζ →∞, (67)

while the positive constants η and γ provide the fulfill-
ment of conditions (56), (57), (60), and (62) at Δq =
0,Δρ = 0, q = 0, and ρ = R. Namely, at Δq � 1
Δρ� 1, we have

η � 1, γ � 1. (68)

With a further contraction into a one-dimensional object
(null string), i.e., at Δq = 0, Δρ = 0,

η = 0, γ →∞. (69)

Using (51), (65), and (66) for (42), we obtain the expres-
sion for one of the possible distributions of the potential
of the massless scalar field, whose components of the
energy-momentum tensor asymptotically coincide with
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Fig. 1. Distribution of the function α(q)+(1−α(q))f(ρ)/f0 for (65)
and (66) at R = 5, η = 0.01, ξ = 2, and ζ = γ = 4; q ∈ [−10, 10],
ρ ∈ [0, 10]

Fig. 2. Distribution of the function α(q) + (1 − α(q))f(ρ)/f0 for
(65) and (66) at R = 5, η = 0.01, γ = 4, ξ = 10, and ζ = 20;
q ∈ [−10, 10], ρ ∈ [0, 10]

those of a closed null string of radius R under contrac-
tion into a one-dimensional object (circle of the same
radius).

Figures 1 and 2 present the distributions of the func-
tion α(q)+(1−α(q))f(ρ)/f0 in the region q ∈ [−10, 10],
ρ ∈ [0, 10] for the functions α(q) and f(ρ) specified by
Eqs. (65) and (66) at R = 5, η = 0.01, γ = 4 corre-
sponding to the following choice of the constants: ξ = 2,
ζ = 4 (Fig. 1) and ξ = 10, ζ = 20 (Fig. 2). One
can see from these figures that, with increasing values of
the constants ξ and ζ, the region of the non-unity func-
tion α(q)+ (1−α(q))f(ρ)/f0 (i.e., the region, where the
scalar field is concentrated, and the scalar field potential
differs from zero) contracts, which corresponds to a de-
crease of the “thickness” of the ring with the scalar field
concentrated inside.

Figures 3 and 4 show the distributions of the scalar
field potential specified by Eqs. (42), (51), (65), and (66)

Fig. 3. Scalar field potential distribution specified by (42), (51),
(65), and (66) with respect to ρ (ρ ∈ [0, 10]) at q = 0.01; R = 5,
η = 0.01, γ = 4, ξ = 0.5, and ζ = 0.5

Fig. 4. Scalar field potential distribution specified by (42), (51),
(65), and (66) with respect to ρ (ρ ∈ [0, 10]) at q = 0.01; R = 5,
η = 0.01, γ = 4, ξ = 1.3, and ζ = 1.3

with respect to the variable ρ (ρ ∈ [0, 10]) at R = 5, η =
0.01, γ = 4, and q = 0.01 with the following constants:
ξ = 0.5, ζ = 0.5 (Fig. 3) and ξ = 1.3, ζ = 1.3 (Fig. 4).
The black region corresponds to ϕ = 0. One can see that,
with increasing constants ξ and ζ, the region of the non-
zero scalar field potential contracts, which corresponds
to a decrease of the “thickness” of the ring with the scalar
field concentrated inside with respect to ρ.

In Figs. 5 and 6, one can see the distributions of the
scalar field potential specified by Eqs. (42), (51), (65),
and (66) on the surface θ = const at R = 5, η = 0.01,
and γ = 4 with ξ = 0.5, ζ = 0.5 (Fig. 5) and ξ = 1.3,
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Fig. 5. Scalar field potential distribution specified by (42), (51),
(65), and (66) on the surface θ = const; R = 5, η = 0.01, γ = 4,
ξ = 0.5, ζ = 0.5, q ∈ [−10, 10], and ρ ∈ [0, 10]

ζ = 1.3 (Fig. 6). Here, q ∈ [−10, 10], ρ ∈ [0, 10]. It is
obvious that an increase of the constants ξ and ζ results
in the contraction of the region with the non-zero scalar
field potential. In other words, the “thickness” of the
ring, where the scalar field is concentrated, decreases.

4. Conclusions

Comparing the systems of Einstein equations for the dis-
tribution of the real massless scalar field concentrated
inside a thin ring and for a closed null string with radius
R moving along the axis z and completely lying in a
plane orthogonal to this axis at every time moment, we
have obtained the conditions for the scalar field poten-
tial, under which a contraction of the scalar field into a
one-dimensional object (circle of radius R) results in the
asymptotic coincidence of the components of the energy-
momentum tensor of the scalar field with those of the
closed null string of the same radius. The general form
of the potential distribution describing the motion of the
scalar field concentrated inside a thin ring of constant
radius along the z axis is proposed. An example of the
scalar field potential distribution satisfying the obtained
conditions is given.
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РОЗПОДIЛ ПОТЕНЦIАЛУ СКАЛЯРНОГО ПОЛЯ
ДЛЯ “РОЗМАЗАНОЇ” НУЛЬ-СТРУНИ
СТАЛОГО РАДIУСА

О.П. Леляков

Р е з ю м е

У роботi запропоновано загальний вигляд розподiлу потен-
цiалу скалярного поля для “розмазаної ” нуль-струни стало-
го радiуса, яка прямує уздовж осi z i в кожен момент ча-
су цiлком знаходиться у площинi, ортогональнiй цiй осi. Зна-
йдено умови, за яких компоненти тензора енергiї-iмпульсу
скалярного поля, при стисканнi поля в одновимiрний об’єкт
(коло радiуса R), асимптотично збiгаються з компонентами
тензора енергiї-iмпульсу замкненої нуль-струни того ж радiу-
са.
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