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High amplification events (HAEs) are common phenomena in ex-
tragalactic gravitational lens systems (GLSs), where the multi-
ple images of a distant quasar are observed through a foreground
galaxy. There is a considerable brightness magnification in one
of the quasar images during HAE. Grieger, Kayser, and Refs-
dal (1988) proposed to use HAEs to study the central regions
of quasars in GLSs. In this paper, we consider some problems
concerning the identification of different source types on the basis
of the HAE observations. We compare the results of light curve
simulations to estimate a feasibility to distinguish different source
models in GLSs. Analytic approximation methods yielding so-
lutions of the lens equation in a vicinity of fold caustic crossing
events are presented. The results are used to obtain amplifica-
tion factors, which the higher-order corrections for the Gaussian,
power-law, and limb-darkening models of a source take into ac-
count.

1. Introduction

Gravitational lens systems can be viewed as natural tele-
scopes that provide a valuable information about remote
objects. In an extragalactic gravitational lens system
(GLS), a distant quasar is observed through a foreground
galaxy. The gravitational field of the galaxy can bend
light rays from the source sufficiently so that there are
multiple light rays that reach an observer. The observer
sees an image in the direction of each ray, so that the
source appears multiply imaged.

Light rays from a quasar pass through the lensing
galaxy in different regions. Local variations of gravi-
tational fields in these regions, which are mainly due to
a relative motion of the lensing galaxy and the source,
lead to considerable brightness variations in each image
(gravitational microlensing), which can be detected even

by modest telescopes. The typical time scales of these
microlensing processes may vary from weeks to months.
A comparison of the independent brightness variations
in different images provides a valuable information about
the lensing galaxy and about the source structure [1, 2].
One of the most important applications of the microlens-
ing concerns a unique possibility to study a fine structure
of the central quasar region that cannot be resolved in
another way with modern observational techniques. This
is important because the quasars in GLSs have high red-
shifts. Therefore, when studying the quasars, we learn
something about a corresponding early epoch.

HAEs – considerable brightness magnifications in one
of the images of a quasar – are common phenomena in
extragalactic GLSs. Grieger, Kayser and Refsdal [3] pro-
posed to use HAEs to study the central regions of the
quasars in GLSs. Typically corresponding variations of
the brightness in a neighborhood of the HAE can be
approximately described by a formula containing a few
fitting parameters. This makes it possible to estimate
some GLS parameters, in particular, the source size [3].
For example, in case of the well-known GLS Q2237+0305
“Einstein Cross” [4], several HAEs were observed [5–7],
and the estimates of the source size have been obtained
for different source models [8–14]. Almost all HAEs in
the Q2237+0305 GLS are attributed to the intersection
of a fold caustic in the source plane (see, e.g., [15]). In
view of the increasing accuracy of photometric observa-
tions, a possibility to distinguish different source models
is also discussed (see, e.g., [16, 17]).

Here, we study some problems dealing mainly with the
investigation of the source structure in an extragalactic
GLS using the light curves of the source images. We dis-
cuss the results of simulations of light curves for different
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microlensed source models and present some analytic ap-
proximations yielding solutions of the lens equation in a
vicinity of the fold caustic crossing events. The results
are used to obtain amplification factors for some source
models that take the “post-linear” corrections into ac-
count.

Note that, in reality, we have, indeed, a unique light
curve for each image of the quasar in a GLS. The high
amplification events are not too frequent, and it may
take a considerable time to accumulate a sufficient statis-
tics and even to wait a repetition of the HAE. Thus, the
main attention is paid to the determination of source
properties from a single light curve compared with the
light curves of the other images. On the other hand,
since the work by Kochanek [18] followed by a number of
works [15, 17, 19–23], numerous statistical methods have
been developed to process complete light curves. These
methods treat the whole available light curves from all
the images, not only HAEs. There is an enormous num-
ber of the degrees of freedom which prohibit the simul-
taneous determination of all the parameters of a GLS
(microlens positions, their masses, and the source pa-
rameters). But the observational data restrict possible
realizations of the microlens masses and the positions,
so one may estimate the conditional probability of cer-
tain parameter values. Such approach is very attrac-
tive because it allows one to use the whole aggregate
of observational data on image light curves. However,
this involves a large number of realizations of the mi-
crolensing field and, respectively, a considerable com-
puter time.

On the other hand, the source structure manifests it-
self only in HAEs; far from the caustic, the source looks
like a point one, and all the information about its struc-
ture is lost. If we restrict ourselves to a HAE neighbor-
hood, then we use the most general model concerning a
microlensing field described by a small collection of the
Taylor expansion coefficients in the lens mapping.

The structure of this paper is as follows. Section 2
contains some basics of the gravitational lensing, a short
review of the problems concerning the determination of
a source model from HAE observations, and a list of
typical models. In Section 3, we present the results of
simulations for these source models, in particular, the
differences of light curves. In Section 4, we outline ap-
proximation methods to investigate solutions of the lens
equation used to derive the amplification coefficient of
a point source. The result is used to obtain amplifica-
tions of an extended source near the fold caustic for some
source models. Section 6 contains the discussion of the
results.

2. General Relations and Notations

2.1. The lens equation

First, we recall some general notions concerning the
gravitational lensing that can be found, e.g., in book
[1]. The normalized lens equation has the form

y = x−∇Φ (x) , (1)

where Φ (x) is the lens potential. This equation relates
every point x = (x1, x2) of the image plane to the point
y = (y1, y2) of the source plane. In the general case,
there are several solutions X(i) (y) of the lens equation
(1) that represent images of one point source at y; we
denote the solution number by the index in parentheses.

If there is no continuous matter on the line of sight,
the potential must be a harmonic function: ΔΦ = 0.
Below, we assume that this condition is fulfilled in a
neighborhood of the critical point. We note, however,
that if the continuous matter density is supposedly con-
stant during a HAE, this can be taken into account by
a suitable renormalization of the variables.

The amplification of a separate image of the point
source is

K(i) (y) = 1
/∣∣J (X(i) (y)

)∣∣, (2)

where J (x) ≡ |D (y)/D (x)| is the Jacobian of the lens
mapping. In the microlensing processes, microimages
cannot be observed separately; therefore, we need the
total amplification that is a sum of the amplification
factors of all the images.

The critical curves of the lens mapping (1) are de-
termined by the equation J (x) = 0 and are mapped
onto the caustic in the source plane. The stable critical
points of a two-dimensional mapping can be folds and
cusps only, the folds being more probable in a HAE. In
this paper, we confine ourselves to the consideration of a
fold caustic. When the point source approaches the fold
caustic from its convex side, two of its images approach
the critical curve, and their amplification tends to infin-
ity. They disappear when the source crosses the caustic.
These two images are called critical.

2.2. Problems

Let I(y) be the initial surface brightness distribution of
an extended source. If the source center is located at the
point Y = (Y1, Y2) in the source plane, then the total
microlensed flux from the source is

F (Y) =
∫∫

I(y(x)−Y) dx1dx2, (3)
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x = (x1, x2). The result of using Eq. (3) is obviously
equivalent to the result of the well-known ray-tracing
method [1] (when the pixel sizes tend to zero).

An equivalent representation of this formula is

F (Y) =
∫∫

K(y)I(y −Y) dy1dy2, (4)

where the point source amplification K(y) =
∑
i

Ki(y)

is the sum of amplifications of all the images.
Near the caustic, one can approximate K(y) = K0 +

Kcr(y), where K0 is the amplification of all noncritical
images that is supposed to be constant during HAE, and
Kcr is the amplification of the critical images. Due to
a relative motion of the lensing galaxy and the source
(quasar), the flux is a function of time representing the
light curve of some quasar image in the GLS. In the
lensing galaxy rest frame, the quasar motion may be
considered as a straight-line motion with a sufficient ac-
curacy. Here, we are mostly interested in the caustic
crossing events when the quasar intersects the caustic in
the source plane leading to a considerable enhancement
of the image brightness. The light curve yields informa-
tion about the source structure and about the gravita-
tional field of the lensing galaxy. Particularly, the form
of a light curve near a HAE depends on the function
I(y), and the question is whether it is possible to use
this dependence in order to identify this function.

To illustrate the typical problems arising in the con-
ventional treatment of a HAE, we consider an approx-
imate relation for the amplification coefficient Kcr(y)
of a point source located at the point y = (y1, y2) of
the source plane which is located near the fold. In
the appropriate coordinate system, the amplification of
a point source can be approximated as Kcr(y1, y2) =
A0(y2)−1/2Θ(y2) [1], where y2 is the distance between
the point source and the caustic, and Θ(y2) is the Heav-
iside step function. The observed radiation flux from the
extended source image during the HAE is then obtained
from Eq.(4) yielding an integral equation for the one-
dimensional luminosity profile f(y2) =

∫
I(y1, y2)dy1:

F (t) = C1 +A0

∫
Θ(y2)(y2)−1/2f(y2 − Y2(t))dy2, (5)

Y(t) = (Y1(t), Y2(t)) is the source center trajectory
which can be written as a linear function of time; F (t) is
known from observations, C1 describes a contribution of
noncritical images and can be considered to be constant
during the HAE. Thus, we have an equation for f(y).

The main problems concerning with this equation are
as follows.

(i) Equation (5) gives us nothing about the whole func-
tion I(y1, y2) we are interested in, unless some supposi-
tions about the form of the source are made, e.g., the
supposition about circular symmetry. Also, even for
known F (t) and Y2(t), Eq. (5) presents a kind of the
ill-posed mathematical problems: small variations of in-
put data can lead to a considerable change of the so-
lution. A standard way to relax this difficulty involves
additional restrictions on f(y) and/or the use of some
explicit models for the brightness distribution I(y) con-
taining a small number of free parameters. Some of these
models are considered below in the next subsection.

(ii) It is clear that a real brightness profile of the cen-
tral quasar region is quite different from the simplified
brightness distributions of the following section that can
be considered rather as some reference models. How-
ever, in view of the present-day accuracy of observa-
tions, sometimes it can be difficult to distinguish even
these simple source models using a HAE. For example,
the authors of [17] argue that the light curves from a ac-
cretion disk can be well fitted with any brightness profile
(Gaussian, uniform, etc.) of an appropriate source size.
On the other hand, a number of authors [8–10,15–19,23]
discussed the delicate questions concerning the determi-
nation a fine quasar structure from HAEs. For example,
the authors of [16] wrote that the GLITP data [5] on
Q2237+0305 admit only accretion disc models (see also
[15, 19]). Obviously, the presence of an accretion disk in
the central region of a quasar is beyond any doubts, as
well as the fact that the real quasar core can be quite
different from its simplified models in question. The
question is how to prove a posteriori the existence of
the accretion disk on a basis of available observational
data.

One must also have in mind that, without using an
additional information (besides HAEs), we cannot de-
termine even the source size, because we do not know
the value and the direction of the source velocity with
respect to the caustic. Also, different ellipticities and
orientations of the source may lead to different forms of
the light curves during a HAE.

(iii) The kernel Kcr of the integral equation (5) is a
result of the so-called linear caustic approximation of the
lens equation. This will work correctly only in the case
where the source size is much smaller than the caustic
curvature radius. Below, we consider corrections to Kcr

that arise in the post-linear approximation. However,
these approximations also require the source to be suffi-
ciently small. This requirement can be violated in case
of a complicated caustic network or in the presence of a
population of small microlenses (cf. planetary masses).
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2.3. The extended source models

Below, we list the simplest most commonly used bright-
ness distributions of the source in a GLS; without loss
of generality, they are chosen to be normalized to 1:∫∫

I(y) dy1dy2 = 1.

To compare different models of brightness distribution,
we have to use the same parameter that characterizes
the size of an object. The most general is the r.m.s. size
Rrms:

R2
rms =

∫∫
y2I(y) dy1dy2. (6)

For a slowly decreasing brightness profile (e.g., I(y) ∼
|y|−α, α ≤ 4 ) the r.m.s. size diverges. In the case of the
circularly symmetric sources, the half-brightness radius
R1/2 is also widely used; it is defined by the relation

2π

R1/2∫
0

I(r)r dr = π

∞∫
0

I(r)r dr. (7)

In the case of the Gaussian source model,

IG(r) =
1

πR2
exp

[
−
( r
R

)2
]
, (8)

where R = Rrms, R1/2 = R
√

ln(2), and R stands for a
size parameter.

The limb-darkening (LD) model (see, e.g., [24]) yields

ILD(r) =
q + 1
πR2

Ξ(r/R; q), (9)

where

Ξ(ξ; q) = Θ(1− ξ2)(1− ξ2)q,

and R2 = (q + 2)R2
rms. Here, we assume q > 0. The

half-brightness radius is R1/2 = R
√

1− (1/2)1/(q+1).
Models (9) and (8) describe a class of compact sources

with a fast decrease in the brightness. On the contrary,
the power-law models [9, 10] describe a slower decrease
at large r:

IPL(r) =
p− 1
πR2

[
1 + r2/R2

]−p
, (10)

where p > 1 is the exponent, and R is related to the
r.m.s. radius Rrms as R2 = (p− 2)R2

rms. Model (10)
is an alternative to (9). The half-brightness radius of

the source within this model is R1/2 = R
√

21/(p−1) − 1.
For fixed Rrms and p → ∞, the brightness distribution
(10) tends to the Gaussian one. For small p, we have a
“long-range” distribution; Rrms diverges for p ≤ 2.

Linear combinations of different distributions with dif-
ferent parameters yield rather a wide class of symmetric
source models.

A more complicated profile is presented by the
Shakura–Sunyaev model (AD) of accretion disk [25]

IAD(r) =
3Rθ(r −R)

2πr3

[
1−

√
r

R

]
. (11)

For the AD model, the half-brightness radius is R1/2 =
4R, Rrms =∞

Another model [18, 25] (AD1) can be defined as

IAD1(r) =
CAD1

R2

[
exp(ρ3/4)− 1

]−1

, ρ = r/R, (12)

CAD1 = 3(8πΓ(8/3)ζ(8/3))−1 ≈ 0.06,

ζ(x) is the Riemann zeta function, Γ(x) is the Gamma
function, and

R2
rms = R2 Γ(16/3)ζ(16/3)

Γ(8/3)ζ(8/3)
≈ 21.4R2.

It is also interesting to study a superposition of the LD
and AD models (LA), where the accretion disk has a
boundary

ILA(r) =
C(q)Ξ(ρ; q)

R2
[
exp(ρ3/4)− 1

]−1 , ρ = r/R, (13)

where C(q) is a normalizing coefficient; C(1) =
0.42, C(2) = 0.54, C(3) = 0.64.

3. Simulations of Light Curves

3.1. Equations of microlensing

In the case without continuous matter on the line of
sight, the lens equation takes the form

y = x−R2
E

N∑
i=1

x− xi
|x− xi|2

, (14)

where xi are positions of the microlenses in the lens
plane, and RE is the radius of the Einstein ring for one
microlens which is assumed to be the same, RE = 1, for
all microlenses.
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Fig. 1. Magnification pattern with the trajectory of the source
in the source plane (coordinates are measured in RE units). The
source moves from left to right along the straight line with uniform
speed

Here, we present the results of straightforward calcula-
tions of the microlensed flux (3) to obtain the light curves
for different realizations of the microlens positions. All
calculations were performed for the microlensing optical
depth σ = 0.3. The total number of microlenses was
1470.

The microlens positions were chosen in a random way
with uniform distribution over the field. The trajectory
length has been taken so as to provide the caustic cross-
ings. The size of the microlens field was chosen large
enough to avoid boundary effects.

3.2. Light curves

The form of the light curve of the microlensed source
in caustic crossing events depends on details of the
source structure. However, the point is to determine
the most relevant source model with regard for this
form. In this work, we compare the light curves
within the Gaussian, PL, LD, AD, and AD1 source
models. The simulations were performed for the set
of 100 realizations of a microlensing field with the

T a b l e 1. Parameters of simulation
Parameter Value

Number of pixels 1.23× 106

Pixel size 0.01 RE

Source trajectory length 2 RE; 5 RE

Radius of field 70 RE

Microlensing optical depth (σ) 0.3
Source speed (V ) 1
Time discretization (δt) 0.01 RE/V

-2 -1 0 1 2
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6

8

10

12

14

 AD
 Gaussian
 AD1
 LD
 PL

 

 

K(
t)

t

Fig. 2. “Light curves”: the amplification as a function of time
for different source models that correspond to the magnification
pattern in Fig. 1

optical depth σ = 0.3 corresponding to parameters
of Q2237+0305 [26–29]. All models have the same
half-brightness radius R1/2. The calculations were per-
formed for the same microlenses fields. The source
speed is V = 1, so we can identify the source posi-
tion as a function of time t. All the microlenses are
static. The typical magnification pattern is shown in
Fig. 1.

First, we present the results of simulations with the
same half-brightness radius R1/2 = 0.21; the power-law
exponent was p = 3/2 for the “long range” PL model; the
AD model also corresponds to this class of the power-
law asymptotic dependence with p = 3/2). For LD and
LA models, we have chosen q = 1 throughout the paper.
From the “light curves” in Fig. 2, we observe a significant
difference between the compact (LD and Gaussian) and
“long-range” models. The long-range character of the
latter reveals itself even at considerable distances from
the caustic, where we expect that the brightness of all
sources must have the same behavior as that of a point
source. The differences between these two groups of
models are essentially larger than the differences within
each group (e.g., between the Gaussian and LD models).
This conclusion is confirmed by the results of statistical
considerations over 100 realizations shown in Table 2
for the half-brightness radius R1/2 = 0.21 as an exam-
ple.

To compare different models i and j, we used the rel-
ative difference

η = 2max
t

(
|Ki(t)−Kj(t)|
Ki(t) +Kj(t)

)
, (15)
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Fig. 3. Magnification pattern with simple caustic crossing events

where Ki(t) is the amplification for the i-th model along
the trajectory of source’s linear movement.

These results can depend on a complexity of the caus-
tic involved into our consideration (i.e., there can be
parts of the fold caustic close to the cusp points, or
there can be dense aggregations of caustics). From
many-year observations of the light curves of such GLS
as Q2237+030, one can rule out such complex cases.
Therefore, we considered some modification of our sta-
tistical consideration with rather simple fold caustic
crossings. However, the numerical results of this mod-
ification with simple caustic crossing events (such as
in Fig. 3,4 as an example) appeared to be nearly the
same as those of Table 2. As an example, Table 3
shows the results of simulations analogous to those in
Table 2 with the r.m.s. radius Rrms = 0.21; here,
we excluded the models with Rrms = ∞ (here, p =
3 for the PL model). The larger error is due to a
smaller number of realizations with the “simple” caus-
tic.

T a b l e 2. Relative difference between models in HAE
i-th model j-th model η

AD Gaussian 0.074± 0.0012

AD AD1 0.085± 0.002

AD LD 0.091± 0.002

AD PL 0.038± 0.001

Gaussian AD1 0.073± 0.0017

Gaussian LD 0.042± 0.001

Gaussian PL 0.073± 0.0013

AD1 LD 0.094± 0.002

AD1 PL 0.052± 0.0012

LD PL 0.090± 0.002

0,0 0,5 1,0 1,5 2,0
3

4

5

6

7

8

K(
t) 

 AD
 Gaussian
 AD1
 LD
 PL
 AL

 

 t

Fig. 4. Light curves (magnification curves) for different models
of source brightness profile that correspond to the magnification
pattern of Fig. 3

3.3. Gaussian fittings of the accretion disk and
limb darkening models

The above results concern with a comparison of differ-
ent models with the same R1/2 or Rrms. However, in
reality, we do not know the source model to fit, and one
may ask why a light curve is not fitted within a differ-
ent model. Therefore, one must verify whether we can
replace one model with a different one with some other
source parameters to get a better fitting.

We have fitted the limb-darkening and accretion disk
model light curves with that of the Gaussian source of
different radii. The half-brightness radius varied from
R1/2 = 0.2RE to R1/2 = 0.24RE; here, p = 3/2 and
q = 1.

As we can see from Fig. 6 and Table 4, the Gaus-
sian source cannot reproduce all the models, though the
fitting results are rather good for the class of compact
models. For example, the LD model can be replaced by
the Gaussian model with the other source size. The rel-
ative differences between models in Fig. 6 and Table 4

T a b l e 3. Differences between source’s models with the
same Rrms = 0.21RE parameter in simple caustic crossing
events; here, p = 3, q = 1

i-th model j-th model η

AD1 Gaussian 0.12± 0.04

LD Gaussian 0.03± 0.01

PL Gaussian 0.05± 0.012

AD1 LD 0.14± 0.05

AD1 Power-law 0.08± 0.03

LD PL 0.08± 0.02
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Fig. 5. Light curves of the LD, AD1 and AL models are fitted
with a Gaussian source of different sizes from R1/2 = 0.2RE to
R1/2 = 0.24RE with step δR1/2 = 0.001RE. These light curves
correspond to the magnification pattern of Fig. 3

show that it is possible to fit a considerable part of the
whole curve with different source models on the accuracy
level which is comparable to that of modern photometric
observations.

4. Approximation Methods

4.1. Statement of the problem

The study of a caustic crossing event is closely related
to the investigation of the lens equation solutions. This
equation near a fold can be expanded in powers of lo-
cal coordinates; in the lowest orders of this expansion,
the caustic is represented by a straight line; so, this ap-
proximation is often referred as a “linear caustic approx-
imation”. In this approximation, the point source flux
amplification is given by a simple formula (5) including
the distance to the caustic and two fitting parameters.
In the most known cases, the linear caustic approxima-
tion is sufficient to fit the observed light curves during
HAEs at the modern accuracy of flux measurements. At
the same time, the consideration of “post-linear” terms
is sometimes necessary to explain the present observa-
tional data. The need for a modification of this formula
– e.g., by taking the caustic curvature into account – is
being discussed for a long time [9, 30, 31]. The correc-

T a b l e 4. Differences between models for fitted curves
i-th model j-th model η

AD Gaussian (R1/2 = 0.2) 0.07± 0.006

LD Gaussian (R1/2 = 0.24) 0.026± 0.002

LA Gaussian (R1/2 = 0.2) 0.034± 0.006

0,0 0,5 1,0 1,5 2,0
0,00

0,01

0,02

0,03

0,04

0,05

0,06

 LD-Gaussian (R1/2=0.239 RE)
 AD1-Gaussian (R1/2=0.222 RE)
 LA-Gaussian (R1/2=0.211 RE)

 

t

t

Fig. 6. Relative differences between the Gaussian, LD, AD1, and
LA models for best fitted curves

tions to the amplification coefficient in the case of the
macrolensing were the subject of investigations dealing
with the problem of “anomalous flux ratios” [32]. A mod-
ification of the post-linear approximation allows one to
improve the quality of the fitting of the HAE light curve
of the image C in the GLS “Einstein Cross” [33,34]. One
may hope for that an improvement of the photometric
accuracy of GLS observations will make it possible to
obtain additional parameters of the lens mapping con-
nected with the mass distribution in the lensing galaxy.
Below, we study some points of an approximate solution
of the lens equation near the fold caustic which probably
is crossed by the source in many HAEs.

The standard consideration of the caustic crossing
events deals with the Taylor expansion of the potential
near some point of the critical curve in the image plane.
Let this point be the coordinate origin in an appropri-
ate coordinate system, and let this point map onto the
coordinate origin of the source plane. Further, we ro-
tate the coordinate systems in both planes so that the
abscissa axis on the source plane is tangent to the caus-
tic at the origin, the quantity |y2| defines locally the
distance to the caustic, and y1 defines a displacement
along the tangent. For the harmonic potential, we can
write the corresponding lens equation as

y1 = 2x1 + a
(
x2

1 − x2
2

)
+ 2bx1x2 + c

(
x3

1 − 3x1x
2
2

)
−

−d
(
x3

2 − 3x2x
2
1

)
+ gx4

2 + ...,

y2 = b
(
x2

1 − x2
2

)
− 2ax1x2 + d

(
x3

1 − 3x1x
2
2

)
+

+c
(
x3

2 − 3x2x
2
1

)
+ fx4

2 + ...,

(16)
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where a, b, c, d, g, and f are expansion coefficients. If the
y2 axis is directed toward the convexity of the caustic,
then b < 0 (at fold points, b 6= 0).

We now proceed to the derivation of approximate so-
lutions of Eqs. (16). To do this, we present two differ-
ent methods [33]. The first method deals with analytic
expansions in powers of a small parameter. However, it
results in nonanalytic functions of coordinates leading to
nonintegrable terms in the amplification coefficient. The
second method does not lead to such problems, though it
uses a somewhat more complicated representation of the
solution of the lens equation containing square roots of
analytic functions. The methods agree with each other
in a common domain of validity; moreover, we use the
second method to justify some expressions in the ampli-
fication formulas in terms of distributions to validate the
applications to extended source models. A more detailed
presentation may be found in [33].

First, we suppose that the source and the caustic lie
on different sides from the y1 axis. Then, y2 > 0, and
we substitute

yi = t2ỹi, x1 = t2x̃1, x2 = tx̃2, (17)

where i = 1, 2, and t can be considered as a parameter
of vicinity to the caustic. This is a formal substitution
that makes easier the operations with different orders of
the expansion. After calculations, we put t = 1 and thus
return to the initial variables yi. However, if we put ỹi to
be constant with varying t, then this substitution allows
us to study a local behavior of critical image trajectories;
t = 0 corresponds to crossing the caustic by a point
source, when two critical images appear. As was shown
in [33], this allows one to look for solutions of Eqs. (16),
by using the expansions of x̃i in powers of t:

x̃1 = x̃10 + x̃11t+ x̃12t
2 + ...,

x̃2 = x̃20 + x̃21t+ x̃22t
2 + .... (18)

It should be stressed that the analyticity in t does not
mean that the coefficients of expansions (18) will be an-
alytic functions of coordinates ỹi in the source plane (see
below).

In terms of the new variables (17), system (16) takes
the form (up to the terms ∼ t2)

ỹ1 = 2x̃1 − ax̃2
2 + t(2bx̃1x̃2 − dx̃3

2)+

+t2(ax̃2
1 − 3cx̃1x̃

2
2 + gx̃4

2),

ỹ2 = −bx̃2
2 + t(−2ax̃1x̃2 + cx̃3

2)+

+t2(bx̃2
1 − 3dx̃1x̃

2
2 + fx̃4

2). (19)

The substitution of expansions (18) into (19) allows us
to determine all coefficients successively. For example,
for the zero-order terms, we have

x̃10 =
1
2

(
ỹ1 −

a

b
ỹ2

)
, x̃20 = ε

√
ỹ2/ |b | , (20)

where ε = ±1 determines two different critical solutions.
This approximation yields the well-known formula for
the amplification (5).

The first-order approximation terms have been derived
in [32, 35]. In microlensing observations, two critical im-
ages cannot be resolved, so we need the total amplifi-
cation coefficient of two critical images. However, the
contributions of the order of ∼ t appear to be cancelled
in calculations of the total amplification. Therefore, to
obtain a nontrivial correction to the zero-order amplifi-
cation, higher order approximations should be involved.
These corrections have been derived in [33, 34]. Note
that the corresponding second-order terms contain ex-
pressions nonanalytic in ỹ2. Though the second-order
corrections are expected to be small, they appear to be
noticeable in some cases even in the analysis of the avail-
able data on light curves in the Q2237+0305 GLS.

4.2. Method 2

The other approach to the construction of approximate
solutions of the lens equation in a vicinity of the fold is
described in [33]. This allows us to present the critical
solutions of system (19) in the following form:

x̃1 = p+ trε
√
w,

x̃2 = ts̄+ ε
√
w, ε = ±1. (21)

After the substitution of Eqs. (21) in the lens equation,
the terms containing integer and half-integer powers of
w can be separated [33]. After some algebra, this yields
a system that is convenient for an iterative procedure re-
sulting in analytic expansions for the functions p, r, s̄, w
both in powers of t and ỹi at every step of iteration [33].
In [33], such a solution was obtained up to the terms
∼ t2. If we expand

√
w in powers of t, then we immedi-

ately have the solution in the form (18).
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4.3. Amplification of a point source

The solutions of the lens equation are then used to de-
rive the Jacobians of the lens mapping (for both images
near the critical curve). According to (2), the value of
J−1 yields the amplification of individual images. As
we pointed out above, we need the total amplification of
two critical images (the sum of two amplifications of the
separate critical images). In the second-order approxi-
mation (using the expansion up to the terms t2), this
is

Kcr =
1
2

Θ (y2)√
|b| y2

[
1 + Py2 +Qy1 −

κ

4
y2
1

y2

]
, (22)

where the constants P and Q are expressed via the Tay-
lor expansion coefficients from Eq.(1), and

κ =
a2 + b2

2 |b|
;

Θ(y2) is the Heaviside step function. Note that κ is the
caustic curvature at the origin which enters explicitly
into the amplification formula. The parameters P and
Q are independent; the explicit formulae for them can be
found in [33, 34]. However, this is not needed when we
use Eq.(22) for fitting the observational data, because
these constants are whatever considered as free fitting
parameters.

Formula (22) yields an effective approximation for the
point source amplification near the coordinate origin
provided that y2 > 0, and y2/y

2
1 is not too small (see

the term containing κ). For a fixed source position, this
can be satisfied always by an appropriate choice of the
coordinate origin, so that the source will be situated al-
most on a normal to the tangent to the caustic.

If the source is on the caustic tangent or in the region
between the caustic and the tangent, then formula (22)
does not give a good approximation to the point source
amplification. Nevertheless, in the case of an extended
source, we will show that result (22) can be used to ob-
tain approximations to the amplification of this source
even as it intersects the caustic. However, to do this, we
need to redefine correctly the convolution of (22) with a
brightness distribution.

5. Amplification of Extended Sources

5.1. Transition to extended sources

We now present the results of studies of the point
source amplification within extended source models. Let
I(y) be a surface brightness distribution of an extended

source. If the source center is located at the point
Y = (Y1, Y2) in the source plane, then the total mi-
crolensed flux from the source is given by (4).

Formula (22) contains the nonintegrable term ∼
Θ(y2)(y2)−3/2. Therefore, the question arises of how
formula (22) can be used in the situation where the ex-
tended source intersects a caustic and some part of the
source is in the zone between the tangent and the caus-
tic. In view of Section 4, it is evident that the men-
tioned term is a result of the asymptotic expansion of
the root

√
y2 + κy2

1t
2/2 + ... in the approximate solution

(21). The direct usage of a solution in the form (21) for
the calculation of the Jacobians of the lens mapping and
then for the derivation of amplifications does not lead to
any divergences, and any nonintegrable terms in Kcr do
not arise. Nevertheless, it is convenient to have a repre-
sentation of Kcr in the form of an expansion in powers
of a small parameter. Such an expansion can be carried
out correctly after the substitution of Kcr into integral
(4). On this way, starting from (21), it is easy to show
that, to define Kcr correctly, one must replace the term
Θ(y2)(y2)−3/2 in (22) by the distribution (generalized
function) (y2)

−3/2
+ [36]. We recall that the distribution

y
−3/2
+ of the variable y is defined by the expression∫
y
−3/2
+ f(y)dy = 2

∞∫
0

y−1/2 ∂f(y)
∂y

dy

for any test function f(y).
After this redefinition, we have

Kcr =
Θ (y2)

2
√
|b| y2

[1 + Py2 +Qy1 ]− κ

8
√
|b|
y2
1(y2)

−3/2
+ .

(23)

This formula can be used to correctly derive an approx-
imate amplification of a sufficiently smooth extended
source including the case where the source crosses the
caustic.

5.2. Gaussian source

Formula (23) has been used [33] to derive the amplifica-
tion of a Gaussian source with the brightness distribu-
tion (8), the limb-darkening source, and the power-law
source (see the next subsections).

Further, we use the dimensionless coordinates s =
Y1/R, h = Y2/R of the source center and the functions

Ik (h) =

∞∫
0

uk−1/2 exp
(
−u2 + 2uh

)
du =
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=
1
2

∞∑
n=0

Γ
(

1
4 + k+n

2

)
n!

(2h)n. (24)

These functions can be expressed in terms of the conflu-
ent hypergeometric function 1F1 or the parabolic cylin-
der function D:

Ik (h) = 2−( k
2 + 1

4 )Γ
(
k +

1
2

)
e

h2
2 D−(k+ 1

2 )
(
−
√

2h
)
.

(25)

The substitution of (23) and (8) in (4) yields

KG(s, h) =
1

2
√
π |b|R

{
Φ0 (h) +

+R
[
PΦ1 (h)− κ

2
Φ2 (h) +QsΦ0 (h) − κs2Φ2 (h)

]}
.

(26)

Here,

Φ0 (h) = I0 (h) exp
(
−h2

)
,

Φ1 (h) = I1 (h) exp
(
−h2

)
,

Φ2 (h) = [hI0 (h)− I1 (h)] exp
(
−h2

)
.

Note that the main term of (26) which corresponds to
the linear caustic approximation was first obtained in
work [37].

5.3. Limb-darkening source

Analogous considerations allow us to obtain formulas
for the amplification of extended sources for the limb-
darkening and power-law brightness profiles; the results
are represented analytically in terms of the hypergeo-
metric function 2F1 [38].

Denote

Xk,q (h) =
Γ (q + 2)
Γ
(
q + 3

2

) ∞∫
0

yk−
1
2 Ξ(y − h; q + 1/2) dy,

k = 1, 2. We have

Xk,q(h) = 2q+
1
2 (1 + h)q+k+1 Γ(q + 2)Γ(k + 1

2 )
Γ(q + k + 2)

×

× 2F1

(
−q − 1

2
, q +

3
2
; q + k + 2;

1 + h

2

)

for −1 < h < 1 and

Xk,q (h) =

=
√
π (h+ 1)k−

1
2

2F1

(
q +

3
2
,
1
2
− k; 2q + 3;

2
h+ 1

)
for h > 1.

For k = −1, we define

X−1,q (h) = 4 (q + 1) (hX0,q−1 −X1,q−1) .

Then, in case of the model with limb darkening (9),
the critical images disappear when the source lies on
the outer side of the caustic (i.e., for h < −1). The
amplification due to critical images takes the form

KLD(s, h) =
1

2
√
π|b|R

{
X0,q(h) +R

[
PX1,q(h)−

− κ

8(q + 2)
X−1,q+1(h) +QsX0,q(h)−

κ

4
s2X−1,q(h)

]}
.

5.4. Amplification for a power-law source

The result for the amplification involves integrals:

Ψk,p (h) =
Γ
(
p− 1

2

)
Γ (p− 1)

∞∫
0

yk−
1
2 dy(

1 + (y − h)2
)p−1/2

=

=
Γ
(
p− 1

2

)
Γ (p− 1)

B

(
k +

1
2
, 2p− k − 3

2

)
(1+h2)k/2+3/4−p×

× 2F1

(
k +

1
2
, 2p− k − 3

2
; p ;

1
2

(
1 +

h√
1 + h2

))
for k = 0, 1, B (x, y) being the Beta-function.

We extend this to k = −1 in view of the definition of
(y)−3/2

+ . So, we have

Ψ−1,p(h) = 4(p− 1)[hΨ0,p+1(h)−Ψ1,p+1(h)].

Now, the amplification due to critical images takes the
form

KPL(s, h) =
1

2
√
π|b|R

{
Ψ0,p(h) +R

[
PΨ1,p(h)−

− κ

8(p− 2)
Ψ−1,p−1(h) +QsΨ0,p(h)−

κ

4
s2Ψ−1,p(h)

]}
.

The zeroth approximation to this formula has been de-
rived in [9].
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6. Discussion

Prior to sum up the results of this paper, we must
stress that the consideration of HAEs without some ad-
ditional information may only provide a very uncertain,
on order-of-magnitude level, and even ambiguous infor-
mation about the source parameters. For example, one
may expect that, by adding a sufficient number of small
microlenses, it is possible to reproduce fine features of
a light curve during a HAE and to fit the light curve of
any compact source. The introduction of planetary mass
objects in the lensing galaxy (which is quite reasonable,
see, e.g., [39–42]) yields a fine caustic mesh, which, in
turn, can give rise to fine features of light curves dur-
ing a HAE similar to those due to any given brightness
distribution over the source. Therefore, we point out
the assumptions and the class of models involved, which
is necessary for a reasonable formulation of the prob-
lem.

The simulations of the present paper use the GLS pa-
rameters similar to those of Q2237+030 [26, 42]. We
consider the equal mass microlensing system; we do not
consider any mass distributions and/or populations of
small (planetary) masses. Next, we consider the most
simple source models without effects of ellipticity, etc.
Nevertheless, we see that, even under these rather severe
restrictions, there is an ambiguity in the determination
of the source model from the observations of HAEs. The
limb-darkening source can be successively fitted with the
Gaussian source model (with the other R1/2) on 1-2% ac-
curacy level. This confirms the conclusions of Morton-
son et al. [17] (see also [43]) that the surface brightness
profile has little effect on microlensing. What can be de-
termined within the modern accuracy is the source size;
one can also distinguish either we deal with a compact
source or not (i.e., with a steep decrease of the brightness
for large radii).

The investigation of the source structure from HAEs
is closely related to the solution of the lens equation in
the caustic region. There are also different approaches
to this problem under different restrictions. In this pa-
per, we confined ourselves to the case of the fold caus-
tic. We outlined two methods that enable us to obtain
the critical solutions of the gravitational lens equation
near a fold with any desired accuracy [33, 34]. In or-
der to obtain nontrivial corrections to Kcr obtained in
the linear caustic approximation, the higher orders of
the expansion of the lens equation must be taken into
account, as compared to works [32, 35]. The modified
formula for Kcr contains three extra parameters. This
is applied to the Gaussian, power-law, and limb dark-

ening models of an extended source. The fitting of the
light curve of GLS Q2237+0305C using these modified
relations shows [33, 34] that some of these corrections
can be statistically significant even at the present accu-
racy level. This means that if we are looking for some
fine effects in HAEs due to the source size, a consistent
treatment must involve sometimes the higher-order cor-
rections to solutions of the lens equation.

This work has been supported in part by the “Cos-
momicrophysics” program of the National Academy of
Sciences of Ukraine. We are grateful to the staff of
the Computer Center of National Technical University
of Ukraine “Kyiv Polytechnic Institute”, where a consid-
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ЕФЕКТИ ПЕРЕТИНУ КАУСТИКИ I МОДЕЛI ДЖЕРЕЛА
У ГРАВIТАЦIЙНО-ЛIНЗОВИХ СИСТЕМАХ

О.М. Александров, В.М. Слюсар, В.I. Жданов

Р е з ю м е

Подiї з великим пiдсиленням (ПВП) є звичайним явищем у по-
загалактичних гравiтацiйно-лiнзових системах (ГЛС), де спо-
стерiгають декiлька зображень вiддаленого квазара на фонi га-
лактики, що знаходиться на передньому планi. Протягом ПВП
вiдбувається значне збiльшення яскравостi в одному iз зобра-
жень квазара. Грiгер, Кайзер та Рефсдал запропонували вико-
ристовувати ПВП для вивчення центральних областей квазара
в ГЛС. У цiй статтi дослiджуємо пов’язанi з цим питання, що
стосуються iдентифiкацiї рiзних типiв джерела на базi спосте-
режень ПВП. Ми порiвнюємо результати числових моделювань
кривих блиску для того, щоб оцiнити можливiсть вiдрiзнити
моделi джерела в ГЛС. Запропоновано наближенi схеми для
розв’язання рiвняння лiнзи в околi каустики – складки. Ре-
зультати використано для отримання коефiцiєнтiв пiдсилення,
що враховують поправки високого порядку для моделей гаусiв-
ського i степеневого джерела, а також джерела з потемнiнням
до краю.
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