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Inelastic longitudinal and transverse electron scattering form fac-
tors of low-lying T = 0, T = 1 particle-hole states of 12C and 16O
are studied in the framework of the Tamm–Dancoff approximation
(TDA). The Hamiltonian with the Michigan-three-Yukawa (M3Y)
potential is diagonalized. To obtain a good agreement with the
experimental data, the ground state is corrected by including the
admixture from higher orbits with regard for the core polarization
effects.

1. Introduction

Electoexcitation of nuclei is very important to study
their structure, where the measured form factors are
compared with those calculated in the framework of
some nuclear models. For closed-shell nuclei, the struc-
ture of low-lying excited states is studied mainly through
particle-hole models using Tamm–Dancoff Approxima-
tion (TDA) and Random-Phase Approximation (RPA).
According to TDA, the ground state is treated within
the independent particle model (closed shell), while the
excited states of closed-shell nuclei are described as a
linear combination of particle-hole excitations which are
created by the excitation of a nucleon from the closed
(filled) shell to a higher unoccupied shell leaving a hole
within the closed shell. Asymmetry between the ground
and excited states is removed in the RPA, where both
states allowed having particle-hole pairs.

The inelastic electric and magnetic electron scatter-
ing with the use of nuclear structure models includ-
ing the particle-hole excitation was first studied in [1],
where the diagonalization of the residual two-body force

was restricted to a subspace of configurations with one
particle-one hole (1p−1h) with energy 1~ω. The authors
[2] reformulated the schematic model developed in [3]
which is based on the particle-hole interaction to study
the inelastic transverse form factor for the electromag-
netic excitation of the giant resonance in nucleus 12C.
An extensive comparison of the TDA and RPA particle-
hole models was performed in [4], where the available
experimental data on the inelastic scattering of high en-
ergy electrons by the closed-shell nuclei 12C, 16O, and
40Ca within particle-hole models of nuclear excitation
were analyzed. The T = 1 (isovector) single particle-hole
states of 12C on the basis of the harmonic oscillator shell
model were studied in [2] and later on in [5], where the
configuration mixing was included via a Serber–Yukawa
residual interaction.

The first 3− level in 40Ca and 208Pb nuclei in the
framework of TDA and RPA models have studied in [6],
where the measured and calculated reduced transition
probabilities B(E3 ↑) were compared. The transverse
M4, M2, and M1 form factors for the inelastic electron
scattering by 48Ca nucleus using the independent Second
RPA (SRPA) which includes the (2p−2h) excitation only
were studied in [7] .

In the present work, the form factor of the electron
scattering transition from the ground state to excited
states in 12C and 16O are studied in the framework of
the Tamm–Dancoff Approximation. The Hamiltonian
with the Michigan-three-Yukawa (M3Y) potential is di-
agonalized. The admixture of higher configurations is
also considered by including the single particle orbits
up to 2s-2p for 12C and 16O, and the core polarization
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effects are taken into account to reproduce the experi-
mental data.

2. Formalism

According to TDA, the ground state of a closed shell
nucleus is taken to be a closed (filled) shell, while the
excited state wave function can be constructed as a linear
combination of pure basis (unperturbed) or uncorrelated
wave functions as in [2]:

|Ψα〉 =
g∑
k=1

χJTkα

∣∣∣ψ(0)
k

〉
JMTTZ

, (1)

where k ≡ (ab−1) with labels (a) for particles with quan-
tum numbers (na`aja) and (b) for holes with quantum
numbers (nb`bjb), g is the number of a state, and α is
the order of a nuclear state. Inserting the linear com-
bination into the Schrödinger equation and using the
orthonormality of the

∣∣∣ψ(0)
k

〉
, s give the secular equation

g∑
k

〈
ψ

(0)
k′

∣∣∣H ∣∣∣ψ(0)
k

〉
χkα = Eαχk′α. (2)

It can be diagonalized to yield the energy eigenvalues E
and eigenvectors χkα.

We have

g∑
k

〈
ψ

(0)
k′

∣∣∣H ∣∣∣ψ(0)
k

〉
=

g∑
k=1

〈
ψ

(0)
k′

∣∣∣H(0) +H(1)
∣∣∣ψ(0)
k

〉
=

= E
(0)
k δk′k +

〈
ψ

(0)
k′

∣∣∣H(1)
∣∣∣ψ(0)
k

〉
, (3)

where E(0)
k = (ea− eb) is the unperturbed energy, and

H(1) = V (1, 2) is the residual interaction.
The residual interaction used in this work is the Michi-

gan sum of three-range Yukawa (M3Y) potentials taken
from [8]. This potential is derived from the fitting of
parametrized three Yukawa radius-dependent form of
central, spin-orbit, and tensor forces with the harmonic
oscillator matrix element of the Reid soft-core potential
[9]. It should be noted that the authors used usually
different versions and parametrizations of a proximity
potential to reproduce the experimental data (see, e.g.,
[10]).

The M3Y potential V (1, 2) includes the terms [8]

V (1, 2) = VC + VLS + VT, (4)

where

Vc =
3∑
i=1

ViY (r/Ri), Vso =
3∑
i=1

ViY (r/Ri)S · `,

Vt =
3∑
i=1

Vir
2Y (r/Ri)S12

Vc, Vso, and Vt are central, spin-orbit, and tensor parts
of the M3Y potential, respectively.

According to the M3Y potential the two-body inter-
action parameters, Vi and Ri, take special values given
in Table (1) [11].

The nuclear longitudinal and transverse form factors
are expressed in terms of reduced matrix elements of the
electron scattering operator as [12]

|F ηJ (q)|2 =
4π
Z2

1
2Ji + 1

∣∣∣∣∣∑
T

(−1)Tf−Tfz

(
Tf T Ti
−Tfz

MT Tiz

)
×

×
〈
JfTf | ‖ T̂ ηJT (q) ‖ | JiTi

〉∣∣∣∣∣
2

|Fc.m(q)|2 |Ff.s(q)|2 , (5)

where the matrix elements are reduced both in the angu-
lar momentum J and isospin T , and η selects the longi-
tudinal (L), transverse electric (el), and transverse mag-
netic (m) operators, respectively.

The last two terms in Eq. (5) are the correction factors
of the center-of-mass (c.m) and a finite nucleon size (f.s)
given by [13] and [14], respectively:

Fc.m(q) = eq
2b2/4A, (6a)

Ff.s(q) = e−apq
2/4. (6b)

Here, ap = 0.4fm2, b is the oscillator length parameter
(or size parameter), and A is the nuclear mass number.

The many-particle states matrix element reduced in
the spin-isospin space can be written in terms of a single-
particle matrix element as [15], [16]〈
JfTf |‖ T̂ ηJ T ‖ |JiTi 〉 =

∑
jajb
tatb

χJTab−1 〈a|
∥∥∥T̂ ηJT∥∥∥ |b〉 , (7)

where χJTab−1 is the eigenvector obtained from the diago-
nalization of the (TDA) Hamiltonian matrix element in
the presence of the M3Y potential. The states |b〉 and
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|a〉 are the single-particle wave functions of the initial
and final states, respectively.The single-particle transi-
tion operator T̂ η depends on whether the single nucleon
is a proton or a neutron, so the single-particle matrix el-
ement can be written in terms of a single-particle matrix
element reduced in spin only as [12]〈
a| ‖ T̂ ηJT ‖ |b

〉
=

=

√
2T + 1

2

∑
tz

PT (tz)
〈
na`aja ‖ T̂ ηJ, tz ‖ nb`bjb

〉
. (8)

Here,

PT (tz) =
{

1, for T = 0,
(−1)1/2−tz , for T = 1.

(9)

The reduced single-particle matrix element of the longi-
tudinal operator can be written as [17]

〈na`aja‖T̂LJ,tz‖nb`bjb〉 = e(tz)PJ(e`, `a, `b)CJ(ja, jb)×

×〈na`a| jJ(qr) |nb`b〉 , (10)

where

PJ(e`, `a, `b) =
1
2
[
1 + (−1)`a+J+`b

]
(11)

and

CJ(ja, jb) = (−1)ja+1/2

√
(2ja + 1)(2jb + 1)(2J + 1)

4π
×

×
(

ja J jb
1/2 0 −1/2

)
. (12)

The reduced single-particle matrix element of the
transverse magnetic operator is given by [12]

〈na`aja ‖ T̂mJ,tz ‖ nb`bjb〉 =

= iµN [g`(tz)OmJ (a, b) + gs(tz)SmJ (a, b)] , (13)

where the contribution of the orbital, OmJ , and spin, SmJ ,
parts are given explicitly as follows [12]:

OmJ (a, b) = PJ(m, `a, `b)CJ(ja, jb)AJ(ja, jb)
√
J(J + 1)×

×〈na`a|
1
r
jJ(qr) |nb`b〉 , (14)

SmJ (a, b) =
1
2

[J(J + 1)]−1/2
CJ(ja, jb)PJ(m, `a, `b)×

×{J [B(ja, jb)− J − 1] 〈na`a|
1
r
jJ(qr) |nb`b〉−

− q B(ja, jb) 〈na`a| jJ−1(qr) |nb`b〉} (15)

with

PJ(m, `a, `b) =
1
2
[
1 + (−1)`a+`b+J+1

]
, (16)

AJ(a, b) =
[
1 +

B(a, b)
J

] [
1− B(a, b)

J + 1

]
, (17)

B(a, b) = 2 +D(ja, `a) +D(jb, `b), (18)

D(j, `) = j(j + 1)− `(`+ 1)− 3/4. (19)

In our calculations of the form factor, the ground
state wave function is modified to include an admixture
of higher configurations (extension of the ground-state
wave function) enhancing the collectivity, which seems
to be very important [18]:

|b〉 = γ |nb lb jb〉+ δ |(nb + 1) lbjb〉 . (20)

Here, γ and δ are mixing parameters with γ2 + δ2 = 1.
By extension, we mean the configuration mix-

ing between the closed shell |(n, l j)m, 00〉 and
|(n+ 1, l j)m, 00〉 configurations, such that the ground-
state wave function becomes: |00〉 = γ |(n, l j)m, 00〉 +
δ |(n+ 1, l j)m, 00〉, where m = 2(2j + 1) represents the
number of nucleons that fill the state. However, the
configuration mixing is actually due to the strong inter-
action among nucleons. Thus, the physical meaning of
the extension is a correlation (i.e. the interaction among
nucleons) in the ground state.

Example: – for 12C,

|00〉 = γ
∣∣(1s1/2)4(1p3/2)8, 00

〉
+ δ

∣∣(2s1/2)4(2p3/2)8, 00
〉
,

and all possible 1p − 1h configurations are obtained
in this case by promoting particles from 1s1/2-1p3/2

or 2s1/2-2p3/2 shells to 1p1/2, 2s-1d and 2p-1f shells.
The quantity |γ|2 represents the probability that
the ground state is described by the configuration∣∣(1s1/2)4(1p3/2)8, 00

〉
, while |δ|2 represents the proba-

bility that the ground state is described by the config-
uration

∣∣(2s1/2)4(2p3/2)8, 00
〉
. It should be noted that

the extension of the ground state wave function modifies
only the radial part of the reduced single-particle matrix
element, while the angular part remains unchanged.
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Fig. 1. Transverse M2 form factor for the 2−1 (T = 0) state at
Ex = 11.83 MeV in 12C nucleus. Data are taken from [19]

3. Results and Discussion

The test of nuclear models is carried out by the com-
parison of the results of theoretical calculations with the
corresponding experimental values.

In this work, the form factors of electron scattering
transition from the ground state to an excited state in
12C and 16O are compared with those calculated accord-
ing to the TDA model.

The diagonalization of the TDA model Hamiltonian
is carried out, by using Eq. (2), in the space of one
particle-one hole (1p-1h) states which include the har-
monic oscillator orbits (1s1/2, 1p3/2, 1p1/2, 1d5/2, 2s1/2,
1d3/2, 1f7/2, 2p3/2, 2p1/2, 1f5/2) to obtain eigenvalues
and eigenvectors (amplitude χ(ab)), in the presence of
the (M3Y) potential taken from [8] with the Reid pa-
rameter given in Table (1) taken from [11].

The resulting values of the amplitudes are used to cal-
culate the reduced many-particle matrix elements of the
electron scattering form factors which are functions of
the momentum transferred q according to Eq. (7). The
reduced single-particle matrix element in this equation is
calculated according to Eq. (10) for the Coulomb scat-
tering and Eq. (13) for the magnetic scattering. The
squared form factors for the longitudinal or transverse
magnetic scattering are calculated according to Eq. (5)
which involves the corrections for the center-of-mass mo-
tion and the finite size of a nucleon.

The admixture of higher configurations is also consid-
ered by including the single-particle orbits up to 2s-2p
for 12C and 16O, by using the reduced single-particle ma-
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Fig. 2. Longitudinal C3 form factor for the 3−1 (T = 1) state at
Eχ = 18.60 (MeV) in 12C nucleus. Data are taken from [20]

trix element given in Eq. (20). Core polarization effects
are also taken into account, by using the effective values
of charge and g-factors which are different from those of
free nucleons.

In our calculation of the single-particle matrix ele-
ments, the harmonic oscillator wave function with the
size parameters b = 1.64 and 1.83 is adopted for 12C
and 16O, respectively.

Our (TDA) calculations for the negative parity (T =
0) at Jπn , Eχ (MeV) = 2−1 , 11.83 and (T = 1) at 3−1 , 18.6,
in 12C predict the energy eigenvalues at 17.621 and
19.068 MeV, respectively.

Figure 1 shows the M2 form factor for the isoscalar 2−1
state at Eχ = 11.83 (MeV) in 12C nucleus. The calcula-
tion of the form factor in the framework of TDA is shown
by the dashed curve which overestimates the experimen-
tal data taken from [19]. The dotted curve shows the
effect of the addition of a more collectivity to this state
by a modification of the ground state wave function to in-
clude 2s and 2p shells with γ = 0.97, as well as taking the
core polarization effects into account by introducing the
effective gs-factors for a proton geff

s (p) = δ(p)gfree
s (p) and

for a neutron geff
s (n) = δ(n)gfree

s (n), where δ(p) = 0.6
and δ(n) = 0.9.

Both the energy eigenvalue and the magnetic quadru-
ple form factor of this state are deviated greatly from the
experimental data, which denotes the need of the contri-
bution of 2p-2h and higher particle-hole excitations. The
solid curve is obtained by reducing the amplitudes χ by
a factor of 3, i.e., using a modified amplitudes χ′, where
χ′ = χ/Δ with Δ = 3. This reduction in the χ, s may be
ascribed to the two particle–two hole (2p-2h) and higher
excitations that are neglected in our calculations.
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Fig. 3. Transverse M4 form factor for the 4−1 (T = 0) state at
Eχ = 17.79 (MeV) in 16O nucleus. Data are taken from [21]

Figure 2 shows the longitudinal C3 form factor for
the isovector (T = 1) 3−1 state at Eχ = 18.6 MeV.
The dashed curve represents the model space calcula-
tion. In our work, the experimental data [20] are well
described with regard for the core polarization effects
by introducing the effective charge for a neutron only
(eeff(n) = δ(n)efree(n) with δ(n) = 0.47). The cal-
culations of the energies of the negative parity states
(T = 0) at JπT (Eχ, MeV) = 4−0(17.79) and (T = 1)
at 4−1(18.98) in 16O are carried out in the framework
of TDA, and they are found to be 20.6 and 19.4 MeV,
respectively.

Figure 3 shows the transverse M4 form factor for the
excitation to the JπT (Eχ, MeV) = 4−0(17.79) state.
The dashed curve is our result obtained within the
particle-hole model TDA which is shifted to the left of
the data. The solid curve is the form factor calculated
with core-polarization effects by giving an effective value
to the gs-factors of a proton and a neutron which is less
than that of a free nucleon by a factor δ = 0.87, as
well as by using the extended model space configuration
to give a more collective description to this state with
γ = 0.84. A very good agreement with the experimental
data taken from [21] is obtained.

Figure 4 shows the transverse M4 form factor for the
excitation to the isovector 4−1 state at 18.98 MeV. The
dashed curve represents our calculation in the frame-
work of the particle-hole configuration (TDA). To shift
the theoretical curve toward the experimental data, a
correlation in the ground state must be taken into ac-
count by including an admixture of higher configura-
tions. The solid curve shows the results of calculations
in the extended space with γ = 0.92, as well as those ob-
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Fig. 4. Transverse M4 form factor for the 4−1 (T = 1) state at
Eχ = 18.98 (MeV) in 16O nucleus. Data are taken from [21]

tained with the introduction of core-polarization effects
by using the effective g-factors, (geff

s (p) = δ(p)gfree
s (p),

and geff
s (n) = δ(n)gfree

s (n), where δ(p) = 0.69 and
δ(n) = 0.82). This leads to a very good description of
the experimental data taken from [21].

4. Conclusion

The calculation of the energies and electron scattering
form factors for closed-shell nuclei 12C and 16O in the
framework of the Tamm–Dancoff approximation gives a
reasonable agreement with the experimental data. The
correlation in the ground state is introduced by includ-
ing an admixture from higher harmonic oscillator orbits
using a mixing parameter, and the core polarization ef-
fects are taken into account by giving effective values to
the charges and g-factors of nucleons which are different
from their free values.
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ФОРМФАКТОРИ НЕПРУЖНОГО РОЗСIЯННЯ
ЕЛЕКТРОНIВ ДЛЯ IЗОСКАЛЯРНОГО (T = 0)
ТА IЗОВЕКТОРНОГО (T = 1) СТАНIВ
ЧАСТИНКА–ДIРКА В 12C I 16O

С.А. Хассан, Маджид Абусiнi, А.А. Ал-Саад

Р е з ю м е

Дослiджено формфактори непружного розсiяння електронiв у
поздовжньому i поперечному напрямках для низьколежачих
T = 0 i T = 1 станiв частинка–дiрка в 12C i 16O в наближен-
нi Тамма–Данкова. Дiагоналiзовано гамiльтонiан з Мiчiган-3-
Юкава потенцiалом. Для одержання гарного узгодження з екс-
периментом основний стан змiнено домiшуванням вищележа-
чих станiв з урахуванням ефекту поляризацiї остова.
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