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By using a generalization of the Lie-Poisson brackets for the dual
Maxwell and Born—Infeld field strength tensors, we construct the
gauge invariant axial-vector conserved currents for Born—Infeld
and Heisenberg—Euler nonlinear electrodynamics in the 4-dimen-
sional Minkowski space-time. The infinite hierarchies of the cur-
rents given by Lie brackets for generally covariant conserved vector
and axial vector currents are established. These currents are con-
served upon action of the gravitational fields, but the conservation
is broken in the Einstein—Cartan theory (over a Riemann—Cartan
space-time). The axial-vector currents are conserved only in the
(3 4+ 1)-dimensional space-time.

1. Introduction

The Born—Infeld and Heisenberg—Euler Lagrangians pro-
vide particular examples of theories of nonlinear electro-
dynamics in the 4-dimensional Minkowski space-time. It
has its origin in searching the classical singularity-free
theory of an electron by Born and Infeld [1]. Later on, it
was realized that the creation of virtual electron-positron
pairs induces a self-coupling of the electromagnetic field.
For a slowly varying, but arbitrarily strong electromag-
netic field, the self-interaction energy was computed by
Heisenberg and Euler [2].

The propagation of a photon in an external elec-
tromagnetic field can be described efficiently by the
Heisenberg—Euler Lagrangian. Moreover, the transition
amplitude for the photon splitting in quantum electro-
dynamics is nonvanishing in this case. In principle, this
might lead to observational effects, e.g., on the electro-
magnetic radiation coming from neutron stars which are
known to have strong magnetic fields [4, 5|. In partic-
ular, certain features in spectra of pulsars can be ex-
plained by the photon splitting [6]. For an inflationary
universe where electrodynamics is assumed to be non-
linear, the creation of large-scale magnetic fields was
studied in [7]. In [8], the method of measurement of
the birefringence induced in vacuum by a magnetic field
was described: this effect was evaluated with the use of
the Euler—Heisenberg—Weisskopf Lagrangian [2, 3]. Fi-
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nally, the Born-Infeld type action also appears as the
low-energy effective action of open strings or the M-
theory [9,10]. It was also shown [11] that the low-energy
dynamics of D-branes is described by the Dirac-Born—
Infeld action.

2. Symmetries and the Conservation Laws for
an Electromagnetic Field

It is well known that, from the electromagnetic tensor
Fap and its dual

1
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g
one can construct two invariants:
1 a3 1 * o
Q = Z aﬁ]: ) R = Z aﬁ]: . (2)

In a pseudo-Cartesian frame at some point, we have
P 2
Q=5(H!-E?), R-H-E,
where E and H are the ordinary 3-vectors of the electric

and magnetic fields.
Let us introduce the 4-potential A, through

faﬁ = 804Aﬁ - 8ﬁAa (3)

and the Lagrangian £(Q,R) as an arbitrary function of
invariants (2). Then the variational principle applied to

/ V—gLd*z (4)

yields the following Euler equations [12]

VP =0, P =LoF* +Lp *FP,
oL oL
[’Q - %7 ‘CR - ﬁ7 (5)
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which, together with
va *faﬁ = 07 (6)

are locally satisfied by (3), and the Einstein equations

[1]
Gaﬁ = XTozﬁv

where

T = Lg*? = PO F] = Lom*? +(L— QLo — RLR)g™,
(7)

which form the system of field equations. We recall that
78 = Qg™ — FOOF) (8)

is the Maxwellian energy tensor.

In 1921, Bessel-Hagen [13] applied the Noether the-
orems [14] to the calculus of variations of electromag-
netic fields in vacuum and showed that the invariance
of the Maxwell equations under the fifteen-parameter
conformal group implies the existence of fifteen diver-
genceless expressions. These mathematical results were
assumed to represent fifteen conservation laws for elec-
tromagnetic fields. A review of symmetries and conser-
vation laws of the Maxwell equations is given in [15]. A
complete explicit classification of all independent con-
servation laws of the Maxwell equations in the four-
dimensional Minkowski space was given in [16].

The most significant nonlinear theory of electrody-
namics is the Born-Infeld theory [1]. Among its many
special properties, we mention the exact SO(2) electric-
magnetic duality invariance [17]. The Lagrangian den-
sity describing of Born—Infeld theory in four dimensions
is as follows:

4 1 1 2
= {1—4/1+Zp2 af _ ___}p4 * Taf
CBI b2 { \/ + 2b ‘7:05]: 16b (faﬁ F ) ’ (9)

which coincides with the usual Maxwell Lagrangian in
the weak field limit with b = 2wa’ (o’ is inverse of the
string tension).

It is useful to define the second-rank tensor

pois_ 1 OL

20Fas

_ fozﬁ _ %bQ(f’;w *_7_'#1/)2 *focﬁ
V1 SR F L Fas — Lt (Fop - Fod)?
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(so that P ~ F8 for weak fields) that satisfies the
electromagnetic motion equations

o, P =0, 0, F" =0, (11)
which are highly nonlinear in F,,, .

The Lagrangian [2,3,7]
L=0Q+ KoQ*+ K R? (12)

describes the Heisenberg—FEuler theory with the con-
stants

1402
45m4’

e

_ 8a?
~ 4bmd’

Ko 1=
where « is the fine structure constant, m, is the electron
mass, and @, R are the invariants of the electromagnetic
field (2).

A model of nonlinear electrodynamics which is de-
scribed by the Lagrangian

5—1
L= [(FuF? 6] 7 Fu e, (13)
where A and ¢ are the parameters, gives an example of
a theory, where the nonlinearities act in a way to suffi-
ciently amplify the initial magnetic field [7]. Originally,
the non-Abelian version of this model had been proposed
to describe the low-energy QCD [21].

A legitimate question to ask is whether there exists an
extension of the Maxwell action for an arbitrary dimen-
sion that possesses the conformal invariance. The answer
is positive, and the conformally invariant Maxwell action
is given as [22]

e

Sv = —a / d%z/=g (FuF*) 1. (14)
It is not hard to see that, under the conformal trans-
formation which acts on the fields as g,, — Q%g,, and
A, — A, action (14) is not changed. Note that the con-
formal action (14) for d = 4 is reduced to the Maxwell
action, as it should be.

From action (14), we obtain the energy-momentum
tensor [22]

d 1
T,, = 4a (4@,)?5?21 - 4g,wfi) : (15)

where F = F,, F" is the Maxwell invariant, and the
conformal invariance of the action is encoded in the
traceless condition T[j =0.
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We say that an arbitrary bilinear function j* =
gH (PO‘B (F), *FoB 9vpaB g7 *.7-'0‘5) is a conserved
current if it satisfies the continuity equation

9" =0, p=0,1,2,3. (16)

Here, F¥ is the tensor of an electromagnetic field, and
P8 (F) is given by (5).

According to the Ostrogradskii-—Gauss theorem, it fol-
lows from (16) that the following quantity is conserved
in time:

Jo = / i jo.

A generalization of the Lie-Poisson brackets [18] for P*¥
and *F*¥ is given by

(17)

jg1 = AP, "F} = P, 0" *FI — *F,,0" P (18)
Notice that

80¢ng = jgl,a = Pm/,oc *f,l,b()é,l/ + PI“/ *]:ua,z_

- *flu,l/,ogpua’u - *fp,yp“a’gé = P,uu,a *f”a’y_

— XFHOP, o+ Py TFROY — FFL PPN =0, (19)

where we used the motion equation (11) and changed
the index summation a < v.
Furthermore, the current

jll\l/lz{fv *F}:f/ﬂ/ﬁu TR — *fuuayfﬂa:

= "FYO Fu, — FH0Y " Fu (20)
satisfies the equation
Jam =0 (21)

with the Maxwell equations for the electromagnetic field.

Current (20) coincides with the vector Lagrangian for
an electromagnetic field [20]. Namely, it is the minimum
equation (20) from other theories (9), (12)—(14) of non-
linear electrodynamics.

3. General Covariant and Gauge Invariant
Infinite Hierarchy of Conservation Currents

The equations that describe the dynamics of electromag-
netic fields for the Lagrangians £(Q, R) (9), (12), (13)
and action (14) in a curved space-time are

VaoP*? =0, (field equations) (22)
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Vo *F¥ =0, (Bianchi identities) (23)
where V., denotes the covariant differentiation. We de-
fine

jM = Puaﬁ;av (24)

gt = TFRM L., (25)
where ;a denotes the covariant derivative.

Then the equations of motion (22) and (23) and rela-
tion [24] yield

Liop = Liga (26)
and
Jy=0, ", =0 (27)

in the 4-dimensional space-time of general relativity
(Riemann space-time).

The general covariant conserved currents (24) and (25)

satisfy the composition law [23]
04,0 %j] = OR, (28)
where R is also a general covariant and gauge invariant
conserved current [23]:
R* = j#V, *j% — "jHV 5% (29)
These infinite hierarchy of the currents j*, *j#, and R*
are conserved upon the action of gravitational fields, but
the conservation is broken in the Einstein—Cartan theory.
The axial-vector currents (18) and (25) are conserved
only in a (3 + 1)-dimensional space-time.

4. Discussion

We note that the currents j# = j#£~' and *j* =
*j#L£71 also conserved, and their physical dimension
[#] ~ m3 coincides with that of the Maxwell current
in the interaction term j*A,.

We have shown that there is a class of gauge field the-
ories that have an infinite set of conservation laws in the
(3 4+ 1)-dimensional space-time of general relativity. It
is a more delicate question to decide when the existence
of an infinite number of independent conservation laws
implies the complete integrability [25]. This is the open
question, as well as the possible physical sense of the
existence of currents j* and *j* possessing a physical
dimension of the Maxwell current.
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JIOKAJTbHI 3AKOHU 3BEPEXKEHHA B HEJITHIVHIN
EJTEKTPOJIVHAMIIII

0.1. Bauyaa
PesowMme

Bukopucrosyioun ysaranbmenns myxxok Jli-Ilyacconma mns my-
aJIbHOTO TEH30pa HampyzkeHocTi MakcBessla Ta TeH30pa Halpy-
kenocti Bopra-Iudensna, Oyayemo kamibpyBasibHO-iHBapianTHI
aKCiaJIbHO-BEKTODHI CTpyMH, IO 30epiraloTbcs, I HeJiHil-
HOl esekTpomuHaMiku Bopua-Iudenbma, a takoxk Ieiizenbepra—
Eitstepa B 4-BumipHomy upocrtopi-yaci Minkoscbkoro. Bcranos-
JIEHO HECKiHYeHHY iepapxilo cTpymiB, mo 30epiraiorbcsi, siKka 3a-
nana gyxkkamu JIi KOBapiaHTHHX BEKTODHOIO Ta AaKCiaJIbHO-
BeKkTOpHOro crpyMis. Ili crpymu 36epiratoTbcst B rpaBiTariiitHoMy
moJii, aste e 36eperkeHHs nopyurere B Teopil Eitamreitna—Kapramna
(B mpocropi-uaci Pimana—Kaprana). AkciajabHO-BEKTOPHI CTPyMH
36epirarorTbest Tinbku B (3+1)-BuMipHOMY mpocTopi-daci.
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