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By using a generalization of the Lie–Poisson brackets for the dual
Maxwell and Born–Infeld field strength tensors, we construct the
gauge invariant axial-vector conserved currents for Born–Infeld
and Heisenberg–Euler nonlinear electrodynamics in the 4-dimen-
sional Minkowski space-time. The infinite hierarchies of the cur-
rents given by Lie brackets for generally covariant conserved vector
and axial vector currents are established. These currents are con-
served upon action of the gravitational fields, but the conservation
is broken in the Einstein–Cartan theory (over a Riemann–Cartan
space-time). The axial-vector currents are conserved only in the
(3 + 1)-dimensional space-time.

1. Introduction

The Born–Infeld and Heisenberg–Euler Lagrangians pro-
vide particular examples of theories of nonlinear electro-
dynamics in the 4-dimensional Minkowski space-time. It
has its origin in searching the classical singularity-free
theory of an electron by Born and Infeld [1]. Later on, it
was realized that the creation of virtual electron-positron
pairs induces a self-coupling of the electromagnetic field.
For a slowly varying, but arbitrarily strong electromag-
netic field, the self-interaction energy was computed by
Heisenberg and Euler [2].

The propagation of a photon in an external elec-
tromagnetic field can be described efficiently by the
Heisenberg–Euler Lagrangian. Moreover, the transition
amplitude for the photon splitting in quantum electro-
dynamics is nonvanishing in this case. In principle, this
might lead to observational effects, e.g., on the electro-
magnetic radiation coming from neutron stars which are
known to have strong magnetic fields [4, 5]. In partic-
ular, certain features in spectra of pulsars can be ex-
plained by the photon splitting [6]. For an inflationary
universe where electrodynamics is assumed to be non-
linear, the creation of large-scale magnetic fields was
studied in [7]. In [8], the method of measurement of
the birefringence induced in vacuum by a magnetic field
was described: this effect was evaluated with the use of
the Euler–Heisenberg–Weisskopf Lagrangian [2, 3]. Fi-

nally, the Born–Infeld type action also appears as the
low-energy effective action of open strings or the M-
theory [9,10]. It was also shown [11] that the low-energy
dynamics of D-branes is described by the Dirac–Born–
Infeld action.

2. Symmetries and the Conservation Laws for
an Electromagnetic Field

It is well known that, from the electromagnetic tensor
Fαβ and its dual

∗Fγδ =
1
2
ηαβγδFαβ , ηαβγδ = − 1√

−g
εαβγδ, (1)

one can construct two invariants:

Q =
1
4
FαβFαβ , R =

1
4
∗FαβFαβ . (2)

In a pseudo-Cartesian frame at some point, we have

Q =
1
2
(H2 −E2), R = H ·E,

where E and H are the ordinary 3-vectors of the electric
and magnetic fields.

Let us introduce the 4-potential Aα through

Fαβ = ∂αAβ − ∂βAα (3)

and the Lagrangian L(Q,R) as an arbitrary function of
invariants (2). Then the variational principle applied to∫ √
−gLd4x (4)

yields the following Euler equations [12]

∇αPαβ = 0, Pαβ = LQFαβ + LR ∗Fαβ ,

LQ =
∂L
∂Q

, LR =
∂L
∂R

, (5)

416 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 5



LOCAL CONSERVATION LAWS IN A NONLINEAR ELECTRODYNAMICS

which, together with

∇α ∗Fαβ = 0, (6)

are locally satisfied by (3), and the Einstein equations
[1]

Gαβ = χTαβ ,

where

Tαβ = Lgαβ−PαδFβδ = LQταβ+(L−QLQ−RLR)gαβ ,
(7)

which form the system of field equations. We recall that

ταβ = Qgαβ −FαδFβδ (8)

is the Maxwellian energy tensor.
In 1921, Bessel-Hagen [13] applied the Noether the-

orems [14] to the calculus of variations of electromag-
netic fields in vacuum and showed that the invariance
of the Maxwell equations under the fifteen-parameter
conformal group implies the existence of fifteen diver-
genceless expressions. These mathematical results were
assumed to represent fifteen conservation laws for elec-
tromagnetic fields. A review of symmetries and conser-
vation laws of the Maxwell equations is given in [15]. A
complete explicit classification of all independent con-
servation laws of the Maxwell equations in the four-
dimensional Minkowski space was given in [16].

The most significant nonlinear theory of electrody-
namics is the Born–Infeld theory [1]. Among its many
special properties, we mention the exact SO(2) electric-
magnetic duality invariance [17]. The Lagrangian den-
sity describing of Born–Infeld theory in four dimensions
is as follows:

LBI =
4π
b2
{1−

√
1+

1
2
b2FαβFαβ−

1
16
b4 (Fαβ ∗Fαβ)2, (9)

which coincides with the usual Maxwell Lagrangian in
the weak field limit with b = 2πα′ (α′ is inverse of the
string tension).

It is useful to define the second-rank tensor

Pαβ = −1
2
∂L
∂Fαβ

=

=
Fαβ − 1

4b
2(Fµν ∗Fµν)2 ∗Fαβ√

1 + 1
2b

2FαβFαβ − 1
16b

4 (Fαβ ∗Fαβ)2
(10)

(so that Pαβ ≈ Fαβ for weak fields) that satisfies the
electromagnetic motion equations

∂µP
µν = 0, ∂µ

∗Fµν = 0, (11)

which are highly nonlinear in Fµν .
The Lagrangian [2, 3, 7]

L = Q+K0Q
2 +K1R

2 (12)

describes the Heisenberg–Euler theory with the con-
stants

K0 =
8α2

45m4
e

, K1 =
14α2

45m4
e

,

where α is the fine structure constant, me is the electron
mass, and Q,R are the invariants of the electromagnetic
field (2).

A model of nonlinear electrodynamics which is de-
scribed by the Lagrangian

L = −
[
(FµνFµν)2 /Λ8

] δ−1
2 FµνFµν , (13)

where Λ and δ are the parameters, gives an example of
a theory, where the nonlinearities act in a way to suffi-
ciently amplify the initial magnetic field [7]. Originally,
the non-Abelian version of this model had been proposed
to describe the low-energy QCD [21].

A legitimate question to ask is whether there exists an
extension of the Maxwell action for an arbitrary dimen-
sion that possesses the conformal invariance. The answer
is positive, and the conformally invariant Maxwell action
is given as [22]

SM = −α
∫
ddx
√
−g (FµνFµν)

d
4 . (14)

It is not hard to see that, under the conformal trans-
formation which acts on the fields as gµν → Ω2gµν and
Aµ → Aµ, action (14) is not changed. Note that the con-
formal action (14) for d = 4 is reduced to the Maxwell
action, as it should be.

From action (14), we obtain the energy-momentum
tensor [22]

Tµν = 4α
(
d

4
FµρFρνF

d
4−1 − 1

4
gµνF

d
4

)
, (15)

where F = FµνFµν is the Maxwell invariant, and the
conformal invariance of the action is encoded in the
traceless condition Tµµ = 0.
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We say that an arbitrary bilinear function jµ =
jµ
(
Pαβ (F) , ∗Fαβ , ∂γPαβ , ∂γ ∗Fαβ

)
is a conserved

current if it satisfies the continuity equation

∂µj
µ = 0, µ = 0, 1, 2, 3. (16)

Here, Fµν is the tensor of an electromagnetic field, and
Pαβ (F) is given by (5).

According to the Ostrogradskii–Gauss theorem, it fol-
lows from (16) that the following quantity is conserved
in time:

J0 =
∫
d3xj0. (17)

A generalization of the Lie–Poisson brackets [18] for Pµν
and ∗Fµν is given by

jαBI = {P, ∗F} = Pµν∂
ν ∗Fµα − ∗Fµν∂νPµα. (18)

Notice that

∂αj
α
BI = jαBI,α = Pµν,α

∗Fµα,ν + Pµν
∗Fµα,να−

− ∗Fµν,αPµα,ν − ∗FµνPµα,να = Pµν,α
∗Fµα,ν−

− ∗Fµν,αPµα,ν + Pµν
∗Fµα,να − ∗FµνPµα,να = 0, (19)

where we used the motion equation (11) and changed
the index summation α↔ ν.

Furthermore, the current

jαM = {F , ∗F} = Fµν∂ν ∗Fµα − ∗Fµν∂νFµα =

= ∗Fαν∂νFµν −Fαµ∂ν ∗Fµν (20)

satisfies the equation

jαM = 0 (21)

with the Maxwell equations for the electromagnetic field.
Current (20) coincides with the vector Lagrangian for

an electromagnetic field [20]. Namely, it is the minimum
equation (20) from other theories (9), (12)–(14) of non-
linear electrodynamics.

3. General Covariant and Gauge Invariant
Infinite Hierarchy of Conservation Currents

The equations that describe the dynamics of electromag-
netic fields for the Lagrangians L(Q,R) (9), (12), (13)
and action (14) in a curved space-time are

∇αPα,β = 0, (field equations) (22)

∇α ∗Fαβ = 0, (Bianchi identities) (23)

where ∇α denotes the covariant differentiation. We de-
fine

jµ = PµαL;α , (24)

∗jµ = ∗FµνL;α , (25)

where ;α denotes the covariant derivative.
Then the equations of motion (22) and (23) and rela-

tion [24] yield

L;αβ = L;βα (26)

and

jµ;µ = 0, ∗jµ;µ = 0 (27)

in the 4-dimensional space-time of general relativity
(Riemann space-time).

The general covariant conserved currents (24) and (25)
satisfy the composition law [23]

[δj, δ ∗j] = δR, (28)

where R is also a general covariant and gauge invariant
conserved current [23]:

Rα = jµ∇µ ∗jα − ∗jµ∇µjα. (29)

These infinite hierarchy of the currents jµ, ∗jµ, and Rµ
are conserved upon the action of gravitational fields, but
the conservation is broken in the Einstein–Cartan theory.
The axial-vector currents (18) and (25) are conserved
only in a (3 + 1)-dimensional space-time.

4. Discussion

We note that the currents j̃µ = jµL−1 and ∗j̃µ =
∗jµL−1 also conserved, and their physical dimension
[jµ] ∼ m3 coincides with that of the Maxwell current
in the interaction term jµAµ.

We have shown that there is a class of gauge field the-
ories that have an infinite set of conservation laws in the
(3 + 1)-dimensional space-time of general relativity. It
is a more delicate question to decide when the existence
of an infinite number of independent conservation laws
implies the complete integrability [25]. This is the open
question, as well as the possible physical sense of the
existence of currents j̃µ and ∗j̃µ possessing a physical
dimension of the Maxwell current.
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ЛОКАЛЬНI ЗАКОНИ ЗБЕРЕЖЕННЯ В НЕЛIНIЙНIЙ
ЕЛЕКТРОДИНАМIЦI

O.I. Бацула

Р е з ю м е

Використовуючи узагальнення дужок Лi–Пуассона для ду-
ального тензора напруженостi Максвелла та тензора напру-
женостi Борна–Iнфельда, будуємо калiбрувально-iнварiантнi
аксiально-векторнi струми, що зберiгаються, для нелiнiй-
ної електродинамiки Борна–Iнфельда, а також Гейзенберга–
Ейлера в 4-вимiрному просторi-часi Мiнковського. Встанов-
лено нескiнченну iєрархiю струмiв, що зберiгаються, яка за-
дана дужками Лi коварiантних векторного та аксiально-
векторного струмiв. Цi струми зберiгаються в гравiтацiйному
полi, але це збереження порушене в теорiї Ейнштейна–Картана
(в просторi-часi Рiмана–Картана). Аксiально-векторнi струми
зберiгаються тiльки в (3+1)-вимiрному просторi-часi.
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