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It is shown that the dependence of the resistance of a cell filled with
a NaCl aqueous solution on the ac frequency cannot be explained
as a result of only polarization phenomena in the boundary re-
gion at the electrode—electrolyte interface. A physical mechanism
is proposed, which explains the monotonous increase of the so-
lution specific conductivity at frequencies below 10* Hz, and its
constant value in the frequency interval of 10*-10% Hz. The tem-
perature dependences for the diffusion coefficients of Nat and C1—
ions in NaCl aqueous solutions and for the dimension of an phys-
ically infinitesimal volume (a region, where the local equilibrium
is established) in this electrolyte are calculated. The space-time
hierarchies in the NaCl aqueous solution are analyzed, and a rela-
tionship between a connection of the ac period with certain time
characteristics, on the one hand, and the frequency dependence of
the specific conductivity in this electrolyte, on the other hand, is
demonstrated.

1. Introduction

It is known [1] that, when the frequency of an alternat-
ing current through an electrolyte solution is initially
lower than 10* Hz, the frequency growth is accompanied
by a monotonous increase of the specific conductivity of
the electrolyte solution followed by its saturation within
the frequency interval of 10* — 10° Hz. Such a behavior
is supposed to be a manifestation of polarization phe-
nomena in the boundary region between the electrolyte
and the electrode, when the contact technique is used
for measurements. In this work, we demonstrate that
this model results in only a qualitative agreement with
experimental data. The aim of this work is to propose
a physical mechanism, which could explain the constant
electroconductivity in the indicated frequency interval.

2. Experimental Technique
We studied the ac resistance of sodium chloride aqueous

solutions with salt concentrations of 0.9, 1.8, 4.5, and
9 g/l in the frequency range of 0.1-100 kHz and the
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temperature interval 30-70 °C. The measurements were
carried out with a P5083 alternating current bridge.

The resistance was measured, by using a two-electrode
cell, with a liquid system to study being poured into.
Such a cell is usually represented in the form of an
equivalent circuit [1], which includes, besides the elec-
trolyte resistance, double layer capacitance, Warburg
impedance, electrochemical polarization resistance, par-
asitic capacitance between electrodes, and resistance
formed as a result of the ion adsorption on the electrode
surface. The parameters of the cell and the electrolyte
can be so selected that the parasitic capacitance, the
adsorption resistance, and the electrochemical polariza-
tion resistance could be considered equal to zero. For
instance, in order to minimize the parasitic capacitance,
we used a cell with probe platinum electrodes rather than
ordinary electrodes in the form of plates. Owing to this
simplification of the equivalent circuit, the measured re-
sistance of the cell filled with the electrolyte, Ryeas, and
the resistance of the electrolyte, R, are connected as fol-
lows:

Rmeas =R+ ARS, (1)
where

1
AR, = 477020‘)—3/27 (2)

is an error inserted by polarization phenomena [1], 7 is a
constant, C' is the capacitance of the double layer, w =
2 f is the cyclic frequency of the alternating current,
and f is the ac frequency.

The cell diameter was much smaller than its length
(lp = 10.1 ¢cm and d = 0.2 cm), which favored a bet-
ter thermostabilization, when measuring the tempera-
ture dependence of electroconductivity.

The frequency dependence of the resistance of a cell
filled with the NaCl aqueous solution of a concentration
of 9 g/1, which was measured in the indicated frequency
interval, is depicted in Fig. 1. Let us replot it in the
(w32, Rieas)-coordinates and approximate by a linear
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Fig. 1. Resistance of a cell filled with a sodium chloride aqueous
solution with a NaCl concentration of 9 g/1 as a function of the ac
frequency
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Fig. 2. The same as in Fig. 1, but in the (w_3/2,Rmeas)—
coordinates and the corresponding approximation by formula (1)

dependence, to which formula (1) corresponds in these
coordinates (see Fig. 2).

Consider this dependence (the experimental curve)
and its approximation (the theoretical curve) in the
(f, Rmeas)-coordinates (see Fig. 3). It is evident that
the curves are only in qualitative agreement. This af-
forded ground for supposing that, besides polarization
phenomena, there exists another reason for the frequency
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Fig. 3. Dependences of the resistance of a cell filled with a sodium
chloride aqueous solution with a NaCl concentration of 9 g/1 on the
ac frequency: (1) calculated by formula (1) and (2) experimentally
measured

dependence of the measured resistance to have a form
presented in Fig. 1.

3. Experimental Results

In Figs. 4 and 5, the frequency and temperature depen-
dences of the specific conductivity in sodium chloride
aqueous solutions calculated from the experimentally ob-
tained values of the cell resistance are given.

4. Discussion of Experimental Results

While interpreting our experimental data, we use the
continual model. Any continual theory [2-4] is based on
the idea of local equilibrium. It is adopted that an in-
complete equilibrium, i.e. with respect to a definite con-
fined set of dynamic variables, is established in a certain
region of the dimension [ and the volume v ~ (3. It is this
equilibrium that is called local, and the region itself is
called a physically infinitesimal volume. The emergence
of the latter term is explained by the fact that the contin-
ual theory considers the dimension [ as an infinitesimal
quantity. Accordingly, the physical infinitesimal volume
transforms into a mathematical infinitesimal volume dx
in the continual approximation.

The existence of local equilibrium allows one to as-
cribe a certain free energy to the physically infinitesimal
volume and, therefore, a certain macroscopic parameter.
In the case of electrolyte solutions, such a parameter
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Fig. 4. Dependences of the specific conductivity on the ac fre-
quency in sodium chloride aqueous solutions with concentrations
of 1.8 (1), 4.5 (2), and 9 g/1 (3)

can be, e.g., the concentration of ions n. This quantity
is considered to be a continuous function of coordinates
in the continual approximation. Respectively, the num-
ber of ions in the physically infinitesimal volume with
the center of mass at x is determined by the expression
n(x)dx.

By definition [2], the number of particles in the phys-
ically infinitesimal volume must be considerably larger
than one. In our case, the following inequality holds:

nv > 1. (3>

Just this inequality determines the eligibility of appli-
cations of the continual approach. The introduction of
the local equilibrium concept results in the appearance
of a certain minimal size [, below which the continual
approach becomes ineligible.

In the absence of external field [2], the diffusion pro-
cess in the one-dimensional case is described by the equa-
tion

on 9’n
Fri D@7 (4)

where D is the diffusion coefficient. The solution of this
equation with zero boundary conditions is written down
in the form of an infinite series

n:;Aqsin?exp(—t/Tq), (5)
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Fig. 5. Temperature dependences of the specific conductivity in
sodium chloride aqueous solutions with NaCl concentrations of 0.9
(1),1.8(2),4.5(8), and 9 g/1 (4). The ac frequency is 80 kHz

where L is the system size, and 7, is the relaxation time

for the g-th diffusion mode, which is determined by the
expression
L2

q ,/quQD ( )

However, expression (5) is, generally speaking, an ap-
proximation, because, as was already mentioned, the
continual representations are valid only for spatial in-
tervals larger than [. Taking this fact into account, it
would be more exact to write down the mentioned solu-
tion in the form of a finite series,

Q
n= ZAq sinWLﬂexp(ft/Tq), (7)

q=1

where @ is the largest value of parameter ¢; it is deter-
mined by the equality

L
Q=7 (®)
As is seen from formula (6), the existence of the minimal
spatial interval [ suggests the existence of the minimal
time interval
L2

= ——. 9

7Q ﬂ_QQQD ( )

To find I, we used the experimental data on the con-
ductivity of electrolyte solutions. This choice of exper-
iments is associated with the fact that ions are charge
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carriers in electrolytes. Accordingly, for the current den-
sity amplitude I, we obtain the expression

I=el, (10)

where e is the ion charge, and J is the density of ionic
flow. As is known [6], under the action of an external
force, the ionic flow density J can be written down as a
sum

J =Jp + Jk, (11)

where Jp and Jk correspond to the densities of the dif-
fusion and convective flows, respectively. They look like
on

JD = 7D7a

o (12)

respectively, where F' = eFE is a force acting on an ion,
FE is the electric field strength, and b is the ion mobil-
ity, which is coupled with the diffusion coefficient by the
Einstein relation

bkpT = D. (14)
We consider the alternating current, so that
E = Eyexp(—iwt). (15)

Figure 4 shows that the conductivity increases with the
ac frequency, but only until a certain frequency wg of the
order of 10™* s~!. At frequencies higher than wq, the
electroconductivity remains practically invariable. Such
a behavior of the electroconductivity can be explained as
follows. According to formulas (11)—(13), the diffusion
flow counteracts the convective one and reduces it. At
high frequencies of the external force, when the inequal-

ity

wrg > 1 (16)

is obeyed, diffusion modes are too slow to “trace” the ex-
ternal field, and, provided that inequality (16) holds, the
diffusion flow is practically absent. Only the convective
flow survives, so that formula (10) reads

e2nD

I= E. 1
T (17)

Hence, if condition (16) is satisfied, the specific conduc-
tivity k is determined by the expression

e2nD

k= .
kT

(18)
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According to the last expression, the electroconductiv-
ity is frequency independent. Hence, the section of the
constant conductivity corresponds to inequality (16). It
means that the frequency wg at the beginning of this
section is determined by the condition
wTQ = 1. (19)

According to formula (7), the concentration is written
down as a sum, every term of which is a collective fluc-
tuation, which is sinusoidal in space and exponentially
damps in time with the relaxation time (6). As was al-
ready mentioned, such a damped collective fluctuation
is called a diffusion mode. Its appearance is associated
with the constant concentration of particles (now, these
are ions). Accordingly, the excess of this quantity cannot
disappear locally. It can only relax slowly, expanding
over the whole system. The sinusoidal diffusion mode
relaxes only through the particle transfer from a region,
where there is an excessive concentration, into a region
with a concentration deficiency.

When an external field is applied, the initial distribu-
tion of ions does not correspond any more to the equilib-
rium state, i.e. there appears a fluctuation determined
by the field with respect to the equilibrium distribution.
To be more exact, we deal in this case with the already
mentioned set of fluctuations, every of them being char-
acterized by a specific relaxation time (6). The mini-
mal value of these times was defined as 7¢. It is clear
that, under condition (16), collective fluctuations have
no time to relax, and the conductivity is determined by
formula (18). This formula includes the concentration.
This quantity characterizes a certain state of local equi-
librium and can be calculated making use of the local-
equilibrium distribution function [9]. As was already
mentioned, the presence of the concentration in formula
(18) means that there is enough time for a local equi-
librium to be established at any moment in the system
subjected to the action of an external alternating field.
In other words, if 7; stands for the equilibration time,
the following inequality must be satisfied:

wr K 1. (20)

Let us make sure of the validity of formula (18). Ac-
cording to it, the frequency-independent value of specific
conductivity k must be proportional to the concentration
n, provided that the temperature is constant. In Fig. 6,
the experimental dependences of the specific conductiv-
ity k on the concentration n at various temperatures
are depicted. One can see that the experimental depen-
dences can be approximated with a satisfactory accuracy
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Fig. 6. Concentration dependences of the specific conductivity in
a sodium chloride aqueous solution at temperatures of 30 (1), 40
(2), 50 (3), and 60 °C (4)

by linear dependences, which allows the diffusion coeffi-
cient D and the infinitesimal volume dimension [ for the
studied solutions to be calculated by formula (18) and
formulas (8) and (9), respectively (see Figs. 7 and 8). As
follows from the given plots, the order of magnitude of
the quantity { is 10 nm.

According to expression (20), there must exist fast re-
laxation processes in the system, which provide the es-
tablishment of a local equilibrium. As such, there may
be the processes of Debye atmosphere relaxation pro-
posed by P. Debye in [7,8]. The relaxation time of these
processes is 1077~107% 5. At the same time, it should be
emphasized that the size of a physically infinitesimal vol-
ume substantially exceeds the Debye radius rp. Really,
the formula for the Debye radius is [7]

e’:‘k‘BT 1/2

D= (87TTL62) ’
where ¢ is the dielectric permittivity of a solvent, and
e is the ion charge. Substituting the relevant numerical
values obtained in our experiment into formula (21), we
obtain the estimate rp =~ 0.8 nm. The Debye theory is
valid, if | < rp. However, in our case, rp < [. It means
that the Debye theory is inapplicable.

There is another argument that the Debye theory
cannot be applied in our case. This theory is good,
provided that the interaction energy U of a given ion
with the others satisfies the condition U < kgT. Let
us calculate U for the concentrations studied in this

(21)
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Fig. 7. Temperature dependences of the diffusion coefficient for a

sodium chloride aqueous solution with NaCl concentrations of 1.8
(1), 45 (2), and 9 g/1 (3)
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Fig. 8. Temperature dependences of the dimension of a phys-
ically infinitesimal volume in sodium chloride aqueous solutions
with NaCl concentrations of 1.8 (1), 4.5 (2), and 9 g/1 (3)

work. It is known that, at concentrations that corre-
spond to the Debye theory, the concentration of coun-
terions in a vicinity of the given ion exceeds the con-
centration of ions with the same sign. In our case,
when the Debye radius rp becomes comparable with
the ion-to-ion distance n~'/3 by the order of magnitude,
positive charges are practically absent from the near-
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est vicinity — the first coordination sphere — of a pos-
itive ion, and this ion turns out surrounded only with
negative ones. Radiographic researches [9] showed that
the number of ions in the first coordination sphere in
the solution is approximately the same as in the crys-
tal. This circumstance allows one, while estimating U,
to use the calculation results obtained for a NaCl crys-
tal [10], where the following expression was obtained for
the electrostatic energy U’ per one cell, i.e., in fact, for
the energy of interactions of an ion with its environ-
ment:
U’ =1.75¢2n!/3. (22)
Taking into account that solute ions are surrounded by
water molecules, this formula should be rewritten in the
form

2,1/3
U =1.75° Z e

(23)

Substituting the n-value from the studied concentration
interval into this formula, we obtain U ~ 5 x 10721 J,
which is of the same order of magnitude as the energy
of thermal motion of ions kgT ~ 4 x 10721 J.

Leaving the distance between solvent molecules aside,
four characteristic linear dimensions can be distin-
guished in the electrolyte solution: the average distance
between ions n~'/3, the dimension of the physically in-
finitesimal volume [, the Debye radius rp, and the sys-
tem size L. The Debye theory of electroconductivity is
applicable at low concentrations of ions. It is applicable,
when the inequalities
nVP <l <L (24)
are satisfied.

The value for the physically infinitesimal volume ob-
tained from our experiment turned out to be 10~% m by
the order of magnitude. In addition, the average dis-
tance between ions n~/3 and the Debye radius rp are
of the same order of magnitude in the studied concen-
tration range, because n~/3 = (0.2 = 0.5) nm here. In
other words, in the concentration interval studied in this
work, the inequalities
n 13 rp i< (25)
hold true. According to the spatial dimension hierarchy
(25), there must exist a temporal hierarchy

™K1 L TL, (26)
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where 7 is the duration of the Debye atmosphere for-
mation, 7; the local equilibration time, and 77, the equi-
libration time for the whole system. In fact, in our case
where n=1/% x rp, the formation of a Debye atmosphere
corresponds to the emergence of a short-range ordering
in the system of ions. In addition, the equilibration in
the whole system is a complex of relaxation processes
with relaxation times that are determined by formula
(6).

Therefore, when introducing the notion of relaxation
time 77, we conditionally understand it as a spectrum
of relaxation times, the minimal of which is equal to 7¢;
i.e. expression (26) should be rewritten in the form

™ KL 7 L TQ- (27)

Hierarchy (27) determines the frequency range, in which
the frequency independence of electroconductivity is ob-
served. In particular, these are frequencies that satisfy
the inequalities

n<w K TQ- (28)

Hence, the appearance of the frequency-independent
electrical conductivity in electrolyte solutions is con-
nected with the existence of a relaxation process, which
is characterized by the relaxation time 7; and gives
rise to the emergence of a local equilibrium state.
This type of conductivity is realized, when the pe-
riod of an external field becomes much longer than
the local equilibration time and, at the same time, re-
mains much shorter than the time of diffusion processes

TQ.
5. Conclusions

There is a hierarchy of relaxation times in electrolyte so-
lutions. It is a sequence of growing time values, which
correspond to the following processes: the formation of
a Debye atmosphere, the local equilibration, and the
relaxation of the set of diffusion modes. In the case
where the period of an external electric field is longer
than the time of local equilibration, but shorter than
the diffusion-mode relaxation times, the electric conduc-
tivity of an electrolyte solution is independent of the
external field frequency. In this case, there is no diffu-
sion flow of ions, and only the convective flow is invoked.
This circumstance allows the diffusion coefficients of ions
to be calculated, knowing the experimentally determined
values of conductivity in the concerned frequency inter-
val. The value of the lower limit of the frequency in-
terval, where the conductivity does not depend on the

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 6
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frequency, was used to calculate the dimension of the
physically infinitesimal volume, in which the local equi-
librium is established.
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MEXAHI3M YACTOTHO-HE3AJIEXKHOT
EJIEKTPOITPOBIJTHOCTI BOAHMX
PO3YIMHIB EJIEKTPOJIITIB

JI.LA. Byaasin, O.M. Aaexcees, FO.D. 3abawma, C.FO. Tkawos
PeszmowMme

Ilokazano, IO NOBeAiHKA 3aJIEXKHOCTI ONOPY KOMIpKH 3 BOJHUM
posunnoM NaCl Big yacToTu 3MiHHOTO CTpyMy B BUOpaHOMY Ha-
OJIM>KEeHH] He MozKe 6yTH IMOSICHEHA TIIbKY [TOJISPU3aIiiHUMU SBU-
M[aM# B IPAHUYHUX OOJIACTSX €JIEKTPOJ—€JIEKTPOJIT. 3alpPOIOHO-
BaHO (Di3MYHUN MeXaHi3M, 10 IMOSACHIOE MOHOTOHHE 3PDOCTAaHHS ITU-
TOMOI €JIEKTPOIIPOBITHOCT]I PO3YMHY IIPU 3POCTAHHI YaCTOTHU, KOJIA
wacrora Menma 3a 10* T'm, i crajicTs TMTOMOI €JIEKTPONPOBILHO-
cri posumny mpu wacrorax B imrepsami (10%-10°) I'm. Pospaxo-
BAHO TeMIIepaTypHi 3amexxHocTi KoedimienTa nudysii iomis Nat i
Cl™ y Boguaux posuunax NaCl ta po3mipy hisudHOro HeCKiHUEHHO
Mayoro 06’emy (06s1acTi BCTAHOBJIEHHS JIOKAJIBHOI PIBHOBArHU) JIJIst
Takoro esiekrposiry. [Ipoeseno anasiis mpocTopoBoi Ta 4YacoBol
iepapxil y Bogaomy poszunni NaCl Ta mokazaHo 3B’s130K CHIBBiIHO-
IIEHHH Iepioly 3MIHHOrO CTPyMy Ta II€BHUX XapaKTEPHUX YaciB 3
9aCTOTHOIO 3aJIE’KHICTIO NUTOMOI €JIEKTPOIIPOBIIHOCTI IIbOrO eJjie-
KTPOJITY.
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