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We construct estimators for testing the statistical anisotropy of
the cosmic microwave background arising due to a quadrupole
scale-independent anisotropy in the primordial power spectrum.
The estimators do not require the knowledge of basic cosmological
parameters. We determine the sensitivity of the constructed esti-
mators to the magnitude of the statistical anisotropy and perform
test simulations that confirm our theoretical estimates.

1. Introduction

The observable Universe is only approximately homoge-
neous and isotropic. Departures from homogeneity and
isotropy are small in the past and/or on large spatial
scales and are detected in the observations of the large-
scale structure and the cosmic microwave background
(CMB). Thus, the CMB temperature T (n) slightly de-
pends on the unit vector n indicating the direction of
observation, with characteristic variation ΔT/T0 ∼ 10−5

with respect to the average temperature T0.
Of special interest as of the recent time are the sta-

tistical properties of perturbations in the early Universe
which may be reflected in the CMB temperature field.
Here, the main object of investigation is the correlation
function

C(n1,n2) = 〈ΔT (n1)ΔT (n2)〉 , (1)

where ΔT (n) = T (n) − T0. The statistical isotropy of
primordial density perturbations is a general assump-
tion of the models of structure formation, leading to the
isotropy of the correlation function (1), i.e., its invari-
ance with respect to rotations of the celestial sphere. In
this case, it is a function only of the angle between the
directions n1 and n2: C(n1,n2) = f(n1 · n2).

Statistical isotropy is one of the robust predictions of
the inflationary theory [1] of the origin of primordial per-
turbations. It is very important to test this prediction by
observations. A number of researches recently put this
principle to theoretical and experimental tests. On the

theoretical side, the issue of the statistical (an)isotropy
of the CMB temperature and polarization correlation
functions was discussed in a general statement in [2–4]
(see a review in [5]). In addition, a number of models
were constructed that violate statistical isotropy. These
are typically Bianchi I models explicitly breaking the
isotropy of the inflationary Universe and driven by var-
ious mechanisms: genuine anisotropic initial conditions
[6], special uniform vector [7, 8] or spinor [9] fields that
pick up a preferred direction, anisotropic equation of
state [10], or gradients of the scalar fields [11]. More
exotic theories can be found in [12].

On the experimental side, two indications of the sta-
tistical anisotropy in the CMB temperature map were re-
ported. In one of them, an anisotropy of the quadrupole
type in the primordial power spectrum was tested with
positive detection [13], which, however, according to the
authors, may be not of the cosmological origin, but
most likely a product of an unknown systematic effect.
Another type of anisotropy is a dipole modulation in
the angular power spectrum of the CMB temperature
anisotropy, producing slightly different temperature fluc-
tuation powers in the northern and southern celestial
hemispheres [14, 15]. The nature and the origin of this
effect still remain unclear; some attempts to explain it
are made in [16].

A general form of the anisotropic power spectrum can
be presented as

Pk = Pk

[
1 +

∑
LM

gLM (k)YLM (k̂)

]
, (2)

where Pk is the isotropic part of the power spectrum Pk,
and gLM (k) are the coefficients of the expansion of the
anisotropic part in spherical harmonics YLM (k̂) (here,
k̂ = k/k). The general statistics for the CMB tempera-
ture corresponding to such primordial power spectra was
investigated in [4]. In some special cases, such as, e.g.,
that considered in [7], the sum in (2) contains only har-
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monics with L = 2, with the coefficients g2M that do not
depend on k.

In the case of constant gLM , the statistical analysis
allows for a great simplification. The aim of this paper
is to construct a set of estimators for the constant co-
efficients gLM in (2) that would be independent of the
cosmological parameters such as the densities of various
components filling the Universe, equation of state for the
dark energy, etc. We then study the statistical proper-
ties of such estimators for g2M in a special case of an
anisotropy of the quadrupole type (with gLM nonzero
only for L = 2).

2. Correlation Function for the CMB
Temperature

The temperature map T (n) can be expanded in terms
of spherical harmonics Ylm(n) as follows:

T (n) = T0

∑
lm

almYlm(n) . (3)

The covariance matrix for the coefficients alm is given
by [4]

〈alma
∗
l′m′〉 = δll′δmm′Cl +

∑
LM

ξLM
lml′m′DLM

ll′ . (4)

Here,

ξLM
lml′m′ =

∫
Y ∗lm(n)Yl′m′(n)YLM (n) dn =

= (−1)m′ (
GL

ll′
)1/2

CLM
lml′−m′ (5)

and

GL
ll′ ≡

(2l + 1)(2l′ + 1)
4π(2L+ 1)

(
CL0

l0l′0

)2
, (6)

where CLM
lml′m′ are Clebsch–Gordan coefficients. The

quantities Cl describe the usual isotropic part of the an-
gular power spectrum and are given by

Cl = (4π)2
∞∫
0

dkk2Pk [Θl(k)]
2
. (7)

The anisotropic part of the angular power spectrum is
encoded in the quantities DLM

ll′ in (4), given by

DLM
ll′ = (4π)2(−i)l−l′

∞∫
0

dkk2PkΘl(k)Θl′(k)gLM (k) . (8)

Here, Θl(k) is the contribution to the lth temperature
moment from the wave number k, which depends on the
parameters of the cosmological model.

If the coefficients gLM are k-independent, then, obvi-
ously,

DLM
ll′ = gLMFll′ , (9)

where Fll′ can be read-off from (8). In particular,

Fll = Cl . (10)

3. Proposal for Estimators

A detailed analysis of the CMB statistics with the
anisotropic spectrum of the form described in the previ-
ous section can be found in [4]. The estimators for the
constant parameters gLM constructed therein involve the
quantities Cl or Fll′ that depend on the parameters of
the isotropic cosmological model (such as the index of
the power spectrum, parameters Ω, etc.) through the
quantities Pk and Θl(k) in (7) or (8). The purpose of
this paper is to propose model-independent estimators
for the parameters gLM and to study their statistics in
the case of quadrupole anisotropy (L = 2).

For this purpose, consider Eq. (4) with constant gLM

for l = l′ :

〈alma
∗
lm′〉 = Cl

(
δmm′ +

∑
LM

ξLM
lmlm′gLM

)
. (11)

All the quantities in this expression can be replaced by
estimators obtained directly from observations. Indeed,
the average 〈alma

∗
lm′〉 is simply estimated by the product

alma
∗
lm′ , and the quantity Cl is naturally estimated by

Ĉl =
1

2l + 1

∑
m

|alm|2 , (12)

since the equality 〈Ĉl〉 = Cl follows from (4) and from
the summation properties of the geometrical coefficients
(5). Hence, one can consider the collection

ζlmm′ = alma
∗
lm′ − Ĉl

(
δmm′ +

∑
LM

ξLM
lmlm′gLM

)
(13)

as a set of test functions to look for the parameters gLM .
Specifically, the “true” collection of the numbers {gLM}
should minimize a deviation of the collection of the quan-
tities {ζlmm′} from zero values.

The above proposal is quite generic and can be
used to determine all coefficients gLM . If the statistical
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anisotropy is restricted to a quadrupole (L = 2), then
there are five real constants to be found in g2M (one real
g20 and two complex g21 and g22). In this case, the pro-
cedure for determining g2M can be further simplified as
follows.

The coefficients ξ2M
lmlm′ are nonzero only for |m′−m| ≤

2. They are given by the expressions

ξ2M
lmlm′ = ξM

lm δm,m′+M = ξM
lm δm′,m−M , (14)

where

ξ−2
lm = (−1)l

√
15
8π
×

×
√

(l −m)(l −m− 1)(l +m+ 1)(l +m+ 2)
(2l − 1)(2l + 3)

, (15)

ξ−1
lm = (−1)l

√
15
8π

(1 + 2m)
√

(l −m)(l +m+ 1)
(2l − 1)(2l + 3)

, (16)

ξ0lm = −(−1)l

√
5
4π

l(l + 1)− 3m2

(2l − 1)(2l + 3)
, (17)

ξ1lm = (−1)l

√
15
8π

(1− 2m)
√

(l +m)(l −m+ 1)
(2l − 1)(2l + 3)

, (18)

ξ2lm = (−1)l

√
15
8π
×

×
√

(l +m− 1)(l +m)(l −m+ 1)(l −m+ 2)
(2l − 1)(2l + 3)

, (19)

One can see that, for given l, all these quantities are
bounded by a constant O(l).

For definiteness, consider the procedure for determin-
ing g22. Let us consider the functions of a complex pa-
rameter z

ζlm(z) ≡ (−1)ll(l + 1)ζlm,m−2 =

= (−1)ll(l + 1)
(
alma

∗
l,m−2 − zξ2lmĈl

)
. (20)

The statistical average of (20) is

〈ζlm(z)〉 = (−1)lξ2lmSl (g22 − z) , (21)

turning to zero only for z = g22. We have introduced
the quantities Sl = l(l+1)Cl, which (up to a coefficient)
are the canonical representation for the CMB angular
power spectrum. All the quantities Sl have comparable
order of magnitude. For z = 0 (which presupposes the
statistical isotropy), we have

〈ζlm(0)〉 = (−1)lξ2lmSlg22 . (22)

Note that the product (−1)lξ2lm is always positive, as
well as Ĉl and Cl. It is for this positiveness that we
introduced the coefficient (−1)l in (20).

The idea for the estimator for g22 is the solution to
the equation

E(z) ≡
∑
lm

Wl ζlm(z) = 0 , (23)

where the sum is taken over available values of l and
m, and the real positive quantity Wl is an appropriate
window function which one can choose at will. This
will be a reasonable procedure to detect the statistical
anisotropy if the statistical fluctuation of the quantity
E(z) for z = g22 is sufficiently smaller than its statistical
average for z = 0:〈
|E (g22)|2

〉
� |〈E(0)〉|2 , (24)

or〈∣∣∣∣∣∑
lm

Wlζlm (g22)

∣∣∣∣∣
2〉
� |g22|2

[∑
lm

(−1)lWlξ
2
lmSl

]2

.

(25)

An estimator for g22 is then given by the solution to
(23):

ĝ22 =

∑
l

(−1)ll(l + 1)Wl

l∑
m=2−l

alma
∗
l,m−2

∑
l

(−1)ll(l + 1)ĈlWl

l∑
m=2−l

ξ2lm

. (26)

This estimator is biased because its denominator is a ran-
dom variable; but the biasing is small, since the denom-
inator has a small relative dispersion ∼ 1/

√
N, where N

is the number of terms in (23). This last property is en-
sured by the coefficient (−1)l in the numerator and the
denominator, making the denominator a sum of strictly
positive terms.
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4. Estimates of the Variance

In estimating the variance on the left-hand side of (25),
we can neglect the cross-correlation between terms with
different values of l in the sum, since this will produce
terms of higher order in the small coefficients g2M . The
number of such terms will be of the same order in N as
the number of leading terms, which is clear from the fact
that there is no correlation between alm and al′m′ with
|l − l′| > 2 and |m−m′| > 2. The left-hand side of (25)
is then estimated as〈∣∣∣∣∣∑

lm

Wlζlm (g22)

∣∣∣∣∣
2〉
≈

≈
∑

l

W 2
l

l∑
m=2−l

l∑
n=2−l

〈ζlm(g22)ζ∗ln(g22)〉 , (27)

up to terms O (g2M ) .
The expression for the correlation in (27) is given by

〈ζlm(g22)ζ∗ln(g22)〉
S2

l

= δnm + δn,2−m +O (g2M ) . (28)

Calculating the zero-order contribution to (27) in the
quantities g2M , we have∑

l

W 2
l S

2
l

∑
mn

′
(δnm + δn,2−m) = 2

∑
l

W 2
l S

2
l

∑
m

′
1 =

= 2
∑

l

(2l − 1)WlS
2
l ' 2l2maxS

2
l , lmax � 1 , (29)

where the primed sums over m and n proceed from 2− l
to l. Here,

S2
l =

∑
l lWlS

2
l∑

l lWl
, lmax =

(
2
∑

l

lWl

)1/2

(30)

are the characteristic quadratic average of Sl and the
effective maximal value of l, respectively.

The sum on the right-hand side of (25) is estimated
as∑

l

WlSl

∑
m

′
(−1)lξ2lm '

1
2

√
5
6π

∑
l

lWlSl '

' 1
4

√
5
6π
l2maxSl , (31)

where Sl is defined similarly to (30). Criterion (25) then
becomes

2S2
l �

5
96π
|g22|2l2maxSl

2
.

5
96π
|g22|2l2maxS

2
l . (32)

Thus, the magnitudes of g22 that can be determined by
this method are estimated as

|g22| &
11
lmax

. (33)

For lmax ' 2000 (hopefully available in the Planck ex-
periment [17]), this gives |g22| ' 5.5 × 10−3. With the
data from the Wilkinson Microwave Anisotropy Probe
[18], we have lmax ' 650, and |g22| ' 1.7 × 10−2. These
crude estimates are in agreement with the estimates for
the model-dependent minimum-variance estimators in
[4], σg2M

∼ 3.8× 10−3 and 1.2× 10−2, respectively.

5. Simulations

To confirm our theoretical estimates, we perform numeri-
cal tests. For simplicity, the quantities alm are generated
independently for each l with covariance determined by
the correlation function (11) with prescribed values of
g2M . For each independent simulation, we then compute
the estimators ĝ22 by (26). The results of simulations
are presented in Figure. They confirm our theoretical
expectations (33) and show a small bias of estimator
(26).

6. Discussion

One of the robust predictions of inflation is the statis-
tical isotropy of the Universe. It is of interest and im-
portance to test this basic cosmological principle using
modern astrophysical data. In doing this, one usually as-
sumes some form of anisotropy in the primordial power
spectrum. In this paper, we have constructed biased
estimators for the scale-independent coefficients gLM of
a simple statistically anisotropic primordial power spec-
trum in the form (2). They are similar to the minimum-
variance estimators proposed in [4], but have the merit
of being independent of the parameters of the underly-
ing cosmological model, thus requiring no variation of
these parameters in the observational tests of statistical
anisotropy. We have determined the cosmic variance of
our estimator for the coefficient g22, which turned out
to be comparable in magnitude to that presented in [4],
allowing for a detection of the statistical anisotropy on
the level of a few per cent [4]. We performed a number
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Results of simulations of 100 samples with zero (upper) and
nonzero (lower) values of g2M [g20 = 0.01, g21 = 0.02(1 + i),

g22 = 0.03(i − 1)]. The quantities Cl in covariance (11) were set
to unity. The points show the distribution of estimator (26) in the
complex plane for g22 with the window Wl = 1 up to lmax = 1000.

The grey color shows the mean and the dispersion separately for
the real and imaginary parts of this distribution, and the black
point in the lower figure indicates the value of g22 = 0.03(i − 1)

used in the generation of alm. One can see that the bias of esti-
mator (26) is small, and the dispersion agrees with estimate (33)

of numerical simulations that confirmed our theoretical
expectations.

In this paper, we did not consider the problem of noise,
systematics, masks, and resolution which will introduce
errors in the determination of the amplitudes alm in (3).
These issues relevant for the practical determination of
the statistical anisotropy require further investigation.
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МОДЕЛЬНО-НЕЗАЛЕЖНI ОЦIНЮВАЧI
ДЛЯ СТАТИСТИЧНОЇ АНIЗОТРОПIЇ
КОСМIЧНОГО МIКРОХВИЛЬОВОГО ФОНУ

Ю.В. Штанов, Д.О. Савченко

Р е з ю м е

Збудовано оцiнювачi для тестування статистичної анiзотропiї
космiчного мiкрохвильового фону, що виникає за рахунок ква-
друпольної масштабно-iнварiантної анiзотропiї в первинному
спектрi потужностi. Оцiнювачi не потребують знання основних
космологiчних параметрiв. Визначено чутливiсть побудованих
оцiнювачiв до величини статистичної анiзотропiї i проведено
пробне числове моделювання, яке пiдтверджує зробленi теоре-
тичнi оцiнки.
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