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Representing a bonding manifold of a molecule or molecular cluster
by a graph given by a set of vertices associated with atoms and a
set of edges imitating bonds, the bonding edge encoding formalism
is defined on n-tuples qubits in terms of the NOT logic gate act-
ing on the “non-bonded” string. This formalism is illustrated by
the simplest diatomic and triatomic molecules whose adjacency
matrices generate different quadratic Boolean functions, among
which the balanced function appears. In this regard, we review
the Deutsch—Jozsa quantum algorithm, well-known in quantum
computing, that discriminates between the balanced and constant
Boolean functions. A novel matrix representation of the constant-
balanced quantum oracle within this algorithm is elaborated. The
proposed approach is generalized to distinguish between constant
and evenly balanced Boolean functions.

1. Introduction

Quantum computation [1, 2] is based on a number of
queries to a black-box quantum device that is usually re-
ferred to as a quantum oracle. Let f,, be a Boolean func-
tion of n variables, i.e., f,, : Zy — Zs, where Zo = {0,1}
is a bit. The set of all n-tuples x := (z1, 22, ..., 2p) € Z§
on which f,(x) = 1 defines the support, 1y, of f,.
0y, = Z3\1y, is then the subset of Z%', where f,(x) = 0.
The Hamming weight of f,, is w(f,) := |1y, |. Obviously,
w(fn) = Bxezy fn(x). An arbitrary Boolean function is
identified by its truth table defined by f,(x) = 0 and
fa(x) =1

A quantum n-qubit oracle [1, 2] is generated by f,, and
operates on the Hilbert space C2?®("+1) a5 the unitary
operator U ., (the so-called oracle call) that maps an
input state |x) ® |y); (y € Z2) to the output state

Ix) @ |y @ fn(x)),
Ur %) @y) = |x) @y ® fn(x)), (1)

where @ denotes addition modulo 2. Relation (1) im-
plies that this quantum oracle can be accessed via Uy, :
it marks an n-qubit string |x) € C2®" by means of its
unitary oracle gate (1) and thus answers whether a given
fn pOssesses a certain property or not. |x) := ®%|x;) is
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defined as a work n-qubit string (control register) be-
longing to the work Hilbert space C2 %" of f,, and |y) is
a target (or oracle, ancillary) qubit from C?. The evalua-
tion of given properties of f, by a quantum oracle is per-
formed by the corresponding quantum algorithm. Many
quantum algorithms are implemented at the molecular
level (see [3-9] and references therein) associated with
a two-state representative or qubit [10], such as, e.g., a
spin-1/2 electron. Among them is the Deutsch—Jozsa
quantum algorithm that discriminates between a con-
stant and a balanced Boolean function [1, 2].

The goal of the present work is twofold: first, to define
the mapping of the manifold of various chemical bonds
onto Z that implies a novel molecular domain of imple-
mentation of quantum algorithms and, second, to pro-
pose an approach to resolve the Deutsch—Jozsa quantum
algorithm based on the trace of the unitary operators
involved in the oracle query and suggested to be rather
efficient while implemented on the bonding manifold.

2. Z3} Patterning of Molecular Bonding
Manifold

Let M be a stable ground-state neutral molecule that is
composed of a finite set Vo of atoms {Ay}, such that
M = Ulo\le Aq, where [V = M. A bonding manifold
B(M) of a given molecule M is, by definition, a set of
chemical bonds which connect, in a pairwise manner,
atoms of M to one another. In this sense, a molecule
M is a finite, indirect, simple (non-weighted), and loop-
free graph G(M|M) = (Vaqr, Em) (see, e.g., [11]) given
by a finite set Vo of M vertices vy, ..., v\, associated
with atoms, and by a finite set Ex( of edges or bonds.
By definition, 9(i) maps an each edge i € Exq to a
pair of vertices: 0(7) := (v,v’) which it connects, i.e.,
in a sense, Exq € Vo ® V. Equivalently, two ver-
tices v,v" € Vo of this graph are connected or adjacent
by edge i = (v,v’) € Eaq or, symbolically, v ~ o', iff
v € 9(i) and v' € 9(i). Any pair of vertices v, v’ € Vg
of a graph G(M) = (Vu, Ep) that corresponds to a
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stable molecule M, i.e., the so-called molecular graph,
are connected or not. The star S(v) C E of the vertex
v € V is the set of the edges incident with v. The degree,
deg(v), of the vertex v is defined as deg(v) := |S(v)|.
Given v € V, the neighborhood of v, N(v) C V, is the
set of vertices adjacent to v. If the graphs whose two ver-
tices are connected by more than one edge are excluded,
it is evident that deg(v) = |N(v)|. It is obvious that, for
any molecular graph G(M) = (Vq, Exrq) and for each
v € Vpy, deg(v) > 1.

Let us prepare a logic or “cluster” state of M on the
corresponding molecular graph G(M) = (Vaq, Erq). For
this reason, we define the Bonding Edge Encoding
(BEE in short):

Definition 1: One bit is encoded into each bond (edge)
in such a manner that a given edge (v,v’) is in the logic
state “0” if it does not exist in E (that is, this edge is
empty) and in “1” otherwise (that is, there does exist
this edge).

Actually, Edge Bonding Encoding is the mapping
from the molecular bonding manifolds {Ex¢} to ZJ.
Hence, we have
Definition 2: A logic state S of M = G(M) = (V o4,
Eum) is BEE(Epy) C Z3 where n = (V).

Definition 2 assumes the existence of some order-
ings of vertices of G(M) = (Vu, Epmq) on Vg and
their pairs on Va(® V o¢. The corresponding logic state
Sam is an n-tuple or string (so-called “bonded” string)
Sm = (-..,0k-1,1,0k41,...) € Z% implying that
the k-th pair of vertices of G is interconnected by a
bond. It is also assumed the existence of the ‘non-
bonded’ string 0 = (04, ...,0%,...,0,). Within the BEE
formalism, a bonding is then interpreted as a logical
network determined by a sequence R of logic gates
R = HZ:l Ry, which are successively applied to a
“non-bonded” string or input register 0 to yield the
output-register string (...,0x-1,1%,0k41,...). The k-
th logic gate Ry acts on the k-th pair of vertices of 0
as the “bonding” operator that creates a bond or edge
within this pair, thus producing the “bonding” string
di = (01,...,0k-1, 1k, Ogy1,---,0,). It is clear that Ry
is the NOT* gate, a NOT logic gate determined by the
Pauli operator &, [1] that acts on the k-th component of
the O string.

Above, the adjacency of a pair of vertices of a graph
G(M) has been defined. The associated adjacency ma-
trix ' is the n X n matrix with the matrix elements
'y, =1if v ~ v and T, = 0 otherwise. The adja-
cency matrix of any molecular graph is real and sym-
metric with a zero diagonal. T naturally determines the
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quadratic Boolean function f,, : Z} — Z5 defined as [12]

@
fn(X) = ZI‘lexJ (2)
i<j
In other words, the term z;x; occurs in the Boolean
function f,,(x) related to the graph G(M) = (Vaq, Eaq)
iff (¢,5) € Eapq. Let us consider, for illustration, the
cluster states of a diatomic molecule M = AB and
triatomic molecules ABC linear, I, and triangular, II.
Their graphs are, respectively, referred to as G(AB|2),
G(ABC-I|3), and G(ABC-II|3). The adjacency matrices
of these graphs are the following;:

01 010
FAB:<10)a Tapc1= 101 )
010

011

Capcn=|( 101 (3)
110

By virtue of Eq. (2), Tap,Tapc-1, and T'apc-1 gener-

ate, respectively, the 2- and 3-variable quadratic Boolean
functions

JaB(X) = 2172,  faBc-1(X) = 2122 © w273,

fABc—H(X) =x122 D x103 D x2T3. (4)

Evidently, 17,, = {(1,1)}, 15, ..., = {(1,1,0), (0,1,1)},
and 1y, = {(1,1,0), (1,0,1), (0,1,1), (1,1,1)}. The
truth tables of these Boolean functions can be readily
obtained, and they are presented in Tables 1 and 2. Ob-
viously, the truth table of fap corresponds to the AND
logic operation [1]. The truth table of fapc-1 repre-
sents the carry out bit ¢’ := ab @ ac & be (or Maj(a,b,c),
the “majority” function) in the classical full adder op-
erating on the input triple (a,b,c) [13]. fapc-ir is a
balanced Boolean function that is the function with
w(fapc-m) = 22, i.e. fapo-n takes an equal number
of 0’s and 1’s. In contrast, the former two functions
are not balanced. To distinguish the balanced functions
from the others, the Deutsch—Jozsa algorithm was de-
signed, in particular. Its quantum analogue is treated in
the next two Sections.

T able 1. Truth table of the Boolean function fap
defined by Eq. (4)

z1 ‘ x2 ‘ faB
0 0 0
1 0 0
0 1 0
1 1 1
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3. Deutsch—Jozsa Quantum Algorithm

The entire class of 22" Boolean functions f,, : Z8 — Zy
is filtered by the Deutsch—Jozsa quantum algorithm
[14-16] into the constant and balanced subclasses. A
Boolean function f, is constant if it takes a constant
value, either 0 (i.e., w(fy) = 0) or 1 (w(f,) = 27) or
balanced if w(f,) = 2"~!. Notice that the Hamming
weight of constant Boolean functions of n variables is al-
ways even and that of the balanced ones is odd or even
depending on n = 1 and n > 1, respectively. For any
n, there are only two constant and b, = (27)!/[(2"~1)!]?
balanced Boolean functions (e.g., b3 = 70) [17].

The Deutsch—Jozsa quantum algorithm operates only
on these two subclasses and distinguishes between them,
implying that a balanced Boolean function is the nega-
tion of the constant one: simply, “balance = — con-
stant and vice versa”. If n = 1, there exist only 22"

= 4 Boolean functions {fi}: two constant, flm and

1[2], and two balanced, f1[3] and f1[4], shown in Table
3. The number of Boolean functions {f»} defined on Z32
is 22° = 16. Their truth table is Table 4. Among them,
there are 2 constant functions, f2[1] and fQ[Q], and 6 bal-
anced, fl[z], I = 3 — 8. The rest 6 functions are neither
constant nor balanced. If n > 1, the latter functions are
22" — (2 + by). About them, the Deutsch-Jozsa quan-
tum algorithm is unable to deduce anything worth [16].
It must, therefore, be a promise that a given Boolean
function is either constant or balanced [18], or, equiv-
alently, some restrictions on the class of Boolean func-
tions should be imposed a priori, while the Deutsch—
Jozsa quantum algorithm is applied [14].

Let us briefly recapitulate a one-qubit implementation
of the Deutsch-Jozsa quantum algorithm [14-16]. We
suggest that given qubits |z) and |y) are pure quantum
states, say, |0) and |1), and let f; be a Boolean function
that defines the oracle gate Uy, via (1) [19]. We de-
fine the gate V[f1] := H*Uy, H' H* U o, where H and

T able 2. Truth tables of the Boolean functions fapc-1
and fapc-11 defined by Eq. (4)

Unot are the Hadamard and NOT gates, respectively.
Applying V[f1] to |0) ®]0) yields

V[f1]|0) ® |0) =

_ 0RO e 0 1), A=4Y k=12
EDPORy e o) — ), A=A k=34,

(5)

and, therefore, if V[ f1] maps the input work qubit |0)
to £|0), fi is constant, and if it maps |0) to £[1), f1
is balanced. In other words, if the measurement of the
output work qubit yields +|0), f; is constant, and if
the measurement does not yield +|0), f; is balanced.
Let us assume that the ancillary state |y) in Eq. (1)
lies in the subspace spanned by the superposed state
(|0) —]1))/v/2, and the work input state |z) is |0) or
|1). As a consequence of Eq. (5), multiplying (1) by (y|
and taking a partial trace over CZ, one may redefine the
action of Ufl without ancillary qubits (see, e.g., [14, 16,
19-23])

Uple) = (~1)7*z). (6)

4. Matrix Representation of Constant-Balanced
Oracle

Consider the matrix representation of the uni-
tary gate Uy, in the work-target orthonormal basis
{|00), |01),]10),]11)} of C? @ C?. flm is then repre-
sented by the matrix |0) (0| +[1)15(1], f1[2] by |0)6,.(0|+
1)62(1], A7 by [0)12(0] +[1)52(1], and £;") by [0)&4(0]+
|1)I2(1], where the 2 x 2 identity operator I and &,
the Pauli operator, are defined on C?. These matrices
demonstrate that, for |y) € {(|0) +[1))v2} C CZ,
Uf1|x> = |$> and, for ‘y> € {(|0> - ‘1>)\/§}7

1 (—1)k-1
Uf[ka —F
V] V2

The traces of the matrices of U, (1 <k <4),defined
J1

(10) +11)) = (10) + (1)U ). (7)

71 ‘ T2 ‘ T3 ‘ faBc-1 ‘ faBc-11 as
0 0 0 0 0 R o
| 0 0 0 0 {0 0] = Bacrpen D)) e @), ©)
0 1 0 0 0
0 0 1 0 0 T able 3. Boolean functions defined on Z2 and treated
1 1 0 1 1 as the output columns of the truth table
1 0 1 0 1 N A N
0 1 1 1 1 0 0 1 0 1
1 1 1 0 1 0 1 1 0
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T able 4. 16 two-variable Boolean functions
o ‘ o ‘ fl[l] ‘ fl[z] ‘ f1[3] ‘ f1[4] ‘ fl[s] ‘ fl[(s] ‘ f1[7] ‘ f1[8] ‘ f1[9] ‘ f1[10] ‘ fl[u] ‘ f1[12] ‘ 1[13] ‘ 1[14] ‘ fl[ls] ‘ fl[m]
0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0
0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1
1 0 0 1 1 0 1 0 1 0 0 0 1 1 0 0 1 1
1 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1

are, respectively, equal to 22,0,2, and 2. The general-
ization of this result to constant and balanced Boolean
functions {f,} of n variables is straightforward: the ma-
trix of U ¢, in the standard work-target orthonormal ba-
sis {|0) ®0),...,|1) ®[1)} of C2®" @ C? is equal to

Ex€0fn |X>j2<x| + Exelfn |X>5'a:<x| (9)

This proves

Proposal 1: The constant functions f,[}] (x) := 0 and
i (x) == 1,V x € ZI generate the unitary gates on

C2 @™ @ C? whose traces,

Te[0 ] = Sxezp yez, Tr(%) )y @ £ () (],

k=1,2, (10)

are, respectively, equal to 2"*! and 0. An arbitrary bal-
anced Boolean function f,, is characterized by Tr[U;, ] =
2",

With regard to the Deutsch—Jozsa quantum algo-
rithm, Proposal 1 determines that a given Boolean func-
tion f,, of n variables is either fr[Ll] or fr[?], or an arbitrary
balanced function iff Tr[Uy,] = 2", or 0, or 2", respec-
tively. This allows us to suggest another implementation
of the Deutsch—Jozsa algorithm on the subclasses of con-
stant and balanced Boolean functions of n variables. Let
|0) ®10) € C29" ® C2. H®" transforms |0) ® |0) to

1
Applying further Uy, to (11) gives
Uy, H3"10) @0) =
1

— 5 Brer 1) 1) + Saco, b B0 (12

Equation (12) results in
L fo=fi,

(00| HE Uy, HZ"0)210)=q0, fo= £, (13)
1, V balanced f,,

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 7

i.e., if the measurement of ﬁ%”[jfﬂﬁﬁ?” in the (n 4 1)-
qubit state |0) ® |0) or defined by the projection
|0) ® |0){0] ® (0] (measurement operator), yields the ex-
pectation value equal to 1 (0) if f,, coincides with f,[Ll]
( f,&z]) and equal to 1/2 if f,, is balanced, though, rig-
orously speaking, it suffices to obtain either 1 and 0
or something else, due to the aforementioned negation
between the constant and balanced Boolean functions
and the ignorance of the rest ones. Note that (13) also
discriminates between the two constant functions. One
suggests that this approach can be useful for the n-qubit
NMR realization of the Deutsch—Jozsa algorithm [7, 24,
25| and, for arbitrary mixed quantum states, usually
probed in the conventional NMR quantum computing
(see [26] and references therein). It is also worth men-
tioning a link of the above implementation with the en-
semble of quantum algorithms [19, 27] based on measur-
ing the expectation value (G,); for the target qubit.

To this end, consider a subclass of the so-called “bi-
ased” Boolean functions which are neither constant nor
balanced [28, 29]. This class is not empty for n > 2. As
follows from Eq. (9), for a given Boolean function f,,
x € 1y, generates the traceless &, gate [x)Uy, (x|. This
leads to
Proposal 2: An arbitrary Boolean function f,, that
takes Ny values of 0 (|07, | = N7) and Ny values of 1
(w(fn) = N2 and Ny + N = 2") implements the uni-
tary gate Uy, on C2®" @ OF with Tr[U;, ] = 2N+,
and to
Corollary: For a given Boolean function f,, the corre-
sponding unitary map Uy, with log,(Tr[Uy,]) = Ny + 1
determines whether w(f,) = X fn(x) is even or odd. It
is even if 2|Ny = 2™ — Ny and odd otherwise. Equiv-
alently, if log,(Tr[Uy,]) is odd, Ly f.(x) is even, and if
log, (Tr[Uy,]) is even, By f(x) is odd.

5. Summary

Concluding, we have defined the logic, cluster states of
molecular bonding patterns by mapping them to the cor-
responding graphs and encoding these graphs in terms
of bits. We have proposed the Bonding Edge Encod-
ing formalism to implement logic gates on the cluster
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states and to invoke the concept of the adjacency ma-
trix to construct quadratic Boolean functions associated
with bonding manifolds. Simple illustrations of this
approach have particularly resulted in some balanced
Boolean function that lies in the core of the Deutsch—
Jozsa quantum algorithm. Second, it has been demon-
strated for the first time that the constant and bal-
anced Boolean functions are distinguished from one an-
other by entirely different traces of their correspond-
ing unitary operators that are experimentally accessi-
ble. This feature, as believed, can be used as another
way to analyze the Deutsch—Jozsa quantum algorithm
(see, in this regard, [7, 19, 30]). On the other hand, Pro-
posal 2 can be treated as another approach to discrim-
inate between constant and evenly balanced Boolean
functions in the generalized Deutsch—Jozsa algorithm
[21, 31]. Corollary definitely shows that this approach
is useful to resolve the parity problem [32] that con-
sists in whether the Hamming weight of f,, is even or
odd [33].
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[IPO MOJIEKYJISIPHO-KJIACTEPHI JIOI'TYHI
CTAHU I MATPWUYHI IIPEJICTABJIEHH S
CTAJINX I BAJJAHCHUX BYJIEBUX
OYHKIIIN

€.C. Kpauko
Peszmowme

ITogaroun pisHomManiTHI 3B’A3KH MOJIEKYIN YU MOJIEKYJISPHOIO
Kjacrepa rpadoM, 3aJaHUM OE€3JIiYYI0 BEpIINUH, acOIiOBaHUX 3

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 7

aToMaMM, 1 YUCEJIbHICTIO pebep, 110 IMITYyIOTh 3B’sI3KH, BU3HAYE-
HO (bopMaJIi3M KOOPJAMHYBaHHS OCTaHHIX HA MHOXKWHI N-KPaTHUX
KybiT y Tepminax joriunol oneparii NOT. 3anpononosanuii dpop-
MaJIi3M IIPOLIIOCTPOBAHO IPUKJIAIAMU HANIIPOCTIIINX ABO- i Tpu-
ATOMHHUX MOJIEKYJI, MATPHIll CyMi’KHOCTi, IKUX IOPOIKYIOTb pi-
3Hi KBajpaTu4Hi OysieBi MyHKIT, TaKoK 1 6ajaHcHi. Y 3B’dA3Ky 3
UM PO3IVISHYTO Bimomwuit kBauHTOBHil ajropur™m Jloirua—Jxkomra,
o Bigpisusie basancHi i crasi Oynesi dyukunii. [logano HoBe Ma-
TPUYHE TIPEJICTABJIEHHS CTAJIO0—0AJAHCHOTO “KBAHTOBOTO OpaKyJia’,
IO J03BOJISIE€ PO3Pi3HATH cTaJji 1 ABiul OasancHi OyseBi dyHKII.
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