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We study the Dirac equation in two spatial dimensions for quasi-
particles in a potential well in graphene in a homogeneous mag-
netic field. It is shown that, at some critical value of the potential
strength, the lowest empty energy level crosses a filled negative
energy level leading to the instability of the system. The critical
potential strength decreases with decrease of a quasiparticle gap
and becomes zero in the gapless case. It is argued that the mag-
netically driven instability of a charged center can be considered
as a quantum mechanical counterpart of the magnetic catalysis
phenomenon in graphene.

1. Introduction

The supercritical Coulomb center is an old well-known
problem in quantum electrodynamics (QED) [1, 2]. The
solution of the Dirac equation in the Coulomb field of a
point charge Ze is singular for Ze2/~c > 1 (Z > 137) due
to a singular behavior of the Coulomb potential as r → 0.
Considering a finite size R of an atomic nucleus regular-
izes the potential and eliminates the singularity [3] so
that discrete levels exist for Z > 137). When Z → Zcr

(∼ 173 for the 1S state), the lowest bound state enters
continuum states and becomes a resonance. Therefore,
for a supercritical charge, there occurs a spontaneous
electron-positron pair creation from vacuum with the
electrons shielding the supercritical charge of the nucleus
to a subcritical value and with the positrons carrying an
excessive positive charge to infinity.

Graphene provides an interesting (2+1)-dimensional
analog of the problem of a supercritical Coulomb center
in QED. The supercritical charge problem in graphene
was thoroughly studied in the literature [4, 5], where
it was found that the supercritical charge is defined by
Zcα = 1/2 + π2/ log2(cΔR/~vF) [6], where c ≈ 0.21.
Here, Δ is the quasiparticle gap, α = e2/~vF is the
effective coupling constant, and vF ≈ 106 m/s is the
Fermi velocity of quasiparticles in graphene. Since the
electrons and the holes strongly interact by means of
the Coulomb interaction, one may expect [6, 7] the ap-
pearance of an excitonic instability in graphene with a

subsequent phase transition to the phase with gapped
quasiparticles that may turn graphene into an insulator.
For this semimetal-insulator transition in graphene, the
numerical simulations in the literature give the critical
coupling constant αc ≈ 1.19 [8, 9].

It is an interesting question how the presence of an
homogeneous magnetic field B influences the supercriti-
cal Coulomb center problem and whether Zcα decreases
or increases, as the magnetic field increases? In QED
in (3+1) dimensions, the Coulomb center problem in a
magnetic field was studied in [10]. It was found that
the magnetic field confines the transverse electronic mo-
tion, and the electron in a magnetic field is closer to
the nucleus than that in a free atom. Thus, it feels a
stronger Coulomb field. Therefore, Zcα decreases with
B. This result is consistent with the magnetic cataly-
sis phenomenon [11], according to which the magnetic
field catalyzes the gap generation and leads to the zero
critical coupling constant for massless fermions in both
(3+1)- and (2+1)-dimensional theories. Unfortunately,
the Coulomb center problem in a magnetic field is not
exactly solvable problem. In this paper, we will study
the Dirac equation in two spatial dimensions for the elec-
tron in a radially symmetric potential well in an external
homogeneous magnetic field, which admits a complete
analytic solution.

2. Model

The electron quasiparticle states in a vicinity of the K±
points of graphene in the field of a charged impurity and
in a homogeneous magnetic field perpendicular to the
plane of graphene are described by the Dirac Hamilto-
nian in 2+1 dimensions

H = ~vFτp + ξΔτ3 + V (r), (1)

where the canonical momentum p = −i∇ + eA/c in-
cludes the vector potential A corresponding to the exter-
nal magnetic field B, and Δ is a quasiparticle gap. The
two-component spinor Ψξs carries the valley (ξ = ±) and
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spin (s = ±) indices. We will use the standard conven-
tion: ΨT

+s = (ψA, ψB)K+s, whereas ΨT
−s = (ψB , ψA)K−s,

where A and B refer to two sublattices of the hexag-
onal graphene lattice, and the Pauli matrices τi act
in the sublattice space. The potential well interaction
V (r) = −V0θ(r0 − r) with V0 > 0 does not depend on
the spin. Therefore, we will omit the spin index s in
what follows.

The Dirac equation for the electron in a radially sym-
metric potential well in a homogeneous magnetic field
perpendicular to the graphene plane in the symmetric
gauge (Ax, Ay) = (B/2)(−y, x) takes the following form
in the cylindrical coordinates x+ iy = reiφ:

f ′ − j + 1/2
r

f − r

2l2
f +

E + ξΔ− V (r)
~vF

g = 0, (2)

g′ +
j − 1/2

r
g +

r

2l2
g − E − ξΔ− V (r)

~vF
f = 0, (3)

where the wave function

ψT = (ei(j−1/2)φf(r), iei(j+1/2)φg(r))/r, l =
√

~c/|eB|

is the magnetic length, and ξ = ± for quasiparticles near
the K+ and K− points in graphene.

Equations (2) and (3) are easily solved in two regions
r < r0 and r > r0 in terms of confluent hypergeometric
functions. In the region r < r0, eliminating the function
g(r), we obtain the second-order differential equation for
the function f(r):

f ′′−1
ρ
f ′+
[
2p2
V − j −

1
2
− j2 − j − 3/4

ρ2
− ρ2

4

]
f = 0, (4)

and, in the region r > r0, we have the same equation
but with V0 = 0. Here, we introduced the following di-
mensionless quantities:

p2
V = (ε+ v0)2−m2, p2 = ε2−m2, ε = lE/(

√
2~vF),

m = lΔ/(
√

2~vF), v0 = lV0/(
√

2~vF), ρ = r/l.

The solution of (4) regular at r = 0 reads

f(ρ) = ρj+
1
2 e−ρ

2/4 C1

Γ(j + 1/2)
×

×Φ
(
j +

1
2
− p2

V , j +
1
2
;
ρ2

2

)
, (5)

g(ρ) = (ε+ v0 − ξm)ρj+
3
2 e−ρ

2/4 C1

Γ(j + 3/2)
×

×Φ
(
j +

1
2
− p2

V , j +
3
2
;
ρ2

2

)
. (6)

The solution of (4) that decreases at infinity is given by

f(ρ) = C2ρ
j+ 1

2 e−ρ
2/4Ψ

(
j +

1
2
− p2, j +

1
2
;
ρ2

2

)
, (7)

g(ρ) =
C2

ε+ ξm
ρj+

3
2 e−ρ

2/4Ψ
(
j+

1
2
−p2, j +

3
2
;
ρ2

2

)
. (8)

Note that both these expressions are valid at all j =
±1/2,±3/2, . . . .

3. Energy Spectrum

Sewing the above solutions at r = r0, we obtain the
following equation for the energies of solutions with the
total angular momentum j:

(j + 1
2 )Φ

(
j + 1

2 − p
2
V , j + 1

2 ; ρ
2
0
2

)
(ε+ v0 − ξm)Φ

(
j + 1

2 − p
2
V , j + 3

2 ; ρ
2
0
2

) =

= (ε+ ξm)
Ψ
(
j + 1

2 − p
2, j + 1

2 ; ρ
2
0
2

)
Ψ
(
j + 1

2 − p2, j + 3
2 ; ρ

2
0
2

) . (9)

Before analyzing Eq. (9) and finding the energy spec-
trum of the problem under consideration, we recall the
Landau energy levels for the electron states in graphene
in a homogeneous magnetic field. If the interaction van-
ishes (V0 = 0, r0 → 0), Eq. (9) gives the following well-
known spectrum of infinitely degenerate Landau levels:

E = −ξΔ, j ≤ −1
2
, (10)

E = ±

√
Δ2 + 2n

(
~vF
l

)2

, n = 1, 2, . . . , j +
1
2
≤ n.

(11)

Note that the level E = Δ (E = −Δ) is present only at
the K− (K+) point.

For nonzero V0, the Landau energy levels are no longer
degenerate. Using the sewing equation (9), we can de-
termine the evolution of degenerate solutions with V0.
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Fig. 1. Evolution of degenerate solutions of the lowest Landau level
at the K− point as a function of the dimensionless ratio V0/Δ

For solutions of the Landau level E = Δ with different
j, their energies as functions of V0/Δ (at a fixed mag-
netic field B) are plotted in Fig. 1 for m = 0.1 and
ρ0 = r0/l = 0.02.

We see that, as V0 increases more and more, the so-
lutions with different j cross the energy level ε = −m.
Clearly, as soon as a vacant state appears, the system
will try to fill it [1, 2] emitting a positively charged hole
going to infinity. The critical potential is defined as V0

for which the first crossing occurs. Figure 1 implies that
the first crossing takes place for the state with the lowest
centrifugal barrier j = −1/2. Therefore, we should pay
a special attention to the evolution of this state with V0.

4. Instability

For the states with negative angular momenta j =
−1/2− k, k = 0, 1, . . . . , Eq. (9) becomes

(ε+ v0 + ξm)
Φ
(
1− p2

V , k + 2; ρ
2
0
2

)
Φ
(
−p2

V , k + 1; ρ
2
0
2

) =

= −(ε+ ξm)
Ψ
(
1− p2, k + 2; ρ

2
0
2

)
Ψ
(
−p2, k + 1; ρ

2
0
2

) , (12)

where we used the formulae

lim
c→−k

Φ(a, c;x)
Γ(c)

=
Γ(a+ k + 1)
Γ(a)(k + 1)!

xk+1×

×Φ(a+ k + 1, k + 2;x), k = 0, 1, . . . , (13)

Fig. 2. Critical potential V0cr as a function of the gap for different
values of ρ0. The case of zero magnetic field corresponds to ρ0 = 0

Ψ(a, c;x) = x1−cΨ(a− c+ 1, 2− c;x). (14)

For the weak coupling, V0 → 0, we have p2
V → p2 → 0.

Then Eq. (12) simplifies:

ε = −ξm− v0
Φ(1, k + 2; ρ

2
0
2 )

Φ(1, k + 2; ρ
2
0
2 ) + Ψ(1, k + 2; ρ

2
0
2 )
. (15)

Here, we took into account that Φ(0, c;x) = Ψ(0, c;x) =
1. This equation yields the following bound state with
j = −1/2 (k = 0) at the K− point:

ε = m− v0
(
1− e−ρ

2
0/2
)
, (16)

where we made use of the particular values of hyperge-
ometric functions, Φ(1, 2;x) = (ex − 1)/x,Ψ(1, 2;x) =
1/x. At large angular momenta, k → ∞, using the cor-
responding asymptotics of hypergeometric functions, we
find that the bound states accumulate near the energy
±m:

ε = −ξm− v0e
−ρ20/2

Γ(k + 1)

(
ρ2
0

2

)k+1

. (17)

As the coupling v0 grows, the energy of the bound state
with j = −1/2 decreases and finally crosses the level
ε = −m at some critical value vcr.

For ε = −m, we have p2 = 0, p2
V = v2

0 − 2mv0. Then,
for the state with ξ = −, j = −1/2, we find that Eq. (12)
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defines the following equation for the critical interaction
strength V0cr:

V0cr = 2Δ

1 +
2Φ
(
−κ, 1, ρ

2
0
2

)
ρ2
0Φ
(
1− κ, 2, ρ

2
0
2

)
 , (18)

where κ = vcr(vcr − 2m). The critical potential strength
V0cr as a function of Δ is plotted in Fig. 2 for different
values of the parameter ρ0 which defines the ratio of the
potential well width to the magnetic length. Analyti-
cally, it is not difficult to find that, for ρ0 � 1, Eq. (18)
yields

V0cr = 2Δ(1 + 2l2/r20) . (19)

It is clearly seen from Eq. (19) that the critical potential
strength V0cr decreases with the growth of a magnetic
field (or, with the decrease of l) at fixed r0 and Δ. The
physical reason for that is that the magnetic field forces
electron orbits to become closer to the charge center,
thus making attraction stronger.

What is really surprising here is that V0cr tends to
zero as Δ → 0. If the magnetic field is absent, then
it is not difficult to check that, for the Dirac equation
with a potential well, the critical strength is given by the
expression

V0cr = Δ

1 +

√
1 +

(
~vF
Δr0

)2

j20,1

 , (20)

where j0,1 ≈ 2.41 is the first zero of the Bessel func-
tion J0(x). Therefore, V0cr tends to a finite value, V0cr =
(~vF/r0)j0,1, in the gapless limit Δ → 0. In this case,
there is only the continuum spectrum for V0 < V0cr.
Whereas, for V0 > V0cr, resonances with complex en-
ergies ReE < 0, ImE < 0 appear, by signalizing the
instability of system. The presence of a magnetic field
changes the situation dramatically. It leads to the insta-
bility of the potential well problem in the second quan-
tized theory for any value of potential strength V0.

5. The Local Density of States

It is interesting to see how a magnetic field and the
charged center affect the local density of states (LDOS)
of quasiparticles in graphene which can be directly mea-
sured in scanning tunneling microscope (STM) experi-
ments. The crucial difference of the case of gapless quasi-
particles from that of gapped ones in a magnetic field is

that the critical charge is zero for gapless quasiparti-
cles. Therefore, the energies of all previously degenerate
states of the lowest Landau level become negative.

The LDOS at a distance r from the impurity is given
by

ρ(E; r) = − 1
π

trImG(r, r;E + iη), η → 0, (21)

where the trace includes the summation over the valley,
sublattice, and spin degrees of freedom, and the retarded
Green’s function G(r, r′;E + iη) in a constant magnetic
field has the form

G(r, r′;E) = eiΦ(r,r′)G̃(r, r′;E), (22)

Φ(r, r′) =
e

~c

r∫
r′

Aexti (z)dzi, (23)

where Φ(r, r′) is the phase, and G̃(r, r′;E) is the gauge
invariant part of the Green’s function. The last one sat-
isfies the Lippmann–Schwinger equation

G̃(r, r′;E) = G̃0(r− r′;E) +
∫
dr′′G̃0(r− r′′;E)×

×V (r′′)G̃(r′′, r′;E)ei[Φ(r,r′′)+Φ(r′′,r′)+Φ(r′,r)]. (24)

[Note that the Green function G̃(r, r′;E) is not
translation-invariant in the presence of an impurity un-
like the noninteracting function G̃0(r − r′;E).] For the
weak interaction, we can calculate the LDOS in the first
order of perturbation theory,

ρ(E; r) = ρ0(E; r) + δρ(E; r), (25)

where ρ0(E; r) is the LDOS for free quasiparticles in a
magnetic field, and

δρ(E; r) = − 1
π

Im
∫
dr′tr

[
G̃0(r− r′)V (r′)G̃0(r′ − r)

]
.

(26)

The Green’s function of free quasiparticles in a magnetic
field is well known (see, e.g., [11,13]), and it has the form
of a series over the Landau levels in the configuration
space (we consider the zero-gap case),

G̃0(r;E) =
1

2πl2
e−

r2

4l2

∞∑
n=0

1
(E + iη)2 −M2

n

×
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×
[
E

[
P−Ln

(
r2

2l2

)
+ P+Ln−1

(
r2

2l2

)]
+

+ i~vF
τr
l2
L1
n−1

(
r2

2l2

)]
, (27)

where Mn = (~vF/l)
√

2n are the energies of Landau lev-
els, P± = (1±τ3)/2 being the projectors, Lαn(z) the gen-
eralized Laguerre polynomials (by definition, Ln(z) ≡
L0
n(z) and Lα−1(z) ≡ 0).
The sum over the Landau levels can be explicitly per-

formed by means of the formula

∞∑
n=0

Lαn(x)
n+ b

= Γ(b)Ψ(b; 1 + α;x) (28)

(see, Eq.(6.12.3) in [15]), leading to a closed expression
for the free Green’s function (see the recent papers [16,
17]),

G̃0(r;E) = − e−
r2

4l2

4π~2v2
F

{
E

[
P−Γ(−λ)Ψ

(
−λ; 1;

r2

2l2

)
+

+ P+Γ(1− λ)Ψ
(

1− λ; 1;
r2

2l2

)]
+

+ i~vF
τr
l2

Γ(1− λ)Ψ
(

1− λ; 2;
r2

2l2

)}
. (29)

Here, Γ(x) is the Euler gamma function, and λ = (E +
iη)2l2/(2~2v2

F).
The LDOS of free quasiparticles in a magnetic field

does not depend on r and is given by

ρ0(E) = − 1
π

lim
r→0

Imtr[G̃0(r;E + iη)] =
1

π2~2v2
F

×

× lim
r→0

Im
{

(E + iη)
[
Γ(−λ)Ψ

(
−λ; 1;

r2

2l2

)
+

+ Γ(1− λ)Ψ
(

1− λ; 1;
r2

2l2

)]}
. (30)

The hypergeometric function Ψ(a; c;x) at small x be-
haves as

Ψ(a; 1;x) ' − 1
Γ(a)

[lnx+ ψ(a) + 2γ] +O(x lnx),

Ψ(a; 2;x) ' 1
Γ(a)x

+
1

Γ(a− 1)
[lnx+ ψ(a)+

+2γ − 1] +O(x lnx), (31)

where ψ(z) is the digamma function. Therefore,

ρ0(E) = − 1
(π~vF)2

Im [(E + iδ) (ψ(−λ) + ψ(1− λ))] ,

(32)

and the LDOS of free quasiparticles in a magnetic field
is found finally to be

ρ0(E) =
2
πl2

[
δ(E) +

∞∑
n=1

[δ(E −Mn) + δ(E +Mn)]

]
,

(33)

(compare with Eq. (4.2) in [18]).
The first-order correction to the LDOS due to the in-

teraction is given by Eq. (26). To find the asymptotics
in the case of the radial well at distances r � r0, where
r0 is the range of the potential, we can put r′ = 0 in the
arguments of the free Green’s functions in Eq. (26) and
get the behavior

δρ(r, r;E) = V0r
2
0Imtr[G̃0(r;E)G̃0(−r;E)] '

' 2V0r
2
0

(π~vFl)2
Im[λψ (−λ)] ln

r2

2l2
, (34)

V0r
2
0

2(π~vFl)2
Im
[
λΓ2(−λ)

]
e−r2/2l2

(
r2

2l2

)2|λ|

(35)

in the regions l � r � r0 and r � max(l, r0), respec-
tively. As is seen, the correction to the free LDOS is an
odd function of the energy and decreases exponentially
at large distances.

6. Conclusion

Analyzing the Dirac equation with a radially symmetric
potential well for quasiparticles with a gap in graphene in
a homogeneous magnetic field, we found a critical value
of the potential strength, when the lowest empty level
crosses a filled negative energy level leading to the insta-
bility of the system. We showed that this critical poten-
tial strength tends to zero as the quasiparticle gap goes
to zero, Δ → 0. Consequently, the presence of a mag-
netic field dramatically affects the potential well problem
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in graphene making an arbitrarily shallow potential su-
percritical in the gapless theory. The crucial ingredient
for the instability is the existence of the zero-energy level
for gapless Dirac fermions in a magnetic field which is
infinitely degenerate. In this case, any weak attraction
leads to the appearance of empty states in the Dirac sea
of negative-energy states and to the instability of the
system.

One should stress a qualitative difference in the phe-
nomenon of instability between gapped and gapless
quasiparticles. In the case of gapped quasiparticles,
there is a finite critical value for the strength of interac-
tion, when the lowest unfilled level crosses the first filled
one, forming a hole in the sea of filled states. As the
coupling grows, more and more levels cross that level.
Clearly, the system tries to rearrange itself, by filling in
empty states, whose presence is a signal of instability.

This result suggests that the Coulomb center in gap-
less graphene in a magnetic field may be also unstable for
any value Ze. In turn, since the electrons and the holes in
graphene interact by means of the Coulomb interaction,
this implies that the magnetically driven instability of
the supercritical Coulomb center can be considered as a
quantum mechanical counterpart of the magnetic catal-
ysis phenomenon in graphene.
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ДIРАКIВСЬКI ЕЛЕКТРОНИ В ПЛАНАРНIЙ
ПОТЕНЦIЙНIЙ ЯМI У ПРИСУТНОСТI
МАГНIТНОГО ПОЛЯ

О.В. Гамаюн, Е.В. Горбар, В.П. Гусинiн

Р е з ю м е

Дослiджено рiвняння Дiрака у двовимiрному просторi для ква-
зiчастинок в потенцiйнiй ямi у постiйному магнiтному полi в
графенi. Показано, що для деякого критичного значення по-
тенцiалу ями найнижчий незаповнений енергетичний рiвень
перетинає межу заповнених електронних станiв iз вiд’ємною
енергiєю, що приводить до нестабiльностi системи. Критичний
потенцiал зменшується зi зменшенням щiлини квазiчастинок
i дорiвнює нулю у безщiлинному випадку. Аргументовано, що
магнiтно iндукована нестабiльнiсть зарядженого центра може
розглядатися як квантово-механiчний аналог явища магнiтно-
го каталiзу в графенi.
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