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The explicit formula, which expresses the Alexander polynomials
Δn,3(t) of torus knots T (n, 3) as a sum of the Alexander polyno-
mials Δk,2(t) of torus knots T (k, 2), is found. Using this result and
those from our previous papers, we express the Alexander polyno-
mials Δn,3(t) through Chebyshev polynomials. The latter result
is extended to general torus knots T (n, l) with n and l coprime.

1. Introduction

The interplay between knot theory and physics mani-
fests itself in various ways [1–4]. Yet in 1975, L.D. Fad-
deev proposed that knot-like solitons classified by the
integer-valued Hopf charge could be constructed in a
modified sigma model in the three-dimensional space [5].
But only after the paper by Faddeev and Niemi [6] in
1997, the true hunting for knot configurations in theo-
retical physics began [7–9]. Basing on the heavy usage
of computer facilities, the conjecture that the solitons
with minimal energy might take the form of knots was
confirmed. The further increase of the computer power
demonstrated that a number of linked and knotted con-
figurations, which are local or global solutions with min-
imal energy, do exist in the well-known Faddeev–Skyrme
field-theory model. This issue was thoroughly elaborated
in subsequent papers (e.g., in [10, 11]) and is still de-
veloped. Let us recall that the concept and the role of
knots is of basic importance for the non-perturbative sec-
tor of non-Abelian gauge theory (see [12] and references
therein).

As for the direct connection of knots with particle
physics, one should mention the old paper by H. Jehle
with the heuristic assigning of knot structures to real
particles such as hadrons, neutrinos, and electrons [13].

More recently and on different grounds (using quantum
groups or algebras) the connection "knots↔ particles"
was exploited in [14,15]. In particular, some set of torus
knots appears in the context of meson phenomenology,
namely in connection with quarkonia mass relations [14].

It is worth to underline the importance (and, thus, a
wide usage) of applying different polynomial invariants
of knots to modern physics problems. E. Witten, for ex-
ample, has shown that the Jones polynomial invariants
can be realized by the tools of topological quantum field
theory in 2+1 dimensions [16]. In addition, the Alexan-
der polynomials and their well-known generalization, the
HOMFLY polynomials, play a great role as well.

In our preceding paper [17], we studied the Alexan-
der polynomial invariants of torus knots T (n, 2) from the
viewpoint of their connection with Chebyshev polynomi-
als, using the so-called q-numbers. Therein, we explored
a direct implication of the properties of q-numbers and
their generalization, p, q-numbers, along with Chebyshev
polynomials, for reproducing (from recursion relations)
the famous skein relations that determine the Alexander
polynomials and also HOMFLY polynomials. We note
that the relation of some knots to the Chebyshev poly-
nomials (in the context different from ours) was studied
in [18]. It should be emphasized that our whole treat-
ment in paper [17] concerned with the simplest, though
nontrivial, set of torus knots – the series T (n, 2), n be-
ing an odd integer. Since the Alexander (and HOMFLY)
polynomials provide the most important and widely used
characteristics of knots and links, their thorough inves-
tigation is believed to be helpful for the further under-
standing of the properties of knot-like structures from
the first principles and for clarifying the physical inter-
pretation of these knot invariants.
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In the present paper, we first concentrate on the study
of the Alexander polynomial invariants Δn,3(t) for the
set of torus knots T (n, 3), with n and 3 coprime, and
on their close connection with relevant Chebyshev poly-
nomials. Then, we extend our treatment to the general
class of torus knots T (n, l), l ≥ 2, with n and l coprime.
Like in our preceding paper, the concept of q-numbers
turns out to be very helpful.

2. Chebyshev Polynomials

Since we will exploit the Chebyshev polynomials below,
let us give some sketch of them. Chebyshev polynomials
of the first kind Tn(x) can be defined as

Tn(x) = 2 cos(nθ) , 2 cos θ = x . (1)

This normalization means that the Chebyshev polynomi-
als are monic (with unit coefficient at xn). These Cheby-
shev polynomials, with account of the formula

cos (n+ 1)θ + cos (n− 1)θ = 2 cos θ cosnθ

are seen to satisfy the relation

Tn+1 = xTn − Tn−1 , T0 = 2 , T1 = x , (2)

which is nothing but the recurrence relation. The latter
can be used as an alternative definition of Tn(x) . Some
few low-degree cases of Tn(x) read

T0 = 2 , T1 = x , T2 = x2 − 2 , T3 = x3 − 3x ,

T4 = x4 − 4x2 + 2 , T5 = x5 − 5x3 + 5x .

Chebyshev polynomials of the second kind can be de-
fined as

Vn(x) =
sin(n+ 1)θ

sin θ
, 2 cos θ = x (3)

or through the recurrence relation

Vn+1 = xVn − Vn−1 , V0 = 1 , V1 = x . (4)

First few low-order Chebyshev polynomials of the second
kind are as follows:

V0 = 1 , V1 = x , V2 = x2 − 1 , V3 = x3 − 2x ,

V4 = x4 − 3x2 + 1 , V5 = x5 − 4x3 + 3x .

There exists a connection between Tn(x) and Vn(x),
namely

Tn(x) = Vn(x)− Vn−2(x) , n ≥ 1 , (5)

where, and throughout the text, we omit polynomials
with negative indices (at n = 1 we omit V−1(x)).

Note that Chebyshev polynomials of the first kind can
be presented in the form

Tn(x) = tn + t−n , t+ t−1 = x , (6)

while Chebyshev polynomials of the second kind as

Vn(x) =
tn+1 − t−n−1

t− t−1 , t+ t−1 = x . (7)

This is obvious if we put t = eiθ .

3. Alexander Polynomials for Torus Knots

The Alexander polynomials Δ(t) for knots and links can
be defined by the skein relation [19]

Δ+(t) = (t
1
2 − t− 1

2 )ΔO(t) + Δ−(t) (8)

along with the normalization condition (for an unknot)

Δunknot = 1 . (9)

Using (8)-(9), one can find the Alexander polynomial
for any knot or link by applying, in a standard way, the
operations of “switching” and “elimination”.

We focus on the torus knots T (n, l), where n and l are
coprime positive integers (the torus knots T (n, l) and
T (l, n) are equivalent). As known [19], the Alexander
polynomial invariant for T (n, l) is given by the formula

Δ̃n,l(t) =
(tnl − 1)(t− 1)
(tn − 1)(tl − 1)

. (10)

For l = 2 this yields

Δ̃n,2(t) =
tn + 1
t+ 1

, n = 1, 3, 5, 7, ... . (11)

Let us list few examples of polynomial (11):

Δ̃1,2(t) = 1 , Δ̃3,2(t) = t2 − t+ 1 ,

Δ̃5,2(t) = t4 − t3 + t2 − t+ 1 .

For l = 3 , relation (10) yields

Δ̃n,3(t) =
t2n + tn + 1
t2 + t+ 1

, n = 1, 2, 4, 5, 7, 8, ... . (12)

The first entries of (12) are

Δ̃1,3(t) = 1 , Δ̃2,3(t) = t2 − t+ 1 ,
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Δ̃4,3(t) = t6 − t5 + t3 − t+ 1 .

Note that Δ̃1,2(t), Δ̃1,3(t), and Δ̃1,l(t) all agree with (9).
The same concerns Δ̃n,1(t), see (10).

The Alexander polynomials (10) are reduced to the
standard polynomial form and have the degree nl− n−
l+1 = (n−1)(l−1). However, the Alexander polynomi-
als Δ̃n,l(t) can also be presented in the form of the Lau-
rent polynomials Δn,l(t) possessing the explicit t↔ t−1

symmetry. This (Laurent type) form, with account of
the multiplier t−

nl−n−l+1
2 , satisfies the relation (note the

absence of a tilde on the l.h.s.)

Δn,l(t) = Δ̃n,l(t) · t−
nl−n−l+1

2 =
(t

nl
2 − t−nl

2 )(t
1
2 − t− 1

2 )

(t
n
2−t−n

2 )(t
l
2−t− l

2 )
.

(13)

By m, we denote the highest positive degree of the
Alexander polynomial Δn,l(t) given as a Laurent poly-
nomial in (13):

m =
1
2
(n− 1)(l − 1) . (14)

From now on, we consider two cases:

l = 2 , n = 2m+ 1 ; l = 3 , n = m+ 1 . (15)

For l = 2 , Eq. (13) gives

Δn,2(t) =
t

n
2 + t−

n
2

t
1
2 + t−

1
2

(16)

of which the first several examples (n=1, 3, 5) are

Δ1,2(t) = 1 , Δ3,2(t) = t− 1 + t−1 ,

Δ5,2(t) = t2 − t+ 1− t−1 + t−2 .

If l = 3 , (13) yields

Δn,3(t) =
tn + 1 + t−n

t+ 1 + t−1
. (17)

A few examples for n=1, 2, 4 are

Δ1,3(t) = 1 , Δ2,3(t) = t− 1 + t−1 ,

Δ4,3(t) = t3 − t2 + 1− t−2 + t−3

(note the coincidence of Δ2,3(t) with Δ3,2(t) above).
Below, we find a connection between the Alexander

polynomials for T (n, 3) and T (k, 2) torus knots.

4. Presenting Δn,3(t) in Terms of Δk,2(t)

The goal of this section is to express any Alexander poly-
nomial Δn,3(t) as an algebraic sum of Alexander poly-
nomials for T (k, 2) torus knots.

Proposition 1. The (Laurent form) Alexander poly-
nomials for the torus knots T (n, 3) and the torus knots
T (k, 2) are connected through the relation

Δn,3(t)−Δn−3,3(t) = Δ2n−1,2(t)−Δ2n−5,2(t) . (18)

The proof goes by straightforward checking with the use
of formulas (16) and (17).

Proposition 2. The Alexander polynomial of torus
knot T (n, 3) is expressible as a sum of the Alexander
polynomials of torus knots T (k, 2) by the formula1

Δn,3(t) =
d∑
j=0

(
Δ2n−1−6j, 2(t)−Δ2n−5−6j, 2(t)

)
, (19)

where d is the integer part of 2n−1
6 : d =

[
2n−1

6

]
.

To prove (19), we rewrite Eq. (18) first as

Δn,3(t) = Δ2n−1,2(t)−Δ2n−5,2(t) + Δn−3,3(t) (20)

and, shifting n to n− 3 , we deduce the relation

Δn−3,3(t) = Δ2n−7,2(t)−Δ2n−11,2(t) + Δn−6,3(t) (21)

from (20). Substituting (21) in (20) yields

Δn,3(t) = Δ2n−1,2(t)−Δ2n−5,2(t) + Δ2n−7,2(t)−

−Δ2n−11,2(t) + Δn−6,3(t) . (22)

Similarly to (21), we further expand Δn−6,3(t) and put
the result into (22), and so on. At the last stage of the
process for Δn,3(t), we come to Δ2,3(t) and/or Δ1,3(t).
Since Δ2,3(t) = Δ3,2(t) and Δ1,3(t) = 1 = Δ1,2(t) , we
obtain the expression for the Alexander polynomial of
torus knot T (n, 3) given through a sum of the Alexander
polynomials for torus knots T (n, 2) only.

It is worth to give, from (19), a few examples of ex-
pressing the Alexander polynomials Δn,3(t) by a sum of
the Alexander polynomials Δn,2(t) :

Δ1,3(t) = Δ1,2(t) ,

Δ2,3(t) = Δ3,2(t)

1 Note that the remark similar to the one after (5) is applied here
too.
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Δ4,3(t) = Δ7,2(t)−Δ3,2(t) + Δ1,2(t) ,

Δ5,3(t) = Δ9,2(t)−Δ5,2(t) + Δ3,2(t) ,

Δ7,3(t) = Δ13,2(t)−Δ9,2(t) + Δ7,2(t)−

−Δ3,2(t) + Δ1,2(t) ,

Δ8,3(t) = Δ15,2(t)−Δ11,2(t) + Δ9,2(t)−

−Δ5,2(t) + Δ3,2(t) ,

Δ10,3(t) = Δ19,2(t)−Δ15,2(t) + Δ13,2(t)−

−Δ9,2(t) + Δ7,2(t)−Δ3,2(t) + Δ1,2(t) . (23)

Thus, we have obtained the formula expressing (each
from) the set Δn,3(t) through the sum of a definite num-
ber of the Alexander polynomials Δk,2(t) with proper
signs.

It would be of interest to generalize this result to any
torus knot Δn,l(t).

5. Expressing the Alexander Polynomials by
Chebyshev Polynomials

In this section, we present the Alexander polynomials
Δn,2(t) and Δn,3(t) in terms of the Chebyshev polyno-
mials Tn(x) and Vn(x) , x = t+ t−1 .

Proposition 3. There exists the following relation be-
tween the Alexander polynomials Δn,2(t) for torus knots
T (n, 2) and Chebyshev polynomials of the second kind:

Δn,2(t) ≡ Δ2m+1,2(t) =

= Vm(x)− Vm−1(x) , x = t+ t−1 . (24)

To prove (24), we use formula (16), along with Vm−1(t)
and Vm(t) taken from (7). Note that an analog of (24)
was first found in [14] on the base of using the q-numbers.

Equation (24) can also be written as

Δn,2(t) = Vn−1
2

(x)− Vn−3
2

(x) , x = t+ t−1 . (25)

From (24) and (5), we find (m ≥ 1):

Tm(x) = Δ2m+1,2(t) + Δ2m−1,2(t) , t+ t−1 = x . (26)

Hence, Eq. (26) expresses the Alexander polynomials in
terms of Chebyshev polynomials of the first kind. Here
are some examples:

Δ3,2(t) = T1(x)−Δ1,2(t) = T1(x)− 1 ,

Δ5,2(t) = T2(x)− T1(x) + 1 ,

Δ7,2(t) = T3(x)− T2(x) + T1(x)− 1 . (27)

The general formula covering (27) is

Δ2m+1,2(t)=Tm(x)− Tm−1(x) + Tm−2(x)− · · ·+

+(−1)m−1T1(x)+(−1)m =
m−1∑
k=0

(−1)kTm−k(x)+(−1)m .

(28)

Proposition 4. The Alexander polynomial for torus
knot T (n, 3) is expressed as the sum of Chebyshev poly-
nomials of the second kind by the relation

Δn,3(t) = Vn−1(x)+

+
d∑
k=0

(
−Vn−2−3k(x)− Vn−3−3k(x) + 2Vn−4−3k(x)

)
, (29)

where d =
[
n−2

3

]
, x = t+ t−1.

This immediately follows from (19) and (24).
From formula (29), we have

Δn,3(t) = Vn−1(x)− Vn−2(x)− Vn−3(x)+

+2Vn−4(x)− Vn−5(x)− Vn−6(x)+

+2Vn−7(x)− Vn−8(x)− · · · , x=t+ t−1 . (30)

Some first examples of (30) are

Δ1,3(t) = V0(x), Δ2,3(t) = V1(x)− V0(x),

Δ4,3(t) = V3(x)− V2(x)− V1(x) + 2V0(x),

Δ5,3(t) = V4(x)− V3(x)− V2(x) + 2V1(x)−V0(x),

Δ7,3(t) = V6(x)− V5(x)− V4(x) + 2V3(x)−V2(x)−
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−V1(x) + 2V0(x).

Proposition 5. The Alexander polynomial for the
torus knot T (n, 3) is expressed through Chebyshev poly-
nomials of the first kind by the formula

Δn,3(t)=
d∑
k=0

(
Tn−1−3k(x)−Tn−2−3k(x)

)
+(−1)n−d, (31)

where d =
[
n−1

3

]
, x = t+ t−1.

The proof follows from the joint use of (19) and (26).
Here are some special cases of (31):

Δ1,3(t) = T0(x)− 1, Δ2,3(t)=T1(x)−T0(x)+1,

Δ4,3(t) = T3(x)− T2(x) + T0(x)− 1,

Δ5,3(t) = T4(x)− T3(x) + T1(x)− T0(x) + 1,

Δ7,3(t) = T6(x)− T5(x) + T3(x)− T2(x)+

+T0(x)− 1.

6. Some Useful Formulas for the Alexander
Polynomials

Putting definition (3) of the Chebyshev polynomials in
(24), we obtain the following formula for the Alexander
polynomials Δ2m+1,2(t) :

Δ2m+1,2(t) =
cos(m+ 1

2 )θ
cos θ2

2 cos θ = t+ t−1 , (32)

or, setting m = 1
2 (n− 1) ,

Δn,2(t) =
cos nθ2
cos θ2

, 2 cos θ = t+ t−1 , (33)

where n = 1, 3, 5, 7, · · · . From the latter, remembering
that cos θ = 2 cos2 θ

2 − 1 , we have(
Δn,2(t)

)2

=
Tn(x) + 2
x+ 2

, x = t+ t−1 . (34)

From (33) and (3), we find

Δn,2(t) =
V2n−1(y)
yVn−1(y)

, y2 = t+ t−1 + 2 . (35)

Rewriting (6) as

Tn(y) = t
n
2 + t−

n
2 , y = t

1
2 + t−

1
2 (36)

and putting it in (16), we have

Δn,2(t) =
Tn(y)
y

. (37)

Using (17) and (36), we obtain the formula for Δn,3(t)
in terms of Tn(y):

Δn,3(t) =
T 2
n(y)− 1
y2 − 1

,

where n = 1, 2, 4, 5, 7, ... . Using (6), Eq. (17) can also
be written in the form

Δn,3(t) =
Tn(x) + 1
x+ 1

, x = t+ t−1 .

7. Alexander Polynomials of T (n, l) in Terms of
q-Numbers

In this section, we extend the formula (24) valid for l = 2
to the general case of arbitrary l . To this end, like in
[17], we use the q-numbers [20–23]. Recall that the q-
number corresponding to an integer n is defined as

[n]q =
qn − q−n

q − q−1 , (38)

with q being a parameter. If q → 1 , we recover n:
[n]q

q→1−→ n. If q is viewed as a variable, we arrive at
q-polynomials.

With account of (38), Eq. (13) can be immediately
rewritten in terms of q-numbers to yield (q ≡ t):

Δn,l(t) =
[nl]

t
1
2

[n]
t
1
2
[l]
t
1
2

=
[n]

t
l
2

[n]
t
1
2

=
[l]
t

n
2

[l]
t
1
2

. (39)

From (7) and (38), we have

Vn(x) = [n+ 1]q , x = q + q−1 . (40)

Formula (24) in terms of q-numbers reads

Δ2m+1,2(t) = [m+ 1]t − [m]t , t ≡ q , (41)

or, since n = 2m+ 1,

Δn,2(t) =
[n+ 1

2

]
t
−
[n− 1

2

]
t
. (42)
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It is easy to verify that (42) is reduced to (16). If l = 3,
relation (17) yields the formula somewhat similar to (42):

Δn,3(t) =
[2n+ 1

3

]
t
3
2
−
[2n− 1

3

]
t
3
2

+
[1
3

]
t
3
2
. (43)

Each of the three terms can be rewritten, because[X
3

]
t
3
2

=
[X]

t
1
2

[3]
t
1
2

.

As a result, Eq. (43) becomes

Δn,3(t) =
1

[3]
t
1
2

(
[2n+ 1]

t
1
2
− [2n− 1]

t
1
2

+ 1
)
. (44)

In the case of arbitrary l, the generalization of (42)
and (43) can be obtained from (13), namely

Δn,l(t)=
[
n(l−1)+1

l

]
t

l
2
−
[
n(l−1)−1

l

]
t

l
2

+
[l−2]

t
n
2

[l]
t
1
2

. (45)

From this, we deduce a generalization of Eq. (44):

Δn,l(t) =
[n(l − 1) + 1]

t
1
2

[l]
t
1
2

−
[n(l − 1)− 1]

t
1
2

[l]
t
1
2

+

+
[n(l − 2)]

t
1
2

[n]
t
1
2

· 1
[l]
t
1
2

. (46)

8. Alexander Polynomials of T (n, l) and
Chebyshev Polynomials

We can express (44) in terms of the Chebyshev polyno-
mials:

Δn,3(t) =
V2n(y)− V2n−2(y) + 1

V2(y)
, y=t

1
2 + t−

1
2 . (47)

Likewise, as an extension of the latter to the T (n, l) torus
knots, relation (46) yields

Δn,l(t) =
Vn(l−1)(y)− Vn(l−1)−2(y)

Vl−1(y)
+

+
Vn(l−2)−1(y)

Vl−1(y) · Vn−1(y)
, y = t

1
2 + t−

1
2 .

(48)

In addition, using Eqs. (39), we obtain another three
formulas giving Δn,l(t) via the Chebyshev polynomials:

Δn,l(t) =
Vnl−1(y)

Vn−1(y) · Vl−1(y)
, y = t

1
2 + t−

1
2 (49)

or

Δn,l(t) =
Vn−1(z1)
Vn−1(y)

, z1=t
l
2 + t−

l
2 , y=t

1
2 + t−

1
2 , (50)

or

Δn,l(t) =
Vl−1(z2)
Vl−1(y)

, z2=t
n
2 + t−

n
2 , y=t

1
2 + t−

1
2 . (51)

Now let us pay attention to the following very inter-
esting point: it follows from (36) and (50) that

Δn,l(t) =
Vn−1

(
Tl(y)

)
Vn−1(y)

, y=t
1
2 + t−

1
2 . (52)

Analogously, from (36) and (51), we obtain

Δn,l(t) =
Vl−1

(
Tn(y)

)
Vl−1(y)

, y=t
1
2 + t−

1
2 . (53)

As is seen, the numerators of both Eqs. (52) and (53) in-
clude the expression V (. . .), i.e. a Chebyshev polynomial
of the second kind, in which the role of an argument, in
turn, is played by the Chebyshev polynomial of the first
kind.

9. Dependence of Δn,l(t) on n Through Δn,2(t)

In this section, we show that the whole dependence of the
Alexander polynomial Δn,l(t) on the number n can be
given solely through some lower Alexander polynomial
Δn,k(t) , k < l , k being a fixed positive integer coprime
both with l and n. Let us first consider the simplest case
k = 2.

Rewriting (16) in the form

Δn,2(t) =
Z + Z−1

t
1
2 + t

−1
2

, Z ≡ tn
2 ,

we arrive at the equation

Z2 − (t
1
2 + t−

1
2 )Δn,2(t)Z + 1 = 0

and at the identical one for Z−1, which have the solu-
tions

Z =
1
2

(
(t

1
2 + t−

1
2 )Δn,2(t)±

±
√

(t
1
2 + t−

1
2 )2(Δn,2(t))2 − 4

)
,

Z−1 =
1
2

(
(t

1
2 + t−

1
2 )Δn,2(t)∓
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∓
√

(t
1
2 + t−

1
2 )2(Δn,2(t))2 − 4

)
.

This allows us to present (13) in the form

Δn,l(t) =
Zl − Z−l

Z1 − Z−1

t
1
2 − t− 1

2

t
l
2 − t− l

2
=

= F
(
Z(t,Δn,2(t) ); l, t

)
= F

(
Δn,2(t); l, t

)
,

which means that all the functional dependence on n in
the Alexander polynomial Δn,l(t) is contained in Δn,2(t)
alone, n being coprime with l and 2. For example, the
whole dependence on n for Δ7,5(t) is in Δ7,2(t), but in
Δ8,3(t) for Δ8,5(t) (for the latter type connection, see
below).

Yet another formula, which means that the explicit
dependence on n for the Alexander polynomial Δn,l(t),
is given by Δn,k(t) , k = 2 or 3, with respective n, follows
from combining (51), (16), and (17), namely:

Δn,l(t) =
Vl−1(z)
Vl−1(y)

, y=t
1
2 + t−

1
2 , (54)

where if k = 2 and n is coprime with l and 2, we have
that

z = (t
1
2 + t−

1
2 )Δn,2(t) .

At last, if k = 3 and n is coprime with l and 3, then we
have, in (54), that

z =
(
(t+ 1 + t−1)Δn,3(t) + 1

) 1
2
.

10. Concluding Remarks

In this paper, we have shown how to express any Alexan-
der polynomial Δn,3(t) as a (finite) sum of the sum-
mands Δk,2(t) with appropriate values of k, see formulas
(19) and (29). Note that if one succeeds to solve the sim-
ilar problem of expressing Δn,l(t) by the sum of Δk,2(t) ,
it would give us some novel, interesting description for a
general torus knot.

We have demonstrated for this, more general case of
torus knots than the one treated in [17], the close con-
nection of the Alexander polynomials Δn,l(t) with the
Chebyshev polynomials. Among the others, we recall the
result given by (52) showing that the dependence on n
in the Δn,l(t) can be incorporated just in the Chebyshev
polynomial of the second kind, whereas the dependence
on l – in the Chebyshev polynomial of the first kind, the
latter being the argument of the former one. We have

also shown that the dependence of Δn,l(t) on n may be
through Δn,2(t) (n, l, 2 are coprime) or through Δn,3(t)
(n, l, 3 are coprime).

In the visible future, we hope to find a particular phys-
ical realization of the obtained results in the direction of
constructing the knot-like configuration(s) within some
field theory model.
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ПОЛIНОМIАЛЬНI IНВАРIАНТИ АЛЕКСАНДЕРА
ТОРИЧНИХ ВУЗЛIВ T (n, 3) I ПОЛIНОМИ ЧЕБИШОВА

О.М. Гаврилик, А.М. Павлюк

Р е з ю м е

Отримана явна формула, яка виражає полiноми Александера
Δn,3(t) торичних вузлiв T (n, 3) через суму полiномiв Алексан-
дера Δn,2(t) торичних вузлiв T (n, 2). На основi цього, а також
результатiв наших попереднiх робiт, ми виражаємо полiноми
Александера Δn,3(t) в термiнах полiномiв Чебишова. Даний
результат поширено на довiльнi торичнi вузли T (n, l), де n та
l – взаємно простi цiлi числа.
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