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We performed the analysis of the asymptotic behavior of Regge
trajectories of nonstrange and strange mesons and found that the
width of heavy hadrons for these trajectories cannot linearly de-
pend on their mass. Such a finding clearly demonstrates that a
widely spread belief on the linear mass dependence of the reso-
nance width contradicts the linearity of Regge trajectories on the
Mandelstam variable s. Using the data on masses and widths
for ρJ−− , ωJ−− , aJ++ , and fJ++ mesons with the spin values
J ≤ 6 and for K∗

J mesons with J ≤ 5, we extracted the param-
eters of the asymptotically linear Regge trajectories predicted by
the finite-width model of quark gluon bags. It is shown that the
parameters obtained for the data sets B and D are consistent with
the cross-over temperature determined by the lattice QCD sim-
ulations at the vanishing baryonic density and with the kinetic
freeze-out temperature of early hadronizing particles found in rel-
ativistic heavy ion collisions at and above the highest SPS energy.
Comparing the resonance width of sets B and D evaluated at the
masses of Z and W bosons, respectively, we discovered that the
calculated width values match that of the gauge bosons. We argue
that such matches provide us with indirect, but the first experi-
mental evidence for the compositeness of Z and W bosons. Based
on these findings, we assume that Z, W, and Higgs bosons have the
Regge trajectories which are similar to the asymptotic trajectories
of the studied mesons. The predictions for the masses and widths
of the Regge partners of Z and W bosons and for the mass de-
pendence of the widths of Higgs boson Regge partners along with
the values for the mass and width of the scalar Higgs mesons are
made as well.

1. Introduction

Since its first applications in particle physics and till
present days, the method of Regge poles remains a very

reliable tool to describe a variety of nonperturbative pro-
cesses in quantum chromodynamics (QCD). In particle
physics, it was introduced at the beginning of the 1960s
[1], and it is widely used up to now to describe the high-
energy interactions of hadrons and nuclei. This method
establishes an important connection between the high-
energy scattering and the spectrum of particles and res-
onances. It was also a starting point to develop the dual
and string models of hadrons. Although an apogee of
the Regge method in particle physics ended after the
beginning of the QCD era, some of its principal findings
await for the QCD-based explanations.

It is well known that a Regge trajectory J = α(s)
which is usually expressed in terms of the center-of-mass
energy squared s of colliding particles can be also used
in the t- or u-channels in terms of the Mandelstam vari-
ables t or u, respectively, due to a crossing symmetry
of strong interaction. α(s) represents a set of leading
Regge poles on the complex plane of angular momen-
tum. An astonishing (approximate) linearity of Regge
trajectories for the known hadronic states of mass Mh

and spin Jh, i.e. Jh = α(M2
h) = α0+α′0M

2
h , remains one

of the unresolved problems of QCD despite very promis-
ing results obtained within the phenomenological planar
models [2, 3]. Although there is no consensus [4] up to
now on a linearity of the established Regge trajectories
of hadrons due to the lack of the experimental data on
heavy resonances of the spin above 6, it is, however,
necessary to mention that, in the 1960s and 1970s, a
lot of efforts was invested in the investigations of the
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asymptotic behavior of Regge trajectories for |s| → ∞
based on their analytic properties in the complex s-plane
[5, 6]. Under rather general assumptions, it was discov-
ered [7] that asymptotic Regge trajectories cannot in-
crease faster than a linear function of s, and, at the same
time, they cannot increase slower than the square root of
s for |s| → ∞. Such a result restricts the nonlinear be-
havior from above, but it does not allow to rule out the
nonlinear s-behavior that is weaker than 1 and stronger
than 1

2 .
It is interesting that a strong argument in favor of

the linear asymptotic behavior of Regge trajectories of
free hadrons was recently obtained [8] within the exactly
solvable statistical model for quark gluon (QG) bags [9].
This is the finite-width model (FWM), since it allows
one to account for a finite width of QG bags. Quite
generally, the FWM demonstrates that free QG bags of
mass Mr ≥ M0 ≈ 2.5 GeV that belong to a continuous
mass-volume spectrum of the Hagedorn type [10] should
have the mean width Γr ∼

√
Mr. Such a behavior can

be provided by the asymptotically linear Regge trajec-
tory [7, 8] only. Moreover, the FWM shows that such a
behavior of the mean width of QG bags, but with the
temperature-dependent coefficient, remains valid at high
temperatures.

The main purpose of this work is to extract the param-
eters of the asymptotic Regge trajectory predicted by
the FWM using the experimental data for nonstrange
and strange mesons. In our analysis, we use the data
on ρJ−− , ωJ−− , aJ++ , and fJ++ mesons for spin val-
ues J ≤ 6 and the data on K∗J for J ≤ 5 which are
known with the highest accuracy. It is an extension of
the approach suggested recently in [11] onto the strange
mesons and the gauge bosons (Z and W ). In contrast to
the usual type of analysis which is reduced to searches for
a connection between the spin and the mass of trajectory
members, we use the full Regge trajectory in the complex
s-plane. This allows us to simultaneously describe the
masses and the widths of involved mesons. Such a task
is very important nowadays, since a great significance of
the width of heavy resonances or bags for the realistic
equation of state of strongly interacting matter [8, 9, 12]
and for a description of the fast equilibration process of
heavy baryons/antibaryons [13–15] and kaons/antikaons
[15] in relativistic heavy ion collisions was realized only
recently. This kind of analysis is necessary for the fur-
ther development of the string model of hadrons and for
the improvement of such transport codes as the hadron
string dynamics [16] and the UrQMD model [17] by in-
cluding the finite width of heavy resonances. Here, we
demonstrate also that a widely spread belief [14, 15, 18]

that the width of heavy hadronic resonances linearly
depends on their mass is simply inconsistent with the
existence of linear Regge trajectories. In addition, we
would like to connect the asymptotic Regge trajectories
of hadrons with that for W , Z, and Higgs bosons.

The work is organized as follows. Section 2 contains a
brief analysis of the asymptotic Regge trajectory prop-
erties which demonstrates that the resonance width is
proportional to its mass for the asymptotically nonlinear
trajectories only. In Section 3, we discuss two hypothe-
ses to be verified for the nonstrange mesons and define
the corresponding data sets to be fitted. The details of
the fitting procedure are specified in Section 4, whereas
the discussions of the obtained results for the nonstrange
and strange mesons are, respectively, given in Sections 5
and 6. Section 7 is devoted to the analysis of the Regge
trajectories of W , Z, and Higgs bosons, while Section 8
contains our conclusions.

2. Asymptotic Behavior of Bosonic Regge
Trajectories

In the pre-QCD era, a lot of efforts was put forward [5,7]
into the determination of the Regge trajectory asymp-
totics for hadronic resonances. In our analysis, we follow
[7] and adopt the most general assumptions on the tra-
jectory: (I) α(s) is an analytic function, having only the
physical cut from s = s0 to s = ∞; (II) α(s) is polyno-
mially restricted at the whole physical sheet; (III) there
exists a finite limit of the phase trajectory at s→∞. Us-
ing these assumptions, it was possible to prove [7] that,
as s→∞, the asymptotic behavior of a Regge trajectory
at the whole physical sheet is

αu(s) = −G2 [−s]ν , with
1
2
≤ ν ≤ 1 . (1)

Here, the function G2 > 0 should increase slower than
any power in this limit, and its phase must vanish as
|s| → ∞. Clearly, ν = 1 is an upper bound for the
asymptotic behavior, while ν = 1

2 is its lower bound.
Since our main interest here is related to the asymp-

totically linear trajectories, we restrict ourselves to tra-
jectories of the form

α(s) = g2 [−(−s)ν + q(s)] , with
1
2
≤ ν ≤ 1 , (2)

where g is a real constant, and the correction q(s) in-
creases slower than |s|ν in the limit |s| → ∞, i.e.
|q(s)|/|s|ν → 0 in this limit. Since, at the resonance
position, s = sr = |sr| ei φr in the complex s-plane, the
trajectory defines its spin Jr, one obtains Im [α(sr)] = 0.
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This condition allows one to determine the phase of the
physical trajectory from the equation

sin (ν φr + π(1− ν)) = −Im[q(sr)]|sr|−ν → 0 , (3)

where we used (−1)ν = e−iπν to get the physical branch
that corresponds to a resonance (more details can be
found in [7]). We consider a formal solution φr =
π
(
1− 1

ν

)
− 1

ν Im[q(sr)]|sr|−ν of Eq. (3) which corre-
sponds in the complex energy plane E =

√
sr ≡Mr−iΓr2

to a resonance having the mass Mr > 0 and the width
Γr > 0. The mass and the width of a resonance belong-
ing to trajectory (2) are defined as

Mr = |sr|1/2 cos
φr
2

and Γr = −2 |sr|1/2 sin
φr
2
. (4)

It is clear that the positive values of resonance mass and
width correspond to the inequalities −π2 <

φr
2 < 0 which

lead in the limit |sr| → ∞ to the conditions 1
2 < ν < 1.

For the limiting cases ν = 1 and ν = 1
2 , the pos-

itive values of width and mass, respectively, are de-
termined by the small correction 1

ν Im[q(sr)]|sr|−ν in
(3). Equations (3) and (4) clearly demonstrate us
that, only for asymptotically nonlinear trajectories (2),
the resonance width is proportional to its mass, i.e.
Γr = −2Mr tan

(
φr
2

)
and φr → π

(
1− 1

ν

)
in the limit

|sr| → ∞. Contrarily, for the linear trajectory ν = 1,
the resonance width behaves as

Γr = 2 Im[q(sr)]|sr|−1/2 ∼ 2 Im[q(sr)]
|sr|

Mr , (5)

where we used expression (4) for the resonance mass in
the last step. Since the function q(s) is a small correc-
tion to the linear s-dependence, one concludes from the
right-hand side of Eq. (5) that, for asymptotically linear
trajectories, the width of heavy resonances cannot be
proportional to their mass, since the ratio Im[q(sr)]

|sr| → 0
for large |sr|. Thus, we obtain a very important conclu-
sion that only the asymptotically nonlinear Regge trajec-
tories (2) with ν lying between 1

2 and 1 lead to the linear
mass dependence of the resonance width, i.e. Γr ∼ Mr,
whereas the asymptotically linear Regge trajectories (2)
with ν = 1 generate a weaker mass dependence of the
width. However, this general analysis cannot determine
either the form of the function q(s) or the range of s, at
which such an asymptotic behavior is valid.

Fortunately, both of these questions can be answered
within the FWM [8]. Thus, the FWM tells us that, for
excited resonances that belong to the continuous part of
the mass-volume spectrum of QG bags, the width depen-
dence (5) starts to develop already for Mr ≥ M0 ≈ 2.5

GeV. It predicts also that q(s) ∼ s3/4 which leads to
Γr ∼

√
Mr. Such a conclusion gives a natural expla-

nation of the observed huge deficit [19] in the number
of hadronic resonances compared to the statistical boot-
strap model [10]. Using these results, we conclude that
the linear mass dependence of the resonance width as-
sumed in [18] cannot be used to model the decay of heavy
QG bags. It can be also that the application of the ob-
tained results to the decay of Hagedorn states [14, 15]
can give a quantitatively different outcome.

3. Constructing the Data Sets for Nonstrange
Mesons

The FWM predicts the existence of a universal Regge
trajectory for heavy QG bags. However, the determina-
tion of parameters of such a trajectory is immediately
faced with two principal difficulties. The first of these
difficulties is that the universal trajectory corresponds to
heavy (excited) resonances with mass above M0 ≈ 2.5
GeV [8], while the experimental data in this region are
absent. The second one is related to the fact that the
usual fitting procedure is not suited to this task.

For the analysis, we choose the best studied trajecto-
ries [4, 20] with natural parity P = (−1)J : ρJ−− , aJ++

mesons of isospin 1 and spin J ≤ 6, ωJ−− , fJ++ mesons
of isospin 0 and spin J ≤ 6, and the strange mesons K∗JP
of isospin 1

2 and spin J ≤ 5. In this section and in the
next two ones, we analyze the nonstrange mesons in or-
der to outline the way of constructing the data sets and
the procedure to extract the Regge trajectory parame-
ters, respectively, while the inspection of strange mesons
is reserved for Section 6.

Nowadays, there are three mesons on each of the tra-
jectories of nonstrange mesons [21]. These mesons are
well suited to our purpose since, firstly, the parame-
ters of their trajectories are close to each other [4, 20],
and, secondly, the masses of a6++ and f6++ mesons are
2.45± 0.13 GeV and 2.465± 0.05 GeV, respectively, i.e.
their masses are close to the value of M0. Since here
we would like to simultaneously fit the masses and the
widths of resonances, we restrict ourselves to the analy-
sis of ρJ−− , aJ++ , ωJ−− , and fJ++ mesons because all of
them belong to the parent (i.e., main) trajectories and
because only the light hadronic resonances among other
hadrons consisting of u and d quarks are well studied as
compared to these mesons.

Although the trajectories of ρJ−− , aJ++ , ωJ−− , and
fJ++ mesons are similar, they are not identical. Since
there is no a priori knowledge on which trajectory is
closer to the asymptotic one, we cannot reject any of the
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data points by claiming that one of the data set is wrong.
Also, we cannot simply fit all trajectories by the same
set of parameters, since the masses and widths of the
mesons with same value of resonance spin J are rather
different in many cases, and their error bars even do not
overlap. Therefore, our first task is to determine the
correct set of data to be fitted with the corresponding
errors.

The nonzero difference of meson masses of the same
spin is a reflection of the chiral symmetry breaking in
the confined phase. It is expected that, for excited
mesons, the effect of chiral symmetry breaking gets
weaker [22, 23]. This expectation is in line with the
FWM prediction of the universal trajectory existence.
However, from the practical point of view, it is necessary
to account for the effect of chiral symmetry breaking in
the fitting procedure. Clearly, the natural measure of the
chiral symmetry breaking, which has to be included into
the fitting, is the mass difference of δMo

J = |MωJ −MρJ |
for odd values of J and δMe

J = |MfJ −MaJ | for even
J values. Since the mass differences δMo

J and δMe
J

are much smaller than the masses of the corresponding
mesons, i.e. the chiral symmetry breaking effect is small,
then it seems reasonably to expect that the universal tra-
jectory should be located very close to or inside of the
mass interval of mesons having the same spin. The same,
of course, should be true for the resonance width. In ad-
dition, it is necessary to account for the experimental
errors of resonance masses and widths.

Therefore, hypothesis A to be verified by the fit of
experimental data is as follows: for the spin J, the mass
and the width defined by the universal trajectory are
located within the interval

M exp
r ∈

[
min{Mmin

J − δMmin
J ;Mmax

J − δMmax
J };

max{Mmin
J + δMmin

J ;Mmax
J + δMmax

J }
]
, (6)

Γexp
r ∈

[
min{Γmin

J − δΓmin
J ; Γmax

J − δΓmax
J };

max{Γmin
J + δΓmin

J ; Γmax
J + δΓmax

J }
]
, (7)

respectively. Here, Mmin
J and δMmin

J (Mmax
J and

δMmax
J ) denote the minimal (maximal) value of meson

mass of spin J and its experimental error, respectively.
In other words, for each J, the mass (width) of the uni-
versal Regge trajectory is assumed to be located inside
the widest interval that can be constructed from masses
(widths) of two mesons and their experimental errors.
Thus, our fitting of hypothesis A relies on the maximal
uncertainty in the experimental mass and width values,
which, on the one hand, allows us to account for the
experimental splitting in the masses and the widths of
resonances and, on the other hand, to reduce an individ-

ual influence of each of four trajectories analyzed. Such
an assumption allows us to determine the mean values
of mass and width to be fitted for each J as

M exp
r ≡ 1

2
[
min{Mmin

J − δMmin
J ;Mmax

J − δMmax
J } +

+ max{Mmin
J + δMmin

J ;Mmax
J + δMmax

J }
]
, (8)

Γexp
r ≡ 1

2
[
min{Γmin

J − δΓmin
J ; Γmax

J − δΓmax
J } +

+ max{Γmin
J + δΓmin

J ; Γmax
J + δΓmax

J }
]
, (9)

and their errors as

δMr ≡
1
2
[
max{Mmin

J + δMmin
J ;Mmax

J + δMmax
J } −

− min{Mmin
J − δMmin

J ;Mmax
J − δMmax

J }
]
, (10)

δΓr ≡
1
2
[
max{Γmin

J + δΓmin
J ; Γmax

J + δΓmax
J } −

− min{Γmin
J − δΓmin

J ; Γmax
J − δΓmax

J }
]
. (11)

Set A defined by Eqs. (9)–(11) from the experimental
data is shown in the second column of Table 1. As one
can see from this column, the errors of the J = 1 mass,
J = 3 mass, and J = 3 width are essentially smaller
than other errors, and, as we will see in the next section,
they essentially affect the results of fitting. Therefore,
in order to weaken such a dependence, we would like
to verify hypothesis B that, for spin J, the universal
Regge trajectory passes through the corridor ±Δ taken
from the arithmetical average of masses and widths of
the corresponding mesons (set B).

We chose Δ = 0.035 GeV. It is, however, clear that the
scaling of Δ does not change the location of a χ2 mini-
mum in the space of parameters, although it changes the
value of mean deviation squared per number of degrees
of freedom χ2 and the error bars of the fitting parame-
ters.

Comparing sets A and B (see columns Aexp and Bexp

in Table 1), one can see that the corresponding mass and
width values, except for Γ6, are very close to each set of
data. The difference in the uncertainties of these sets
allows us to study the stability of the fitting parameters.

4. Fitting Procedure

For the analysis, we choose the simplest parametrization
of the Regge trajectory which satisfies requirements (I)–
(III) and obeys the FWM predictions [8] that q(s) ∼
s3/4:

α(s) = α0 + g2
R [s+AR(−s)3/4 − iBR] . (12)

Note that the term (−s)3/4 in (12) has a correct behavior
in the complex s-plane [7]. Two additional parameters to
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T a b l e 1. Masses and widths (both given in GeV) of data sets A, B, C, and D along with the results obtained by
their fitting (see more details in the text). The column Aexp contains the data points and their errors for hypothesis
A. In the columns Bexp and Dexp, there are data points corresponding to hypotheses B and D, respectively, while
the data points have the same error Δ. The column Cexp consists of the experimental data on masses and widths
of ρ1−− , ρ3−− , and ρ5−− mesons which are given to demonstrate the typical results of the four-parameter fit. The
mass and the width of the resonance with J = 6 for the column Dfit are predicted using the fitting parameters. The
last row contains the corresponding χ2 per number of degrees of freedom to show the quality of the fit

Aexp Afit Bexp Bfit Cexp Cfit Dexp Dfit

M1 ± δM1 0.7754± 0.00734 0.7749 0.7758 0.7619 0.7690± 0.0009 0.76897 0.8142 0.8111

Γ1 ± δΓ1 0.0792± 0.0708 0.0342 0.0788 0.0510 0.1490± 0.0010 0.14895 0.0697 0.0489

M2 ± δM2 1.2971± 0.0233 1.3087 1.2970 1.2936 – – 1.3400 1.3377

Γ2 ± δΓ2 0.1451± 0.0423 0.1286 0.1445 0.1704 – – 0.1292 0.1529

M3 ± δM3 1.6770± 0.0140 1.6893 1.6779 1.6748 1.6888± 0.0021 1.6891 1.7100 1.7180

Γ3 ± δΓ3 0.1645± 0.0135 0.1743 0.1645 0.2297 0.1610± 0.0100 0.1638 0.1627 0.2045

M4 ± δM4 2.0101± 0.0191 2.0028 2.0095 1.9895 – – 2.0213 2.0324

Γ4 ± δΓ4 0.2820± 0.0620 0.2049 0.2750 0.2700 – – 0.2493 0.2401

M5 ± δM5 2.2725± 0.0925 2.2753 2.2900 2.2632 2.3300± 0.0350 2.270 2.3207 2.3076

Γ5 ± δΓ5 0.3625± 0.1375 0.2282 0.3600 0.3010 0.4000± 0.1000 0.177 0.2993 0.2671

M6 ± δM6 2.4500± 0.1300 2.5171 2.4575 2.5056 – – – 2.5576

Γ6 ± δΓ6 0.4000± 0.2500 0.2489 0.3275 0.3285 – – – 0.2809

χ2 – 0.7739 – 1.3109 – 4. – 0.5774

the asymptotic linear trajectory (2), α0 and BR, define
the real and imaginary parts of α(0) at s = 0, respec-
tively, i.e. Re(α(0)) ≡ α0 and Im(α(0)) ≡ −g2

RBR. The
constant AR defines the phase φr of a resonance in the
complex energy plane as

sin(φr) = AR sin
(

3
4 (π − φr)

) √ cos(φr2 )
Mr

+

+BR
M2
r

cos2
(
φr
2

)
. (13)

Clearly, this equation is an explicit form of Eq. (3)
for trajectory (12). As we discussed in Section 2,
−π < φr < 0, which leads to the inequality BR <

−AR sin
(

3
4 (π − φr)

) [
M2
r + Γ2

r

4

]3/4
that should hold for

masses, widths, and phases of all resonances belonging
to trajectory (12).

In fact, we used more complicated parametrizations of
the trajectory α(s) than that of Eq. (12), but they did
not give any improvement of the fit. In particular, in
order to avoid the singularity of the intercept d α(s)

d s at
s = 0, we also considered (−(s+C0))3/4 with a complex
constant C0 instead of the term (−s)3/4 in (12). How-
ever, this modification increases the overall value of χ2

per number of degree of freedom, since the reduction in
the number of degree of freedom for one or two units has
a dominant effect.

The spin of the resonance at its position in the com-
plex s-plane sr = |sr| ei φr is given by the expression

Jr = Re (αR(sr)) = α0 + g2
RM

2
r ×

×

[
sin( 1

4 (3π+φr))−BR
M2
r

cos2(φr2 ) cos( 3
4 (π−φr))

]
cos2(φr2 ) sin( 3

4 (π−φr)) , (14)

whereas its mass Mr and width Γr are defined by Eqs.
(4). As one can see from Eqs. (4) and (14), the parame-
ter BR enters into these equations only in the combina-
tion BR

M2
r
. This fact clearly demonstrates the importance

of the BR parameter for small values of resonance mass,
while, for large values of Mr, it generates a small correc-
tion to the asymptotic behavior of the trajectory.

Equation (14) can be rewritten in the form

Mr= 1
gR

[
(Jr−α0) cos2(φr2 ) sin( 3

4 (π−φr))
sin( 1

4 (3π+φr)) − g2R BR cos2(φr2 ) cos( 3
4 (π−φr))

]1/2
,(15)

which is more convenient for finding out the resonance
mass for known spin Jr and phase φr. The advantage
of Eq. (15) is that its right-hand side does not depend
on Mr. This allows us to simplify the searches for the
minimum of the χ2-function

χ2(AR, BR, gR, α0) =

= 1
Ndof

∑
r

[
[Mr−Mexp

r ]2

δM2
r

+
[Γexp
r +2Mr tan(φr2 )]2

δΓ2
r

]
, (16)

by solving numerically the system of equations (4), (15)
for two unknown variables φr and Mr of a resonance
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T a b l e 2. The parameters of the asymptotic Regge trajectory (12) obtained by the fitting of sets A, B, C, CB,
and D given in Table 1. The errors correspond to a standard (one σ) deviation from the data point values of the
corresponding set

Parameter Afit Bfit Cfit CB
fit Dfit

α0 (GeV)0 0.4260 ± 0.0120 0.4250 ± 0.0180 0.4490 ± 0.007 0.300± 0.015 0.3770 ± 0.049
gR (GeV)−1 0.8815 ± 0.0049 0.8667 ± 0.0155 0.906 ± 0.006 0.867± 0.016 0.8646 ± 0.0161
AR (GeV)1/2 −0.287± 0.0110 −0.377± 0.0218 −0.157± 0.008 −0.385± 0.019 −0.327± 0.0340
BR (GeV)2 0.1033 ± 0.0504 0.1327 ± 0.0119 −0.050± 0.007 0.0734± 0.013 0.1221 ± 0.0091

having spin Jr for a given set of AR, BR, gR, and α0

values. Here, Ndof denotes the number of independent
degrees of freedom in the fitting, M exp

r and Γexp
r are, re-

spectively, the mass and the width of the resonance of
spin Jr taken from the data sets defined in a preceding
section, whereas δMr and δ Γr are the corresponding un-
certainties. The minimum of χ2-function (4) was found
by the independent variation of the fitting parameters
AR, BR, gR, and α0.

It is necessary to stress here that such a procedure
provides an exact treatment of the resonance width in
contrast to a popular approximate relation [6]

Γr ≈ Im(α(M2
r ))

[
Mr Re

(
dα(s)
d s

∣∣∣∣
s=M2

r

)]−1

, (17)

which can be used for very heavy resonances only, while,
for ρ1−− and ω1−− , it deviates from the exact result by
20–30 %.

5. Results for Nonstrange Mesons

Using the above equations, we performed the four-
parameter fit of the data set A defined by Eqs. (9)–
(11). The results are given in Tables 1 and 2 and
shown in Figs. 1–3. Although the χ2

A ≈ 0.774 value
is smaller than 1, the close inspection shows that, in
contrast to the excellent fit of resonance masses, the
fit of their widths seems not very satisfactory. From
Figs. 2 and 3, one can clearly see that the data set
A for widths is perfectly described for Jr ≤ 3 only,
whereas the obtained width of resonances Γr with Jr > 3
formally provides the minimum of χ2-function because
Γr ∈ [Γexp

r − δΓr; Γexp
r ], but the behavior of Γr does

not reproduce the trend of the data for Jr > 3. The
reason for such a behavior is that the mass and width
uncertainties of set A are essentially smaller for the res-
onances of spin Jr ≤ 3 than for that of higher spin
values. We obtained exactly the same behavior, while
examining the individual trajectories of ρJ−− , ωJ−− ,
aJ++ , and fJ++ mesons. The last column of Table 1
shows the results of the ρJ−− trajectory fit. One can

see that the masses and the widths of ρ1−− and ρ3−−

mesons are reproduced perfectly, whereas the mass of
ρ5−− meson is almost two standard deviations off from
its experimental mean value, and its width is about two
and half standard deviations off the mean experimental
value of a width. An evident origin for such an outcome
of the fit is rooted in very small experimental errors of
ρ1−− and ρ3−− mesons as compared with the errors of
ρ5−− meson. Clearly, the large value of χ2

C ≈ 4 for the
ρJ−− trajectory is generated by the ρ5−− meson data
points.

After realizing this fact, we examined the stability of
the obtained results. For this purpose, we formulated
hypothesis B and analyzed it. Comparing the data sets
A and B, it is clearly seen from Table 1 that the main
difference between them is due to the value of errors:
in contrast to set A, all errors for set B are chosen to
be equal to Δ (democratic choice). The results of the
fitting with set B are given in Tables 1 and 2 and shown
in Figs. 1–3.

From Table 1, one can see that the obtained fit corre-
sponds much better to the data trend of set B. In fact,
there are only two data points, Γ3 and Γ5, which are
about 60 MeV off the corresponding experimental val-
ues. Such a result seems to be a remarkable success for
trajectory (12) which is expected to be valid in the limit
|s| → ∞.

From Table 2, it is seen that the most sensitive param-
eter to a change of data sets is AR, whereas α0 and gR
are almost insensitive parameters, and BR demonstrates
a moderate sensitivity. It is clear from this table that the
values of the fitting parameters α0 and gR are in good
agreement with the corresponding parameters obtained
by other groups [4, 20, 22].

It is worth to note that if we apply hypothesis B to
the description of the ρ meson trajectory (column Cexp

in Table 1) and, thus, define set CB , then, with the
accuracy Δ ≈ 54 MeV, the χ2 value of such a set be-
comes equal to χ2

C of the fit obtained for this trajec-
tory with the experimental errors (see column Cfit in
Table 1). Other parameters for case CB are given in
Table 2, from which one can see that the parameters
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Fig. 1. Comparison between the resonance masses of sets A, B,
and D and their fit by the asymptotic Regge trajectory (12). The
upper panel shows the data points as a function of the correspond-
ing mass value of the fit. For most of the data points, the error
bars are smaller than the symbols. The lower panel shows the
difference of data and the fit as a function of the fit value of the
resonance mass. The curves in the lower panel are the cubic splines
and are shown to guide the eyes

which are important in the asymptotics |s| → ∞, gR
and AR, are very close to the values obtained for set
B for all nonstrange resonances, whereas the found BR

value is close to that of the fit with set C. From such a
comparison, we conclude that the definition of the data
set based on the democratic choice of errors grasps not
only the average mass and width values for four ana-
lyzed nonstrange meson trajectories, but also it reflects
the asymptotic behavior of each of these mesonic Regge
trajectories.

Fig. 2. Comparison between the resonance widths of sets A, B,
and D and their fit by the asymptotic Regge trajectory (12). The
upper panel shows the data points as a function of the correspond-
ing width value of the fit. The lower panel shows the difference
of data and the fit as a function of the fit value of the resonance
width. The curves in the lower panel are the cubic splines and are
shown to guide the eyes

Now it is necessary to choose the best fit among
the results found for sets A and B. Although for
the common error Δ = 35 MeV, the found value
of χ2

B(35MeV) ≈ 1.3109 for set B is slightly larger
than that for set A, one cannot simply favor fit A
on the basis of a smaller χ2 value. The problem is
that one can increase Δ above the critical value Δc =

35 MeV
[
χ2
B(35MeV)

χ2
A

]1/2
≈ 45.55 MeV, and, in this way,

it is possible to reduce χ2
B(Δ > Δc) below χ2

A. Clearly,
the re-scale of the common error Δ would not change
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the values of fitting parameters and the minimum lo-
cation for set B. Therefore, it seems that hypothesis
B with the common error Δ > Δc is more proba-
ble than hypothesis A, but rather small value of χ2

A

does not allow us to simply reject it. Thus, we need
some additional criterion to favor one of these hypothe-
ses.

Such a criterion is provided by the FWM which
predicts the asymptotic behavior of the width of
large/heavy QG bags on the basis of the lattice QCD
data. Indeed, the FDM [8] allows one to extract the
asymptotic mass dependence of the QG bag width ΓR of
the mean volume Vr = V0

M0
Mr and mass Mr,

ΓR(Mr) = 2Cγ
√

2 ln(2)T 5
co V0

M0
Mr , (18)

from a variety of lattice QCD data [24–26] for the van-
ishing baryonic density. Here, V0 = 1 fm3 is the min-
imal volume of large QG bags, Tco is the cross-over
temperature at zero baryonic density, and the constant
Cγ weakly depends on the number of elementary de-
grees of freedom in the analyzed lattice QCD model [8]:
Cγ ≈ 1.28 corresponds to the pure gluodynamics for
the SU(2)C color group [24], Cγ ≈ 1.22 describes the
SU(3)C color group lattice QCD data with two quark
flavors [25], and the value Cγ ≈ 1.3 corresponds to the
recent lattice QCD data for the SU(3)C color group with
three quark flavors [26].

Equating the asymptotic form of the width from Eq.
(18) with those obtained from the fitting of sets A and B,
we can determine the corresponding value of the cross-
over temperature and compare it with the established
value. For the large resonance mass limit Mr → ∞
in Eq. (4), one finds the asymptotic behavior of the
resonance phase and width

φr

∣∣∣∣
Mr→∞

→ AR

sin
(

3
4π
)

√
Mr

→ −0 , (19)

Γr

∣∣∣∣
Mr→∞

→ −Mr φr → −AR

√
Mr

2
. (20)

From Eqs. (18) and (20), we find out that

Tco =
[

A2
RM0

ln(2)(4Cγ)2 V0

]1/5
. (21)

Since we can neglect the small contribution of ss̄-state
(s is the strange quark) in the ω mesons, the mesons
involved in sets A and B are built from the light
u and d quarks. The corresponding value of Cγ is
1.22. Taking this value of Cγ and using the AR val-
ues from Table 2 with the corresponding fitting errors,

we determine the possible values of the cross-over tem-
perature for each set: TAco = 157.1 ± 2.2 MeV and
TBco = 175.15 ± 4.05 MeV. This result rules out hypoth-
esis A, since its cross-over temperature is lower even
than the chemical freeze-out temperature of most abun-
dant hadrons Tchem = 165 ± 5 MeV extracted from the
nucleus-nucleus collisions at RHIC energy

√
sNN = 130

GeV [27, 28]. On the other hand, the cross-over tem-
perature TBco for set B is in good agreement with the
freeze-out temperature Tearly = 170 ± 5 MeV of early
hadronizing particles for which the kinetic and chemi-
cal freeze-outs occur simultaneously at the very moment
of their hadronization. As we can see from the values
of TBco and Tearly, this is the case for set B. Thus, the
data on the early freeze-out temperature favor hypothe-
sis B.

The early freeze-out temperature was established for
the first time for J/ψ, ψ′ mesons and Ω± hyperons at
the SPS laboratory energy Elab

NN = 158 GeV [29] and
for φ mesons and Ω± hyperons at the RHIC energy√
sNN = 130 GeV [30]. The same conclusion on the early

hadronization phenomenon is supported by the recent
analysis of the transverse momentum spectra of J/ψ, φ
mesons and Ω± at the top RHIC energy

√
sNN = 200

GeV [31]. The complete systematic study on the early
kinetic freeze-out of these hadrons and their hadroniza-
tion process can be found in the recent review article
[32].

We also would like to draw attention to the discrep-
ancies between the experimental data on the resonance
width and their fits. Their mass dependence is shown in
Fig. 3. As one can deduce from Fig. 3, the difference
between each data set and its fit has some periodic struc-
ture, which is more clearly seen for sets B and D (for
more details, see [11]). The developed approach would
allow us to accurately extract such a fine structure, if
the experimental uncertainties were smaller. Therefore,
to firmly establish this fine structure of the resonance
width as compared with the asymptotic Regge trajec-
tory, we need much more accurate data for all analyzed
mesons. However, if this fine structure, indeed, exists,
then the mean width of the mesons of spin J = 7 (and
massM7 ≈ 2.723±Δc GeV) should be Γ7 ≈ 0.3±Δc GeV
instead of the with the set B fit value ΓB7 ≈ 0.36 ± Δc

GeV, while the mean width of the meson of spin J = 8
(and mass M8 ≈ 2.923 ±Δc GeV) should match the fit
B value ΓB8 ≈ 0.384 ± Δc GeV, where, for an a priori
uncertainty, we used the critical value of the common
error Δc for set B. Hopefully, these predictions can be
used to justify the existence of the fine structure in the
analyzed Regge trajectories.

618 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 7



ON ASYMPTOTIC REGGE TRAJECTORIES OF HEAVY MESON RESONANCES

6. Results for Strange Mesons

Using the main conclusion of the preceding section and
the experimental data [21], we constructed the data set
D by taking the arithmetic average of masses and widths
of the strange mesons K∗JP of parity P = (−1)J and
ρJ−− , aJ++ , ωJ−− , fJ++ for the same spin value J and
again choosing the common error Δ = 0.035 GeV (demo-
cratic choice). Hence, hypothesis D is similar to hy-
pothesis B, but it utilizes the larger set of experimental
data. We also performed the four-parameter fit of set D
and give its results in Tables 1 and 2 and Figs. 1–3. As
one can see from the columns Bexp and Dexp of Table 1,
the maximal difference between the data set is about 60
MeV, i.e it is less than 2Δ for the width Γ5, whereas it is
smaller than Δ in all other cases. Despite the fact that
the number of independent degrees of freedom for set
Dexp is 6, i.e. it is smaller than for sets Aexp and Bexp,
the higher stability of the data points of this set leads to
a smaller value of the resulting χ2 and to a wider range
of error bars for the fitting parameters, as it is seen from
Table 2.

Here, we show how one can use the fitting results for
set D. One can determined the data of the K∗J meson of
spin J from the evident symbolic expression 3Dfit−2Bfit

by taking the data from the corresponding rows of Table
1. Thus, forK∗5 , one obtains: Mfit

5 ≈ 2.396±Δ GeV and
Γfit5 ≈ 0.199±Δ GeV, whereas their experimental values
[21] are M5 ≈ 2.382± 0.033 GeV and Γ5 ≈ 0.178± 0.069
GeV, respectively. This example demonstrates that our
prediction for the mass and the width of K∗6 meson
Mfit

6 ≈ 2.662 ± Δ GeV and Γfit6 ≈ 0, 186 ± Δ GeV is
rather realistic, and it is not sensitive to the fine struc-
ture of the width, although the latter is clearly seen in
Fig. 3 for set D.

As an independent check up of the obtained results, we
determine the cross-over temperature at the vanishing
baryonic density for QCD with the SU(3)C color group
and with three quark flavors using Eq. (21) and Cγ ≈ 1.3
[8]: TDco = 161.2±6.7 MeV, which is well consistent with
the early freeze-out temperature Tearly = 170±5 MeV of
J/ψ, φ, ψ′ mesons, and Ω± hyperons found out for the
laboratory energies at [29] and above [30,31] Elab

NN = 158
GeV and with the chemical freeze-out temperature of the
most abundant hadrons Tchem = 165 ± 5 found at the
RHIC energy

√
sNN = 130 GeV [27, 28]. Note also that

the cross-over temperature TDco is in good agreement with
the cross-over temperature obtained for the renormalized
Polyakov loop TLQCDco = 170± 4± 3 MeV by the recent
lattice QCD simulations (see Table 3 in [33]).

Fig. 3. The upper part of each plot shows the resonance width
of mesons as a function of their spin J . The lower part of each
plot shows the difference of the resonance width of mesons and the
obtained value of the fit as functions of the resonance spin. The
upper, middle, and lower panels correspond to sets A, B, and D,
respectively. The curves in all panels are shown to guide the eyes
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Fig. 4. Behavior of the ratio R = Γ
√

2
M

(in GeV1/2) as a function
of the resonance mass M is shown for sets B (squares) and D
(circles), for W boson (the full estimate taken from [21] RW =

0.338 GeV1/2 and the Tevatron data RW = 0.323 GeV1/2 [21]) and
for Z boson (RZ = 0.37 GeV1/2). The solid (short dashed) curve
corresponds to the ratio R of the asymptotic Regge trajectory for
the fitting parameters Bfit (Dfit) of Table 2

7. Comparison with Heavy Gauge Bosons

After the completion of our analysis for the nonstrange
and strange mesons, we decided to check the fact
whether the widths of W and Z bosons are somehow re-
lated to the found parameters of the asymptotic Regge
trajectories of light mesons, since the gauge bosons are
the heaviest bosons available for examination. The re-
sults of such a comparison are shown in Fig. 4 for the
ratio R = Γ

√
2
M as a function of the resonance mass

M . From this figure, one can see that, despite the very
small error bars of RZ for Z boson, it is just located at
the curve obtained for set B, whereas the corresponding
point for W boson is located within 2.75 standard devi-
ations from the ratio found for set D. We have to stress
that the average values for the W boson mass and width
taken from [21] account for the results of experiments
with the nonoverlapping error bars. If, however, we take
only the data of two Tevatron experiments which, in-
deed, overlap, then the obtained ratio R just matches
the set D value! Hence, it is very hard to regard such
good double match as a simple double coincidence, but
there are two additional facts. First, the mesons form-
ing the data set B are dominantly composed of u and d
quarks and antiquarks and have a small contribution of
ss̄ states. Therefore, if the resulting asymptotic Regge
trajectory of set B corresponds to some particles, they
should dominantly decay into s quark and its analog in

the third quark family, b quark, via ss̄ and bb̄ states. Is it
a coincidence that the hadronic decays of Z boson with
s and b quarks go mainly via ss̄ and bb̄ states, whereas
the Z boson decays via s quark (through B0

s meson)
and via b quark (through B+ meson), have, respectively,
rather small partial branching ratios 1.56 ± 0.13 % and
6.1 ± 0.14 % of the total width [21]? Second, in con-
structing set D, the masses and the widths of mesons
with isospin values 0 (ω, f mesons), 1 (ρ, a mesons), and
1
2 (K∗ mesons) were taken for each spin value with the
weight 1

3 according to our democratic choice. Therefore,
if the resulting asymptotic Regge trajectory of set D cor-
responds to some particles, they should decay into the
mesons containing s quark with a probability of about 1

3 .
Is it again a coincidence that the partial branching ratio
of W boson via the s quark (sc̄ for W− boson), whose
ratio RW for the Tevatron data [21] belongs to the cor-
responding value of set D, is about 32+13

−11 % [21], i.e.
within the existing error bars it is close to one third?
Note that if, in the set D construction, we took other
weight for the K∗ mesons than 1

3 , say 1
2 , then we could

not describe RW so well. Therefore, we believe there are
too many coincidences, which, if it is the case, require
four independent explanations.

In our opinion, all these “coincidences” can be ex-
plained simultaneously by the following hypothesis: the
widths of Z and W bosons are described by the asymp-
totic Regge trajectories of mesons because these bosons
belong to the Regge trajectory of the form (12). The
idea of Reggeization of W and Z bosons was suggested
long ago [34], but the concrete predictions out of it were
made much later [35]. There are several possible physi-
cal explanations for the origin of the Regge trajectories
of Z and W bosons, but the most promising ones are
provided by the technicolor model [36], the t quark con-
densate model [37], and the model of haplons suggested
recently by H. Fritzsch [38]. Instead of discussing which
of these models gives a better explanation of the found
facts, we prefer to consider the possible physical conse-
quences of the suggested hypothesis which can be verified
at LHC.

Thus, from Eqs. (4) and the review of the parti-
cle properties [21], one can determine the trajectory
phase for W and Z bosons φW ≈ −0.02608 and φZ ≈
−0.02736. Since these phases are rather small, it is pos-
sible to use the asymptotic expressions (19) and (20).
For instance, from (20), one can get an estimate for the
parameter AR for W and Z bosons as AWR ≈ −0.3377
GeV1/2 and AZR ≈ −0.3695 GeV1/2, which, in fact, de-
viate from the corresponding values for sets D and B
by about 3 % and 2 %, respectively. Similarly, one can
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approximate (15) for J = 1 as

Mr(J) ≈ 1
gR

√
J − α0 . (22)

Since the ratio RZ for Z boson belongs to the set B
curve, and RW for W boson is very close to the set
D curve (see Fig. 4), we can use their parameters α0

in order to estimate the asymptotic value of the slope
parameter g2

R for the corresponding Regge trajectories
and get gZR ≈ 8.028 · 10−3 GeV−1 and gWR ≈ 9.688 · 10−3

GeV−1. These numbers allow us to find the effective
string tension from the traditional expression

σstr ≈
1

2π g2
R

(23)

and to get σZstr ≈ (49.7)2 GeV2 and σWstr ≈ (41.2)2 GeV2.
These rough estimates show us that compared to the
string tension in QCD which is about (0.42)2 GeV2 [39],
the values of the effective string tension for W and Z
bosons are about 104 times larger, which, probably, evi-
dences that the confinement mechanism of composite W
and Z bosons may differ from the confinement mecha-
nism existing in hadrons.

It is clear that Eq. (22) is also valid for all natural
values of spin J . Therefore, one can use (22) and (20)
to predict the mass and the width of the excited states
of W and Z bosons using the expressions (r ∈ {W,Z})

Mr(J) ≈ Mr(1)
√
J − α0

1− α0
, (24)

Γr(J) ≈ Γr(1) 4

√
J − α0

1− α0
, (25)

where, for Z (W ) boson, one should use the α0 value for
set B (D) from Table 2. Then we obtain MZ(3) ≈ 199
GeV, ΓZ(3) ≈ 3.76 GeV, MZ(5) ≈ 265.7 GeV, ΓZ(5) ≈
4.35 GeV for Z boson andMW (3) ≈ 165 GeV, ΓW (3) ≈ 3
GeV, MW (5) ≈ 219 GeV, ΓW (5) ≈ 3.46 GeV for W
boson. Clearly, the values of R ratio found for these
estimates of the W and Z boson Regge partners be-
long, respectively, to the set D and set B curves shown
in Fig. 4. For a comparison, we recall that the orig-
inal predictions based on the Reggeization mechanism
of W and Z bosons suggested in [35] gave much larger
mass and width values for the excited gauge bosons
MW (3) ≈ MZ(3) ≈ 1 TeV, ΓW (3) ≈ ΓZ(3) ≈ 200 GeV.
Therefore, the observation of one of these states would
not only provide us with a good test for the validity of
the hypothesis that the gauge bosons, indeed, form the
Regge trajectories, but would also distinguish our hy-
pothesis from that of Ref. [35].

A few words should be said about the reasons why
none of these states were ever observed in e+ + e− and
p + p̄ collisions. First of all, these states have a sizable
width, and, hence, their observation is technically dif-
ficult because it is hard to distinguish them from the
background. Second, the states with spin J ≥ 3 require
a thorough analysis of higher partial waves which, for
large values of collision energy

√
s, are kinematically sup-

pressed as compared with that of the S-wave [6]. Even
the recent searches for W ′ boson performed by the LHC
experiments are aimed at the mass scale at and above
1 TeV, see, for instance, [40, 41]. We, however, would
like to stress, first, that the predicted range of the W
and Z Regge partners is far below the experimentally
studied area and, second, the difficulties of their experi-
mental detection may tremendously increase, if the main
decays of the W and Z Regge partners go via the low-
lying Regge states of the same trajectory.

Similar to [35], we extend our hypothesis on the Regge
trajectories of W and Z bosons to the Higgs mesons.
However, in contrast to [35], we assume that the Higgs
trajectory, if it exists, has the form (12), and its param-
eters are of the same order of magnitude as those we
found for W and Z bosons. In fact, the line of argu-
ments of [34] can be used to justify such an assumption
for the Regge partners of the Higgs trajectory with the
spin values J = 0, 2, 4, ... In addition, we note that, if the
studied Regge trajectories are, indeed, universal, then it
is our educated guess that the parameters of the Higgs
trajectory, if it exists, should be similar to those of the
analyzed trajectories.

Earlier, we saw that the spin of W and Z bosons is
very sensitive to the values of mass, gR and α0. Hence,
one has to apply them to the Higgs trajectory with great
care. Moreover, we cannot blindly use them for the
scalar Higgs bosons, since, in this case, one would sim-
ply get an imaginary mass value from (22) for α0 values
assumed for W and Z bosons. On the other hand, the
dependence of the width on the mass and the coefficient
AR is not too sensitive. Therefore, we assume that the
coefficientAH

R of the Higgs trajectory is close to the arith-
metic average of the corresponding coefficients for W
and Z bosons, i.e. AH

R ≈ 1
2 (AWR +AZR) ≈ −0.354± 0.027

GeV1/2. Consequently, we can predict that the mass de-
pendence of the scalar Higgs trajectory width is ΓH =

−AH
R

√
MH
2 . Using the predictions for the Higgs width

as a function of its mass [42], we found that the values
MH ≈ 251.5 ± 2.6 GeV and ΓH ≈ 3.97 ± 0.22 GeV of
the scalar Higgs mass and width are consistent with our
hypothesis for the standard model results, whereas the
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values MH ≈ 1335 ± 247 GeV and ΓH ≈ 9.136 ± 0.895
GeV are consistent with the minimal supersymmetric ex-
tension of the standard model with tanβ = 30 in the
scenario with maximal mixing [42]. Since the parameter
α0 for the Higgs trajectory is unknown, we can only pre-
dict the spin dependence of the mass and width of the
Higgs Regge partners

MH(J) ≈ MH

√
J − α0

−α0
, (26)

ΓH(J) ≈ ΓH
4

√
J − α0

−α0
, (27)

for J = 2, 4, ... provided that α0 < 0. Note that although
the last inequality looks bit unusual, it does not contra-
dict any consequences of the Froissart theorem [6]. Since
our estimate for the standard model Higgs mass is essen-
tially larger than its upper bound based on the standard
model predictions [21], this fact, probably, evidences for
the need to extend the standard model.

If, however, we take the results of the global recent
electroweak fit of the Standard Model, that MH =
82.8+30.2

−23.3 GeV (MH = 119.4+13.4
−4.0 GeV) obtained with-

out (with) using information from direct Higgs searches
[43], then the width values for these predictions are
Γ = 2.735+0.15

−0.046 GeV (Γ = 2.278+0.383
−0.347 GeV). These are

the numbers that can be compared with the experimen-
tal findings. Hopefully, the experimental searches for the
Higgs bosons at LHC will allow us either to make more
definite predictions or to disprove our hypotheses.

8. Conclusions

In this work, we analyzed the asymptotic behavior of
Regge trajectories of nonstrange and strange mesons.
With the help of the approach developed in [7], we
showed that a widely circulating belief that the width
of heavy hadrons linearly depends on their mass simply
contradicts the existence of asymptotically linear Regge
trajectories which is expected to be the case by the open
string model [44, 45], the closed string model [44], the
anti-de-Sitter conformal field theory [46], and the FWM
[9].

We analyzed the common data sets for masses and
widths of ρJ−− , ωJ−− , aJ++ and fJ++ mesons for the
spin values J ≤ 6 and of K∗J mesons for J ≤ 5 in or-
der to elucidate the parameters of the asymptotically
linear Regge trajectories that are consistent with the
FWM predictions. Thus, we verified hypotheses A
and B for nonstrange mesons and hypothesis D for the
strange ones which differently define the data uncertain-
ties. Since the worked out fitting procedure employs the

exact expressions for the resonance mass and width de-
rived from the Regge trajectory in the complex energy
plane, we obtained a high-quality fit. Thus, it is shown
that the data sets for nonstrange mesons, A and B, can
be fitted with a rather small value of χ2 per degree of
freedom of about 0.774, and the χ2 for the data set D
is 0.577. We used the results of the fit to estimate the
cross-over temperature value based on the predictions of
the FWM and obtained TAco = 157.1±2.2 MeV for set A,
TBco = 175.15±4.05 MeV for set B and TDco = 161.2±6.7
MeV for set D. As it is argued, the cross-over tempera-
ture obtained from set A is incompatible with the early
freeze-out temperature of J/ψ, φ, ψ′ mesons, and Ω±

hyperons found out for the laboratory energies at and
above Elab

NN = 158 GeV, whereas the cross-over tem-
perature of sets B and D are consistent with the early
freeze-out temperature of these particles.

A detailed examination of the mass dependence of the
resonance width for the analyzed sets of data led us also
to a conclusion of a possible fine (periodic) structure
compared with the asymptotic behavior of the Regge
trajectory. This result might be of a great interest for
the string models of hadrons. However, to firmly estab-
lish the existence of such a structure, we need, firstly,
a higher accuracy of experimental data and, secondly,
a thorough verification of the predictions made for the
widths and the masses of the nonstrange resonances of
spin 7 and 8. Using the fit for set D, we predicted the
mass and the width of K∗6 meson.

Comparing the resonance widths of sets B and D eval-
uated at the mass values of Z and W bosons, respec-
tively, we found very close matches between these width
values and those of the gauge bosons. We argue that
such matches give us the indirect, but, nevertheless, first
experimental evidence for the compositeness of Z and W
bosons. To explain these facts, we suggested a hypothe-
sis that Z and W bosons have the asymptotic Regge tra-
jectories whose functional dependence on the invariant
mass squared is similar to that of the nonstrange and
strange mesons analyzed here. Using this hypothesis,
we showed that the effective string tension for Z and W
bosons is about 104 times larger than that of QCD which
may evidence that the confinement mechanism of com-
posite gauge bosons differs from the confinement mech-
anism existing in hadrons. Such a hypothesis allowed us
to estimate the masses and the widths of Regge partners
of these bosons.

Following the logic of [34, 35] and the results obtained
for Z and W bosons, we suggested a hypothesis that
the scalar Higgs boson can have Regge partners as well.
With the help of the scalar Higgs boson width predic-
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tions, we estimated its mass and width MH ≈ 251.5±2.6
GeV and ΓH ≈ 3.97 ± 0.22 GeV which are compatible
with the standard model conjecture for the Higgs boson
width, whereas the values MH ≈ 1335 ± 247 GeV and
ΓH ≈ 9.136±0.895 GeV are consistent with the minimal
supersymmetric extension of the standard model with
tanβ = 30 in the scenario with maximal mixing. Be-
cause our estimate for the standard model Higgs mass
is essentially larger than its upper bound based on the
other predictions of this model [21,43], we conclude that
this fact evidences for a necessity to extend the standard
model.
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ПРО АСИМПТОТИКУ ТРАЄКТОРIЙ РЕДЖЕ ВАЖКИХ
МЕЗОННИХ РЕЗОНАНСIВ

К.О. Бугаєв, Е.Г. Нiконов, О.С. Сорiн, Г.М. Зiнов’єв

Р е з ю м е

Проведено аналiз асимптотичної поведiнки траєкторiй Редже
недивних та дивних мезонiв i знайдено, що для цих траєкторiй

ширина важких адронiв не може лiнiйно залежати вiд їхньої
маси. Такий результат явно демонструє, що широко поширена
впевненiсть у лiнiйнiй залежностi ширини резонансiв вiд їхньої
маси суперечить лiнiйностi траєкторiї Редже за мандельстамiв-
ською змiнною s. Використовуючи данi по масам та ширинам
для ρJ−− , ωJ−− , aJ++ i fJ++ мезонiв зi спiнами J ≤ 6 i для
K∗

J мезонiв зi спiнами J ≤ 5, ми визначили параметри асим-
птотично лiнiйних траєкторiй Редже, якi передбачено моделлю
кiнцевої ширини для кварк-глюонних мiшкiв. Показано, що па-
раметри, отриманi для набору даних B i D, сумiснi з темпера-
турою кросовера, визначеною в симуляцiях ґраткової КХД за
нульових значень барiонної щiльностi та з температурою кiне-
тичного фрiзаута частинок, що рано адронiзуються, знайденої
в релятивiстських зiткненнях важких iонiв за найвищої енергiї
SPS та за енергiй вищих за неї. Порiвнюючи ширину резонан-
сiв для наборiв даних B i D, якi, вiдповiдно, були обчисленi для
мас Z i W бозонiв ми знайшли, що обчисленi значення ширин
збiгаються з ширинами калiбрувальних бозонiв. Наведено ар-
гументи на користь того, що такий збiг дає нам непряме, але
перше експериментальне свiдчення про складений характер Z
та W бозонiв. На основi цих результатiв ми припустили, що Z,
W та Хiггс бозони мають траєкторiї Редже, подiбнi до асим-
птотичних траєкторiй проаналiзованих мезонiв. Зроблено пе-
редбачення для мас i ширин Редже партнерiв Z i W бозонiв
та для масової залежностi ширини Редже партнерiв бозонiв
Хiггса, а також дано значення для маси i ширини скалярних
мезонiв Хiггса.
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