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We set new regularities between the critical and Zeno-line parame-
ters. The most important one has the form Tc/TB+ρc/ρB = S(β),
where Tc and ρc are the critical temperature and density. The pa-
rameters TB and ρB determine the position of the straight line
along which the compressibility factor is equal to 1 on the density-
temperature plane. The quantity S(β) is weekly dependent on the
critical exponent β: S(β) = 0.64 for the classical value β = 0.5 and
0.67 for β = 1/3. We show that this similarity faithfully describes
both the numerical simulation data and experimental data for a
wide class of real materials.

1. Introduction

The similarity relations in the theory of liquid state
are known more than a century since the pioneering
investigations of van der Waals. The principle of cor-
responding states and the law of rectilinear diameter
are the well-known examples of such similarities [1, 2].
Presently, there is a considerable experimental evidence
confirming one more relation besides the two described
above. This feature characterizes the states where the
compressibility factor is one (i.e., Z = P/nT = 1,
where P is the pressure, n is the particle density, and
T is the temperature). The contour Z = 1 is referred
to as the Zeno-line (ZL). It is easy to show that ZL
is a straight line on the density-temperature plane for
van der Waals systems [3]. But it is appeared to be
straight for many real substances [2, 4–8] and model
systems [9, 10] too. Moreover, this phenomenon (ZL
straightness) has a wider applicability than other sim-
ilarity laws. For example, ZL is straight for noble gases
[11], organic materials [2], and even some metals like Cs
and Hg [7]. Recently, we have investigated the proper-
ties of different models and real substances connected

with ZL [4–10]. We have found that there is a pos-
sible new similarity which is based upon the relation
between the critical point and the Zeno-line. In the
present work, we review our findings. Our study re-
lies on the fact that the Zeno-line must be tangential
to the extension of the binodal liquid branch at the
zero temperature domains. This fact together with the
three-term Guggenheim equation allows us to construct
the relation for the liquid binodal branch (for arbitrary
substance or model system). We have also found a
simple relation between the critical point (CP) coordi-
nates and ZL parameters. We have checked both rela-
tions (for binodal and for CP coordinates) for real sub-
stances. We have shown that our similarity faithfully
describes both the numerical simulation data and ex-
perimental data for a wide class of real materials. We
have also made the investigation of several model inter-
atomic potentials to confirm our similarity and to find
possible deviations. The deviations from our similar-
ity relations take place for two cases: the numerically
calculated coexistence curve gets into a domain corre-
sponding to solidification; the liquid-vapor transition
becomes metastable with respect to freezing. Finally,
we make some predictions for metals which have crit-
ical parameters in the phase diagram domain still in-
accessible for experiment. The article is organized as
follows. The next section is devoted to theoretical rela-
tions concerning ZL. There, our relations for CP coor-
dinates and for the binodal will be also presented. The
behavior of ZL and the analysis of experimental data
on real substances are presented in Section 3. Several
systems with model potentials are considered in Section
4, where we establish the validity of similarities based
on ZL. The conclusions are presented in the final sec-
tion.
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2. Theoretical Relations

In 1906, Bachinskii [3] rewrote the famous van der Waals
equation in the form

Z =
P

nT
= 1 +

27n(n/3 + 8T/27− 1)
8(3− n)T

. (1)

Here, P , n, and T are reduced to the critical values
Pc, nc, and Tc (the subscript “c” refers to the critical
point; here and below, we also set the Boltzmann con-
stant kB = 1). Equation (1) states that the density-
versus-temperature curve is a straight line for Z = 1.
It intersects the temperature axis at the Boyle point
T = TB = 27/8 and the density axis at the point nB = 3.
It is possible to show for an arbitrary system [6] that if
ZL is a straight line, then its equation is

T

TB
+

n

nB
= 1. (2)

The analysis of ZL with the use of the virial expansion
gives us the general formulas for “B”-scripted values. Ac-
cording to the virial expansion for the pressure at small
densities, we have

Z =
P

nT
= 1 +B(T )n+ C(T )n2 + ..., (3)

where B(T ) and C(T ) are the second and third virial
coefficients, respectively. Equations (2) and (3) show
that TB is the well-known Boyle temperature, where
B(TB) = 0. The parameter nB, which is referred be-
low to as the Boyle density, can be also defined in terms
of B(T ) and C(T ). (We will call TB and nB below as
the Boyle and ZL parameters). For the systems with
pair-additive interaction (with pair potential Φ(r)), ex-
pansion (3) gives the following equations [2, 6]:

TB :

∞∫
0

[exp (Φ(r)/T )− 1] r2dr = 0,

nB =
(
dB(T
dT

)
TB

TB

C(TB)
. (4)

For model systems with known interactions Φ(r), the for-
mulas (4) can be applied directly. For real substances,
the values of TB and nB can be defined on the basis of
experimental data. Now let us consider how the position
of ZL correlates with the liquid-vapor coexistence curve.
Formulas (4) were obtained by the expansion as n → 0
and T → TB. It is the “small-density” end of ZL. In [5],

Fig. 1. Diagram of mutual disposition of the Zeno-line (ZL) and
the gas-liquid binodal. CP is the critical point, TP is the triple
point, and S1 is the similarity line (2)

it was shown that, at another “high-density” end, the
Zeno-line is an asymptote for the liquid branch of the
binodal as T → 0 (irrespective of whether the Zeno-line
is straight or not). Strictly speaking, the liquid binodal
branch should be completed at the triple point (TP), so
ZL is an asymptote to the continuation of the binodal
beyond TP. This fact connects ZL and the liquid bin-
odal branch. As a result, the binodal in the n−T plane
appears to be inscribed into the triangle created by ZL
and two axes as it is shown in Fig. 1. This geomet-
ric construction allows us to find the equation for the
liquid binodal branch and relations for CP coordinates.
It is well known that the binodal branches (nLiq – liq-
uid branch, nGas – gas branch) can be described by the
so-called three-term Guggenheim equation [1]

nLiq = nc +ALiqτ +DLiqτ
β ,

nGas = nc +AGasτ +DGasτ
β ,

τ = 1− t/Tc, T ≤ Tc. (5)

Here, A and D are some constants with the subscripts
relating to the corresponding binodal branches. “β” is
the critical index. For real substances in 3D with the
scalar parameter of order β = 0.326 [12]. But it can be
different for models (for the van der Waals system, it is
0.5, for a 2D Ising lattice gas, it is 1/8; for some other
model systems, see [10]). The binodals are supposed
very often to be symmetric relative to their diameters,

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 8 839



E.M. APFELBAUM, V.S. VOROB’EV

Fig. 2. The binodal for F2. Points – NIST data [15], lines – our
calculations according to Eqs. (5) and (6)

i.e. relative to the line n(T ) = 0.5[nLiq(T )+nGas(T )]. In
this case, AGas = ALiq and DGas = −DLiq. Equation (5)
was used many times with different A and D [13, 14]. In
the recent work [14], Eq. (5) was applied to 108 materials
(supposing the symmetry of binodals), with the least-
squares fitting of A and D to the known experimental
data. The resulting error was within several percents.
So Eq. (5) can be a reliable ground for the construction
of binodal equations. In [6–8, 10], we used the condition
of ZL asymptote to define the coefficients A and D in
(5) for the liquid binodal branch. We did not suppose
the symmetry of the binodal, as far as we are going to
consider metals, where there is no such symmetry. As a
result, we have [10] the following expressions:

nLiq(T → 0)→ nZeno−line(T ) = nB(1− T/TB)

⇓

ALiq =
Tc

TB
nB − βnB + βnc

1− β
, DLiq =

(
1− Tc

TB

)
nB − nc

1− β
.

(6)

The presence of ZL parameters and CP coordinates in
(6) allows one to suppose that there is some simple rela-
tion between these values. The simplest hypothesis for
this relation is also a linear dependence. In other words,
the critical points of various substances can be located
at some straight line on the n − T plane. Initially, we
supposed that this line should be the median of the tri-
angle mentioned above [5] (median line in Fig. 1). This
median is defined by the equation Tc

TB
+ 2 nc

nB
= 1. But

the detailed analysis [6–8] showed that the line parallel

to ZL is more exact. In Fig. 1, this line is denoted as S1.
Then the corresponding equation for CP coordinates is

Tc
TB

+
nc
nB

= S1(β), S1(β = 0.326) ≈ 0.67. (7)

In (7), we introduced the dependence of value S1 on the
critical index β. The value S1 = 0.67 is exact for the
Lennard–Jones (LJ) system, which belongs to the so-
called “Ising” class of criticality with β = 0.326. The
real substances in 3D also belong to this class [12]. So
we can expect that Eq. (7) can also be true in these
cases. For model systems (with known potentials), the
index β can be different [10]. Equation (7) gives CP co-
ordinates, but not the critical pressure. Unfortunately,
the ZL equation (2) does not contain any pressure. But
the products nBTB and ncTc have the dimension of pres-
sure. So it is possible to look for some connection be-
tween these products. In [8], the corresponding formula
was presented in the form

ncTc − Pc
nBTB

= S2(β), S2(β = 0.326) ≈ 0.076. (8)

Here just like in (7), the parameter S2 is dependent on
the critical index. The value 0.076 again corresponds to
LJ. But as we will see below, Eq. (8) is less exact than
Eq. (7).

3. Real Substances and ZL Similarities

To check how accurate Eqs. (5)–(8) describe the bin-
odals and CP coordinates of real substances, we made
comparison of the calculated binodals with known ex-
perimental data [6, 8]. For many gases and liquids,
the results of measurements are presented in the NIST
databases [15]. We used it. As far as the liquid branch
of the binodal is known, we can find Boyle parame-
ters by means of least-square techniques. The corre-
sponding procedure was proposed in [6], where one can
find calculation details. We have found that, for no-
ble gases, various molecular gases, and hydrocarbons,
our liquid branches of the binodal are in agreement
with experiments within several percents. As an ex-
ample, we have drawn (Fig. 2) ZL and binodals for
fluorine (F2), which was not presented in our earlier
articles. The maximum relative error of our calcula-
tions for F2 is ∼ 3%. The ZL parameters for fluorine
are TB = 385.06 K, nB = 2.01 g/cm3, the critical pa-
rameters [15] are Tc = 144.414 K, nc = 0.593 g/cm3,
Pc = 5.1724 MPa. The similarity parameters for flu-
orine are S1 = 0.67 and S2 = 0.08. For metals, we
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have the measurements data only for Cs and Hg (see
[8] for references). For Hg, the maximum error can
be greater ∼ 5–7%. In Fig. 3, we present a part of
the Hg binodal to show this difference. The parame-
ter S2 = 0.065 for Hg, which deviates by 14% from LJ
S2 = 0.076. But S1(F2) = 0.67, and it coincides with
the exact LJ value. Using our relations (7) and (8),
we can also estimate the critical parameters for met-
als, which are inaccessible in measurements. To do it,
one can use the data of measurements at relatively low
temperatures in metals. The corresponding technique
was developed in [6–8]. The following results were ob-
tained for 5 metals: for Al, Tc = 6380 K, ρc = 0.45
g/cm3, Pc = 1070 Bar; for Cu, Tc = 7090 K, ρc = 1.95
g/cm3, Pc = 4500 Bar; for W, Tc = 12400 K, ρc = 4.92
g/cm3, Pc = 7450 Bar; for U, Tc = 7000 K, ρc = 3.30
g/cm3, Pc = 1710 Bar; and, for Zr, Tc = 15200 K,
ρc = 1.00 g/cm3, Pc = 421 Bar. The general pic-
ture for binodals and ZL of different substances was
published earlier in [6, 8]. So we present two new di-
agrams for S1 and S2, where one can see how accu-
rate these criteria are. The diagram for S1 presents
the positions of CP for various substances reduced to
Boyle parameters. If S1 is constant, then all CP should
be located at the corresponding straight line. One can
see that only water has a pronounced deviation from
the value S1=0.67. Even for complex organic molecules
like R13 (CClF3), R22 (CClFV2), R32 (CH2F2), as
well as for quantum liquid He3, the parameter S1 cor-
responds to the LJ value. For S2, the agreement is
much worse. The corresponding diagram is S2 versus
the compressibility factor at CP. Here, the points should
be located along the horizontal line, if this criterion is
true. But only several substances have S2 located within
the interval 0.07–0.08. So this criterion needs in correc-
tion.

4. Model Systems and ZL Similarities

The model systems with known interaction potentials
(as a rule, pairwise) are the best objects for investiga-
tion of their various properties. It is the case because
all powerful techniques of the modern theory of liquids
are applicable to model systems directly, as far as the
potential is known. Consequently, it was interesting to
apply our similarities to several popular model systems.
This work has been done in [10]. There we took into
account such model system as LJ, van der Waals, gener-
alized LJm-n (or Miem-n) potential, square-well poten-
tials, Stillinger–Weber, Sutherland potentials (or hard-
sphere potential plus power tail), hard-sphere potential

Fig. 3. The binodal for Hg. Hensel et al. – are the measurements
from [16], lines – our calculations according to Eqs. (5) and (6)

plus Yukawa attraction potential, Buckingham or Exp-6
potential, and one of the Morse potentials. The phase
diagrams are known for these systems, and the Boyle
parameters can be calculated directly by means of Eq.
(4). So we can analyze our similarity directly and es-
tablish the limits of their applicability. We should note
that the model systems have several interesting proper-
ties which influence greatly our relations. It is difficult
to find these properties in real substances, but they are
very evident in models. At first, the critical index β can
have different values. That is why we have introduced
the dependence on β for S1 and S2. It is well known
that β = 1/2 in “mean-field” or “classical” 3D systems,
while it is 0.326 (“Ising” value) in real substances [12].
The most known example is van der Waals model. Here
S1(β = 0.5) = 17/27 and S2(β = 0.5) = 5/81 = 0.062.
But there are model systems such that the index β can
vary between classical and “Ising” values (see [10]). The
Sutherland potential is a bright example. It has form

Φ(r) =
{

+∞, r < σ,

−ε
(
σ
r

)m
, r ≥ σ. (9)

If the power m > 5 − η, then the system belongs to
the “Ising” class (η is the Fisher critical index [12],
η = 0.0335). If 5 − η ≥ m ≥ 4.5, then “. . . the expo-
nents should be functions of m that interpolate between
the Ising and classical values” [17]. At last, if m < 4.5,
then the system possesses the classical (van der Waals)
exponents, i.e., β = 0.5. So it is evident that the proper-
ties of a model system can change profoundly if the at-
traction range changes. Another property concerns the
range of attraction itself. It is a well-known fact that
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Fig. 4. Diagram for the S1 criterion for different substances

the existence of the liquid-vapor transition is governed
by the attraction part of interaction. A system with only
the repulsive force has no this transition (there are only
crystal - non-crystal transitions). But if the range of
attraction is too small, then the region of liquid-vapor
coexistence can be metastable with respect to the liquid-
solid transition. In this case, the two-phase binodals are
shifted entirely inside the melting region. For details,
one can see our work [10]. Of course, our similarities
are not applicable in this case. This gives us one limit
of applicability. For example, for Sutherland potentials,
the metastability holds for m > 6. One more impor-
tant property manifests itself in the opposite case where
the range of attraction is too long. Under these circum-
stances, the triple point temperature can increase up to
the CP value. As a consequence, ZL is not a straight
line (although it is still tangent to the continuation of
the binodal beyond the triple point). In this case, our
similarities are inapplicable as well. So here we have one
more limitation. For the Sutherland potential, this lim-
itation can be seen already at m = 3.1 [10]. The model
systems allowed us to find the dependence of our simi-
larities of the critical index β and to find their limits. In
[10], we have presented the corresponding analysis with
diagrams for S1 and S2 analogous to Figs. 4 and 5 of the
present article. To demonstrate our findings here, we do
not repeat these diagrams, but instead we have calcu-
lated S1 and S2 for only one potential – square-well one
(SW). Its form is

Φ(r) =

 +∞, r < σ,
−ε, σ ≤ r ≤ λσ,
0, σ < r.

(10)

Fig. 5. Diagram for S2 against Zc = Pc/(ncTc) for different sub-
stances. The line S2 = 0.076 marks the LJ value

This potential is possibly the most studied one among
all other model systems. In addition, we have the very
simple formula for Boyle parameters of SW:

Tb(λ) =
[
ln
(

λ3

λ3 − 1

)]−1

,

nB(λ) =
2πλ3

3C(TB(λ))
ln
(

λ3

λ3 − 1

)
. (11)

The properties of SW are greatly influenced by the at-
traction range, i.e. by λ. At present, we have abundant
data of numerical simulations in the range λ = 1.05–
3.0 made by different scientific groups (see our work [10]
and references therein). The liquid-vapor transition be-
comes stable when λ ≥ 1.25. We have also found that
ZL is not straight already at λ ∼ 1.75–2. So one can
await that the LJ-like value S1 = 0.67 would be valid
for λ ∼= 1.25–2. We should also note that, while the
Boyle parameters can be calculated exactly, CP coordi-
nates in various simulations have some scattering. The
critical index β is usually supposed to be equal to 0.326
for λ < 1.75. But, at λ = 2, the value β = 0.5 is much
better describes the SW binodal than the “Ising”-type
universal exponent [18]. In Figs. 6 and 7, we present the
dependence of S1 and S2 on the attraction parameter λ,
respectively. The vertical dashed line L1 at λ = 1.25
and L2 at λ = 2.0 are the limits of applicability just
discussed. The continuous horizontal line marks LJ-like
values for these criteria. The dotted horizontal lines cut
the 5% corridor around LJ values, i.e. S1± 5%. Figures
6 and 7 demonstrate clearly that, for a SW system just
like in the case of real substances, the value S1 = 0.67
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Fig. 6. Dependence of S1 on λ for the square-well potential. Dot-
ted, dashed, and continuous lines are explained in the text

is accurate enough, while S2 = 0.076 is failed for some λ
even within the 5% corridor. The references to different
numerical simulations of SW binodals and CP are not
presented here to keep space. One can find them in [10].

5. Conclusions

We have shown that the idea of the construction of a
new similarity based on the correspondence of the criti-
cal and ZL parameters turns out to be highly fruitful. It
is applied to a wider group of substances in comparison
with those satisfying the corresponding states principle.
The condition that the ZL must be tangential to the ex-
tension of the binodal liquid branch at T > 0 allows us
to avoid difficulties related to the uncertainty of inter-
molecular potentials. Due to this new similarity, we can
find the critical density and temperature using only the
experimental data on the low-temperature part of the
liquid binodal branch. Consequently, it is possible to
find the critical parameters of the substances that have
the critical point in the phase diagram domain still in-
accessible for experiments.
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НОВА ПОДIБНIСТЬ МIЖ КРИТИЧНИМИ
ПАРАМЕТРАМИ I ПАРАМЕТРАМИ ЛIНIЇ Z = 1

Е.М. Апфельбаум, В.С. Воробйов

Р е з ю м е

Знайдено новi вiдносини мiж критичними параметрами лiнiї
Z = 1. Найбiльш значнi серед них мають вигляд Te/TB +

ρc/ρB = S(β), де Te i ρc – критичнi температура i щiль-
нiсть. Параметри TB i ρB визначають положення прямої лi-
нiї, вздовж якої коефiцiєнт стискання на площинi щiльнiсть–
температура дорiвнює 1. S(β) слабо залежить вiд критично-
го iндекса β: S(β) = 0,64 для класичного значення β = 0,5

i дорiвнює 0,67 для β = 1/3. Показано, що це спiввiдношен-
ня позитивно описує як результати числового моделювання,
так i експериментальнi данi для широкого класу реальних ре-
човин.
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