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We consider the frequency dispersion region of the dynamic shear
viscosity coefficient ηs(ω) of simple liquids obtained by the method
of kinetic equations, where the equilibrium structure of a liquid is
restored according to the diffusion law or exponentially. At a cer-
tain choice of the intermolecular interaction potential Φ(|r|) and
the equilibrium radial distribution function g0(|r|), the coefficient
ηs(ω) for liquid argon was numerically calculated as a function
of the density ρ, temperature T , and frequency ω. The obtained
theoretical values of the shear viscosity ηs(ω) are in a satisfac-
tory quantitative agreement with experimental data. It is shown
that the frequency dispersion region of ηs(ω) obtained on the ba-
sis of the diffusive mechanism, i.e. structural relaxation, is large
(∼ 105 Hz). In the case of the exponential attenuation of the vis-
cous stress tensor, this region is narrow (∼ 102 Hz), which agrees
both with acoustic measurements and the results of a phenomeno-
logical theory.

1. Statement of the Problem

Investigations of the dynamic transport coefficients and
the corresponding dynamic moduli of elasticity in a
wide frequency range provide the important information
about the kinetics of irreversible processes in liquids, and
their molecular structure, their relation with intermolec-
ular phenomena, as well as the mechanism of restoration
of their equilibrium structure.

The viscous flow of a liquid is accompanied by the
mass, momentum, and energy transfer from its one re-
gion to another one, which results in transport phenom-
ena characterized by the diffusion, viscosity, and heat
conductivity coefficients. The rates of transport pro-
cesses in liquids are high; in the states close to the equi-
librium one, they are proportional to the mass, momen-
tum, and temperature gradients. It is worth noting that,
at high deformation rates in liquids [1], they acquire
elastic properties along with the viscous flow. More-
over, each kind of transport is related to definite elastic
properties. In this case, the viscoelastic properties of

liquids can be studied using the Kelvin or Maxwell me-
chanical model, whereas the rheology equation will be
the Kelvin (Maxwell) or Voigt equation, whose resulting
stress consists of the elastic component proportional to
the deformation of the liquid and the viscous component
proportional to the deformation rate [2]. In this case, the
acoustic equations include a complex effective modulus
of elasticity (for example, formula (6.30) in [2]), where
the real part represents the dynamic modulus of elastic-
ity and the imaginary one is the dynamic viscosity, i.e.
they are frequency dependent functions.

According to [2, 3], the shear and bulk viscosities can
have one or several characteristic relaxation times. Con-
sequently, there can exist one or more Maxwell mech-
anisms of viscoelasticity (for example, formulas (6.30),
(6.42) in [2] and (5.17) in [3]). Based on these formu-
las and Figs. 29 and 33, the cited works adduce the
frequency dependences of the dynamic modulus of elas-
ticity E(ω) and the dynamic viscosity η(ω) in the case
of one and two relaxation processes with differing re-
laxation times (τ2 = (1/50)τ1). The frequency depen-
dences E(ω) and η(ω) are depicted on the logarithmic
scale and occupy an interval covering more than three
decades. On the natural scale, their low-frequency part
would be absolutely indistinguishable. If the relaxation
times are close, the curves can appear monotonous, and
their form would not allow one to judge if there actually
exists one or two relaxation times (for example, Fig. 34
in [2] at τ2 = (1/3)τ1), i.e. there is no point of inflec-
tion. According to [2, 3], with increasing width of the
frequency dispersion region and in the absence of suf-
ficiently pronounced steps on the curve, no conclusions
can be made about individual relaxation mechanisms.
The only justified method of interpreting such curves is,
to the authors’ mind, to introduce a continuous spectrum
of relaxation times characteristic of the process of struc-
tural relaxation in liquids. In this case, the sums in the
complex modulus of elasticity are replaced by integrals
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(formula (6.43) in [2] and formulas (5.47)–(5.54) in [3]).
However, the densities of the relaxation time spectrum
in the integrands of the functions H(τ), k(τ/τ ′), and
g(τ/τ ′) remain unknown. According to [3], the choice of
these distribution functions is, to some degree, arbitrary,
as an equally good agreement with experiment often can
be achieved by using several functions. It is worth not-
ing that all the above-analyzed analytic expressions for
the modulus of elasticity E(ω), the viscosity coefficient
η(ω), the velocity C(ω), and the coefficient of absorption
α(ω) of sound waves in liquids were obtained in [2, 3] in
the framework of the phenomenological theory.

The dynamic transport coefficients and the dynamic
moduli of elasticity of liquids can be investigated using
both the phenomenological and molecular-kinetic theo-
ries. The phenomenological theory describes observed
phenomena based on the relations between macroscopi-
cally measured quantities and uses methods of the ther-
modynamics of irreversible processes. However, it does
not allow one to study the detailed mechanism of trans-
port processes. The molecular theory provides a de-
scription of the mechanism of transport phenomena and
makes an attempt to derive the laws of these processes
based on the properties of liquids, the variation of their
structure, and the nature of internal relaxation processes
in them. The molecular-kinetic theory enables one to
obtain the equations of generalized hydrodynamics that
have the same form as the macroscopic hydrodynamic
equations derived with the use of the phenomenolog-
ical theory with the difference that the transport co-
efficients are functions of the space and time scales
of hydrodynamic quantities [4]. Their Fourier trans-
formation provides frequency-dependent analytical ex-
pressions for the transport coefficients and the mod-
uli of elasticity, i.e. the susceptibility coefficients of
liquids. Consequently, the molecular theory of trans-
port phenomena in liquids supplements the results of
the phenomenological theory providing the understand-
ing of the mechanisms and the character of these pro-
cesses.

Experimental studies of the structural relaxation in
liquids [2] showed that the frequency dispersion region
of the viscosity and absorption coefficients covers two to
five decades that cannot be determined with the help
of the phenomenological theory. Due to this fact, we
try to use the single microscopic theory for studying
the frequency dispersion region of the dynamic viscos-
ity coefficients of simple liquids with the contributions
of the translational and structural relaxations depend-
ing on the attenuation character of the momentum flux
in the momentum and configuration spaces.

It is worth noting that the static and dynamic trans-
port coefficients in liquids most suitable for experimental
research are the coefficients of shear viscosity, heat and
electrical conductivities, as well as the acoustic param-
eters such as the velocity and the absorption of sound
waves in a wide range of thermodynamic state param-
eters and frequencies. In order to determine the fre-
quency dispersion region, we concentrate on considering
the dynamic coefficient of shear viscosity ηs(ω) of sim-
ple liquids, where the equilibrium structure of the liquid
is recovered according to the diffusion law or exponen-
tially. Choosing Φ(|r|) and g(|r|), we numerically calcu-
late ηs(ω) for simple liquids, by basing on the obtained
analytical expressions. In the case of a satisfactory quan-
titative agreement of the numerical results obtained for
ηs(ω) with the existing literature experimental data, we
apply this model subsequently to the theoretical study
of the viscoelastic and acoustic properties of classical liq-
uids, i.e. the bulk viscosity ηV (ω), moduli of shear µ(ω)
and bulk K(ω) elasticity, velocity C(ω), and absorption
coefficient α(ω).

2. Initial Equations and Determination of
Dynamic Shear Viscosity

To obtain an analytical expression for ηs(ω), we will use
the microscopic definition of the stress tensor σαβ (q1, t)
of simple liquids [5]:

σαβ (q1, t) = Kαβ (q1, t) +

+
σ3

2

∫
∂Φ12(|r|)

∂r

rαrβ

r
n2 (q1, r, t) dr, (1)

where Kαβ (q1, t) = nkTδαβ + kαβ (q1, t) is the ki-
netic part of the momentum flux tensor representing
the momentum moment of the one-particle distribution
function f1 (x1, t), whereas nkT and kαβ (q1, t) are the
kinetic parts of the nonequilibrium pressure and the
viscous stress tensor, respectively. In addition, r =
(q2 − q1)/σ is the reduced intermolecular distance, σ is
the molecular diameter, n (q1, t) and T (q1, t) are the lo-
cal density and the temperature, respectively, Φ12(|r|)
is the intermolecular interaction potential, n2 (q1, r, t) is
the nonequilibrium binary density of particles in the con-
figuration space that represents the momentum moment
of the two-particle distribution function f2 (x1,x2, t),
x = {q,p}, while q and p are the coordinates and mo-
menta of particles, respectively. The kinetic equations
for the one- and two-particle distribution functions with
regard for the contributions of large-scale fluctuations
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were obtained in [5]. The right-hand sides of the equa-
tion for f1(x1, t) and f2(x1,x2, t) are the Fokker–Planck
collision operators that provide the time irreversibility of
these equations and allow one to describe dissipative pro-
cesses in liquids. The left-hand sides of these equations
include integral terms (Bogolyubov dynamic terms) that
yield the contributions of large-scale fluctuations to the
relaxation parameters and are caused by collective inter-
actions in liquids.

Expression (1) implies that the relaxation σαβ (q1, t)
consists of the translational and structural parts. The
translational component is described by the equation for
the kinetic part of the viscous stress tensor kαβ (q1, t)
and is characterized by one relaxation time, whereas the
structural component is described by the equation for
the binary density of particles in the configuration space
n2 (q1, r, t) and is characterized by a continuous spec-
trum of relaxation times.

The equations for the kinetic part of the viscous stress
tensor kαβ (q1, t) and the binary density n2 (q1, r, t) were
derived in [5] with the use of the kinetic equations for
f1(x1, t) and f2(x1,x2, t) having the following form in
the case of the linear approximation and independent
flows:

∂kαβ (q1, t)
∂t

+ 2n0kT0

{
∂ϑα (q1, t)

∂qβ1

}
= −1

τ
kαβ (q1, t) ,

(2)

∂n2 (q1, r, t)
∂t

+ ω0

∧
Ln2 (q1, r,t) = F (q1, r, t) , (3)

where n0 and T0 are the equilibrium particle density and
the temperature, respectively, ϑα (q1, t) is the mean ve-
locity of particles, τ = m/(2β) is the characteristic time
of translational relaxation (i.e, the time of the disper-
sal of kαβ (q1, t) in the momentum space), τ0 = ω−1

0 =
β σ2 /2kT is the phenomenological parameter being an
analog of the relaxation time of a diffusing molecule, k is
the Boltzmann constant, β is the friction coefficient, and
∧
L = − ∂

∂rα

[
∂

∂rα
− ∂

∂rα
ln g0 (|r|)

]
is the Smoluchowski

operator in the configuration space,

F (q1, r, t) = −2n0
2(|r|)

{[
1 +

1
6
∂ ln g0(|r|)
∂ ln r

−

−1
2

[
n

(
∂ ln g0(|r|)

∂n

)
T

+ γT

(
∂ ln g0(|r|)

∂T

)
n

]]
divϑ+

+
(
rαrβ − (1/3)r2δαβ

r2

)
∂ ln g0(|r|)
∂ ln r

{
∂ϑα

∂qβl

}}
, (4)

γ = (ncV )−1 (∂P/∂T )n ; n0
2(|r|) = n0

2g
(
0|r|) stands for

the equilibrium binary density, cV is the isochoric heat
capacity of a liquid, and g

(
0|r|) is the equilibrium radial

distribution function.
Equation (2) for kαβ (q1, t) represents an inhomoge-

neous linear differential equation with separating vari-
ables, whose solution can be easily presented in the ex-
ponential form with characteristic time τ . Equation
(3) represents an inhomogeneous parabolic equation,
i.e. the Smoluchowski equation for the binary density
n2 (q1, r, t) in the configuration space. The solution of
Eq. (3) is a Cauchy problem (t > 0, −∞ ≤ r ≤ ∞) with
the zero initial condition having the form [5]:

n2 (q1, r, t) =

t∫
0

dt

−∞∫
−∞

G (r, r1, t− t1)F (q1, r1, t1) dr1,

(5)

where

G (r, r1, t− t1) =
2 (rr1)

−1

(2π)3

[
π

ω0 (t− t1)

]1/2
×

×

{
exp

[
− (r − r1)2

4ω0 (t− t1)

]
− exp

[
− (r + r1)

2

4ω0 (t− t1)

]}
. (6)

Expression (6) represents a fundamental solution
(Green function) of the Smoluchowski equation (3) for
n2 (q1, r, t) and describes the space-time behavior of the
binary density and, consequently, the structural relax-
ation. As is seen from Eqs. (3)–(6), the process of recon-
struction in classical liquids is of the diffusive character
and can be described by a continuous spectrum of re-
laxation times. In this case, the dispersal of irreversible
flows is diffusive and obeys the power law t−d/2 coin-
ciding with the large-time behavior of autocorrelation
functions [6–8].

Performing the time Fourier transformation in (1) and
in the subsequent equations and using Eqs.(1), (2), (5),
and (6), one obtains the dynamic coefficient of shear
viscosity ηs (ω) [5, 9]:

ηs(ω) =
nkTτ

1 + (ωτ)2
+

2πn2σ3

15

∞∫
0

drr3
∂Φ(|r|)
∂r

×
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×
r∫

0

G1(r, r1, ω)
∂g0(r1)
∂r1

r1dr1 , (7)

where

G1(r, r1, ω) =
τ0
α

[
(sinϕ1 − cosϕ1) e−ϕ1−

− (sinϕ2 − cosϕ2) e−ϕ2

]
, ϕ1,2 =

α

2
(r ∓ r1) ,

α = (2ωτ0)
1/2

. (8)

The first term ηs (ω) in (7) allows for the contribu-
tion of the translational relaxation, i.e. the relaxation of
the viscous stress tensor in the momentum space, whose
characteristic time is equal to τ = m/(2β). The fre-
quency dependence ηs (ω) is, however, described mainly
by means of the frequency behavior of the function
G1 (r, r1, ω) in a wide frequency range. The asymptotic
behavior of ηs (ω) at low frequencies is ∼ ω1/2, which
coincides with the results obtained by the molecular dy-
namics method [10–12]; at high frequencies, it is ∼ ω−1,
while the phenomenological relaxation theory yields the
asymptotics ∼ ω−2. The function G1 (r, r1, ω) is an ana-
log of the density of the relaxation time spectrum H(τ),
k(τ/τ ′), and g(τ/τ ′) in [2, 3], whose explicit form is de-
scribed by formula (8). According to (8), the frequency
dependence of G1 (r, r1, ω) is determined in a complex
way based on the continuous spectrum of structural re-
laxation times. An analog of the characteristic time τq
found in [13] can be obtained only in the approximation
of the exponential attenuation of relaxing flows.

3. Determination of ηs (ω) in the Case of
Exponential Attenuation of Flows

We now consider the case where the equilibrium struc-
ture is restored according to the exponential law. For
this purpose, the Smoluchowski relaxation term in Eq.
(3) will be replaced by the relaxation term resulting in
the exponential attenuation law:

ω0

∧
Ln2 (q1, r1, t) = −ω0

[
n0 (q1, r1, t)− n(0)

2 (|r| , r, T )
]
,

(9)

where n
(0)
2 [|r| , n(|q| , t), T (|q| , t)] = n

(0)
2 (|r|) +

ñ
(
2 |r| , n, T ) is the locally equilibrium binary den-

sity, n
(0)
2 (|r|) = n2

0g0(|r|) is the equilibrium binary

density, while

ñ2 (|r|, n(q1, t), T (q1, t)) =

=
(
∂n0

2 (|r|)
∂n

)
T

n(q1, t) +
(
∂n0

2 (|r|)
∂T

)
n

T (q1, t). (10)

The use of the hydrodynamic equation in the local ap-
proximation with regard for Eqs. (9), (10), and (3) yields
the following solution for the time Fourier transform of
the function n2 (q1, r, t):

n2(q, r, ω) = n2
0g0(|r|)−

−n2
0

[
n

(
∂g0(|r|)
∂n

)
T

+ γT

(
∂g0(|r|)
∂T

)
n

]
∇u(ω)+

+
iωτ0

1− iωτ0

[
ϕ0(r)∇u(ω) + ϕαβ(r)

{
∂uα(ω)

∂qβ1

}]
, (11)

where u(ω) stands for the Fourier transform of the trans-
lational vector,

ϕαβ(r) =
rαrβ − (1/3)r2δαβ

r

g0(|r|)
∂r

,

ϕ0 (r) =
r

3
∂g0(|r|)
∂r

−
[
n

(
∂g0(|r|)
∂n

)
T

+ γT

(
∂g0(|r|)
∂T

)
n

]
,

∇u(ω) = divu(ω),

{
∂uα(ω)
∂qβ

}
=

1
2

(
∂uα

∂qβ
+
∂uβ

∂qα
+

2
3
δαβdivu(ω)

)
.

Performing the time Fourier transformation in (1)
with regard for (11), we obtain the following expression
for the dynamic coefficient of shear viscosity ηs (ω):

ηs (ω) =
nkTτ

1 + (ωτ)2
+

2π
15

n2kTσ3τ0

1 + (ωτ0)
2×

×
∞∫
0

∂
∗
Φ(|r|)
∂r

∂g0(|r|)
∂r

r4dr, (12)

where
∗
Φ(|r|) = Φ(|r|)/kT is the reduced potential of

intermolecular interaction.
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T a b l e 1
T = 86 К T = 90 К T = 100 К

ηS , mPa·s ηS , mPa·s ηS , mPa·s
ρ, [13] form. form. ρ, [13] form. form. ρ [13] form. form.

kg/m3 (7) (12) kg/m3 (7) (12) kg/m3 (7) (12)
1402 0.272 0.271 0.234 1377 0.235 0.236 0.203 1312 0.180 0.174 0.147
1407 0.276 0.276 0.237 1383 0.239 0.242 0.206 1319 0.183 0.178 0.149
1413 0.280 0.283 0.240 1390 0.242 0.248 0.209 1327 0.186 0.183 0.152
1419 0.283 0.289 0.243 1396 0.245 0.254 0.212 1334 0.189 0.188 0.155

1405 0.250 0.263 0.217 1347 0.194 0.198 0.160
1418 0.255 0.276 0.224 1362 0.199 0.209 0.166

Expression (12) also describes the dynamic coefficient
of shear viscosity in the case where the equilibrium struc-
ture of the liquid is restored according to the exponential
law. It is worth noting that expression (12) represents
an analog of formulas (6.30), (6.42) from [2] and (5.17)
from [3] obtained within the phenomenological theory
with the difference that the second term is determined by
means of Φ(|r|) and g0(|r|), i.e. the equilibrium molec-
ular parameters are considered known at some choice of
the model of a liquid [15–17].

4. Choice of a Model and Numerical
Calculations

In our previous work [9], we performed numerical cal-
culations of ηs(ω) using formula (7) for liquid argon
in a wide frequency range. However, all our calcula-
tions supposed the constant friction coefficient of a liq-
uid β ≈ 2.85 · 10−13 kg/s, i.e. its dependence on the
thermodynamic state parameters was not taken into ac-
count, while the density dependence in the radial distri-
bution function g0(|r|) was neglected. We also restricted
ourselves to the qualitative comparison of the obtained
numerical results with experimental data.

The numerical calculation of ηs(ω) according to
Eqs. (7) and (12) meets some difficulties, as the fric-
tion coefficient of the liquid β cannot be determined in
the framework of the considered theory. The right-hand
sides of the kinetic equations describing their time irre-
versibility (in our case, the Fokker–Planck collision op-
erator) describe the dissipative processes in liquids and
include the friction coefficient. In order to improve the
agreement between the theoretically calculated values
and the experimental results obtained for the coefficients
ηs(ω), β, and the relaxation times of the stress tensor in
the momentum τ and configuration τ0 spaces, one should
choose the optimal forms of the potential of intermolec-
ular interaction Φ(|r|), the radial distribution function

g0(|r|), as well as their dependence on the density ρ and
the temperature T .

As the initial approximation, we use the model of
Φ(|r|), g0(|r|), and β considered in [18, 19] in the fol-
lowing form:

Φ(|r|) =

{
∞, for r < σ,

4ε(r−12 − 0.5r−6), for r ≥ σ,

g(|r|) = y
(∗
ρ
)

exp
(
−Φ(|r|)

kT

)
,

β2 =
4π
3
ρσ3

∞∫
0

∇2 Φ (|r|) g0 (|r|) r2dr, (13)

where ε is the depth of the potential well, y
(∗
ρ
)

=

(2−
∗
ρ)/2(1−

∗
ρ)3 is the Carnahan–Starling contact func-

tion [17],
∗
ρ = π

6
N0σ

3

M ρ is the reduced density, N0 is the
Avogadro number, M is the molar mass, ρ = mn is the
liquid density, m, σ, and n = N/V are, respectively,
the mass, diameter, and density of liquid particles, and
∇2 = (1/r2)(∂/∂r)(r2∂/∂r) is the radial part of the
Laplace operator.

Based on expressions (7) and (12) with regard for (13),
we performed numerical calculations of the dynamic co-
efficient of shear viscosity ηs(ω) for liquid argon as a
function of the thermodynamic state parameters (ρ, T )
in a wide frequency range. The corresponding values of
ρ and T are taken from experimental studies [13, 14].

The results of numerical calculations of the isofre-
quency coefficient ηs(ω) at

∗
ν = 10−6 (ν ≈ 107 Hz) per-

formed with the use of formulas (7) and (12) in the tem-
perature interval 84 ≤ T ≤ 100 K at various densities ρ
for liquid argon and their comparison with experimental
data [13, 14] are given in Tables 1 and 2.
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Fig. 1. Temperature dependence of the shear viscosity ηs(ω) at
∗
ν = 10−6 (ν ∼ 107 Hz) and comparison with experimental results
[14]

One can see that the theoretical values of ηs(ω) are
in good quantitative agreement with the experimental
data as concerns both the temperature and the density
dependences. The values of ηs(ω) calculated by formula
(12) are somewhat underestimated.

The temperature dependence of the isofrequency (
∗
ν =

10−6, ν ∼ 107 Hz) shear viscosity ηs(ω) is compared with
experimental results [14] in Fig. 1. Figure 2 presents the
frequency dependence ηs(ω) at T1 = 84 K and T2 = 90
K in the frequency range 10−4 ≤ ∗ν ≤ 10 (108 ≤ ν ≤ 1013

Hz) obtained using formulas (7) and (12).
The frequency dispersion region of ηs(ω) obtained on

the basis of the diffusion mechanism (i.e. formula (7))
appears wide ∼ 105 Hz, which agrees with experimen-
tal conclusions about the contribution of the structural
relaxation to the viscous properties of liquids [2]. At
the same time, the frequency dispersion region of ηs(ω)
found using the exponential attenuation law for the vis-
cous stress tensor (formula (12)) is narrow ∼ 102 Hz,

T a b l e 2
T , K ρ, kg/m3 ηS , mPa·s

[14] form. (7) form. (12)
83,86 1414 0.300 0.292 0.252
84 1413.5 0.295 0.291 0.251
85 1407 0.285 0.280 0.242
86 1401 0.276 0.270 0.233
88 1388 0.259 0.251 0.217
90 1376 0.243 0.236 0.202
93 1357 0.226 0.214 0.183
95 1344 0.216 0.201 0.171
97 1331 0.207 0.189 0.161

Fig. 2. Frequency dependence of the shear viscosity ηs(ω) at T =

84 K (dashed curve) and T = 90 K (solid curve). Numerical results
are obtained according to formula (7) 1,3 and formula (12) 2,4

which agrees with both experimental acoustic and theo-
retical results obtained on the basis of the phenomeno-
logical theory [2, 3]. This difference is evidently due to
the fact that, at low frequencies, there exists the asymp-
totics ∼ ω1/2 (according to (7)), and the frequency dis-
persion starts early. At high frequencies, ηs(ω) atten-
uates according to the slower law ∼ ω−1. As follows
from Eq.(12), however, the shear viscosity at low fre-
quencies is static. Whereas ηs(ω) ∼ ω−2 at high frequen-
cies, which coincides with the results of formulas (6.30)
and (6.42) in [2]. Consequently, the determination of the
frequency dispersion region of the shear viscosity coeffi-
cient is closely related to the mechanism of dispersal of
internal relaxing flows in liquids.
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ПРО ВИЗНАЧЕННЯ ОБЛАСТI ЧАСТОТНОЇ ДИСПЕРСIЇ
КОЕФIЦIЄНТIВ ПЕРЕНЕСЕННЯ КЛАСИЧНИХ РIДИН
ЗАЛЕЖНО ВIД ПРИРОДИ ЗАТУХАННЯ
РЕЛАКСУЮЧИХ ПОТОКIВ

С. Одiнаєв

Р е з ю м е

Розглянуто область частотної дисперсiї динамiчного коефiцi-
єнта зсувної в’язкостi ηs(ω) простих рiдин, що отриманий ме-
тодом кiнетичних рiвнянь, коли вiдновлення рiвноважної стру-
ктури рiдини вiдбувається за законом дифузiї або експоненцi-
ально. За певного вибору потенцiалу мiжмолекулярної взає-
модiї Φ(|r|) i рiвноважної радiальної функцiї розподiлу g0(|r|)
проведено числовi розрахунки ηs(ω) для рiдкого аргону зале-
жно вiд густини ρ, температури T та частоти ω. Теоретично об-
численi результати для зсувної в’язкостi ηs(ω) добре узгоджу-
ються з експериментальними даними. Показано, що область
частотної дисперсiї ηs(ω) на основi дифузiйного механiзму, тоб-
то структурної релаксацiї, широка ∼ 105 Гц, а у випадку експо-
ненцiйного затухання в’язкого тензора напруги – вузька ∼ 102

Гц, що вiдповiдає як акустичним вимiрам, так i результатам
феноменологiчної теорiї.
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