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The two-stage process of formation and collapse of hollow nanowires
in core-shell systems is described in the framework of the phe-
nomenological model of solid solutions as a result of the compe-
tition of the Frenkel effect, Gibbs–Thomson effect, and inverse
Kirkendall effect. The dependences of the pore formation rate and
efficiency on the initial cylinder radius and the fast component con-
centration are studied. The obtained results are compared with
similar ones known for spherically symmetric particles. It is shown
that the pore formation is more effective in cylindrical samples as
compared to spherical ones, whereas the existence time of a void
depends on the nanoshell radius.

1. Introduction

Pore formation in core-shell systems was first regis-
tered in spherically symmetric microparticles of Ве/Ni
[1] and Cd/Ni[2,3] systems. Thirty years later, this phe-
nomenon was rediscovered in spherical Co/Se [4], Co/O
[4], Co/S [4, 5], Fe/O [6], Al/O [7], Cu/O [7, 8], Zn/O
[9], and Ni/O [10] nanosystems, as well as in ZnO/Al2O3

[11] and Fe/O [12] systems with cylindrical symmetry.
The production of such particles has immediately found
a wide application in many scientific and technological
researches (starting from the fabrication of porous nano-
materials and finishing with the Drug Delivery technol-
ogy in medicine [13]). However, the obtained hollow
nanoshells can be extremely widely used only if being
stable or metastable under certain conditions. It was
theoretically predicted [14, 15] and experimentally con-
firmed [16] that the collapse of a nanoshell is always
energy-profitable, as it leads to a decrease of the surface
energy. Metastable voids can be obtained by changing
external conditions. For example, it is sufficient that
the operation temperature of hollow nanoparticles be

by 100–200 K lower than the temperature of their for-
mation, because the shrinking time is inversely propor-
tional to the diffusion coefficient [15]. And vice versa,
an increase of the temperature results in a faster void
collapse. For example, nanoshells obtained within an
hour at 373 K due to the oxidation of copper nanoparti-
cles with a mean diameter of 30 nm remain metastable
at this temperature [7], whereas the collapse of such
voids during the same time interval is possible only at
523 K [16]. As far as we know, there are no exper-
imental studies for metal/nonmetal systems, in which
the formation and the collapse of nanovoids are consid-
ered as two stages of a single process under constant
external conditions (temperature and pressure). Re-
cently, however, the phenomenological estimates and the
computer simulation of a spherically symmetric diffusion
pair of metals performed on the atomic level in [17] al-
lowed one to choose such a pair and investigate the void
formation and collapse in a single continuous experi-
ment for the semispherical “Ag core/Au shell” system
[18].

Work [17] proposes phenomenological and simulation
models of the formation and the collapse of a nanoshell
as two stages of a single process for spherical nanopar-
ticles of a binary system with complete solubility or, at
least, a wide homogeneity interval. In this study, we in-
vestigate a system with cylindrical symmetry. We are
aimed at the creation of a phenomenological model of
pore formation in cylindrically symmetric nanoparticles,
i.e. nanowires, as well as the derivation of quantita-
tive estimates with fitting parameters for nanospheres
[17] and the comparison of the obtained estimates with
the corresponding results derived for spherical nanoshells
[17]. In the authors’ opinion, fitting parameters do not
decrease the value of the comparative analysis that can
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Fig. 1. Diagram of void formation (а) and collapse (b) in the
cylindrical system “core В/shell А” with radial symmetry and the
radius of the fast-component core RBA. At the formation stage,
the vacancy flux jV is directed inside opposite to the flux of the fast
component jB and compensates the flux of the slow component
jA. At the collapse stage, the vacancy flux jV is directed from
the inner surface Ri with a higher vacancy concentration to the
outer one Re (with a lower vacancy concentration). Moreover, the
vacancy flux induces opposite fluxes of components А and В.

be useful for subsequent experiments, which is proved by
studies [16,18] referring to the corresponding theoretical
predictions [15, 17].

In his pioneer work [1], Aldinger explained the origi-
nation of pores by the fast diffusion of core atoms (Be)
to the shell of the surrounding element (Ni) with much
smaller diffusion mobility. The described phenomenon is
characteristic of the reaction diffusion in binary systems
with closed geometry restricting the lattice motion. The
main reason for the pore formation is the difference be-
tween the partial diffusion coefficients of the components
resulting in the difference of the atom fluxes jA and jB
in the lattice system (Fig. 1,a, B is the fast component
and A is the slow one). To compensate this difference,
there arises a vacancy flux jV directed toward the faster
component. In this case, a radial redistribution of vacan-
cies (with an initial maximum at the contact zone) takes
place: the region of the fast component is enriched with
vacancies, while that of the slow one is depleted. If the
vacancy sinks are not very effective, then nonequilibrium
vacancies in the fast-component region must accumulate
into pores (Frenkel effect). Surely, such an accumula-
tion can be possible and noticeable on a curved surface,
if the fast component is surrounded by the slow one, for
example, in spherical or cylindrical samples that form a
core-shell system. In [4–9, 11, 12, 16, 19], the pore for-
mation is considered as a result of the reaction diffusion
of metal particles with oxygen/sulfur: the diffusion of a
metal “outside” through the newly formed spherical in-
terlayer takes place faster than the diffusion of oxygen
or sulfur “inside” through the same region; the difference

of these fluxes gives rise to a vacancy flux inside the
nanoparticle that leads to the vacancy supersaturation
and the pore formation. In the foreign literature (and
particularly in [4]), the Frenkel effect is called the Kirk-
endall pore formation, which results in an ambiguity [19],
because Kirkendall shifts and Kirkendall pores represent
different and, what is more, competing effects caused by
the same reason (different partial diffusion coefficients).

The instability of hollow nanoparticles caused by the
excess surface energy leads to a collapse provided by
the Gibbs–Thomson effect: the vacancy concentration
on the outer surface (with a larger radius of curvature
Re) is smaller than on the inner one (with a lower ra-
dius of curvature Ri and different sign). This difference
in the concentrations induces a vacancy flux coming out-
side and results in the nanoshell collapse (Fig. 1,b). In
the case of a binary shell, the difference in the mobilities
of the components will result in the segregation of the
faster component in a vicinity of the inner surface (in-
verse Kirkendall effect), which will decelerate, in turn,
the vacancy flux. That is why a conclusion can be made
that the collapse is controlled by the slower component
[15, 16].

As was shown in [20], it is important to take the Gibbs-
Thomson effect into account already on the stage of
nanovoid formation: the formation of a strongly curved
inner surface immediately induces an inverse vacancy
flux that impedes the vacancy flux coming from outside.
Sometimes, it even can exceed the latter, completely sup-
press the growth of a void, and result in its collapse.
That is why it is important to allow for the evolution of
the concentration distributions and the Laplace pressure
both on the collapse and formation stages.

Thus, on the stage of void formation in an immobile
lattice system, the Frenkel effect, arising due to the gra-
dient of the chemical potential in the diffusion pair, com-
petes with the Gibbs–Thomson effect; on the collapse
stage, the Gibbs–Thomson effect competes with the in-
verse Kirkendall effect.

2. Phenomenological Model

First, let us consider the collapse of a hollow nanotube
of a binary solid solution with a wide homogeneity inter-
val. To describe the void formation in a two-component
nanowire with the cylinder-shell geometry, it is enough
to change the initial conditions in the collapse model
similarly to the description of spherical nanoshells [13].
In this case, the main assumption of the model is the for-
mation of an initially cylindrically symmetric pore along
the whole axis of the nanowire, i.e. the formation of a
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hollow nanotube (the validity of this assumption is dis-
cussed in what follows).

2.1. Collapse of a hollow nanowire

We consider a hollow nanotube, whose atomic structure
corresponds to a binary solid solution with a wide homo-
geneity interval. Let us first discuss the collapse stage of
a centrally symmetric void in the nanotube. To describe
the formation stage, it is necessary to take into account
the vacancy flux induced by the difference of the vacancy
concentrations at the inner and outer boundaries. In the
case of solid solution, the diffusion coefficients and con-
centrations cannot be considered constant quantities, so
one should solve a system of nonlinear equations for the
vacancy fluxes, basic components, and boundary motion.

2.1.1. Model approximation

1. The diffusion coefficients of the both components are
proportional to the local vacancy concentration cV :

D∗A (cB) = cVKA (cB) , D∗B (cB) = cVKB (cB) , (1)

while the proportionality coefficients, in turn, exponen-
tially depend on the concentration of the components,
which is a typical situation [21]:

KA (cB) = KA0 exp (αAcB) ,

KB (cB) = KB0 exp (αBcB) , (2)

where cB is the molar portion of component B.
2. Diffusion fluxes of the basic components and va-

cancies take crossed terms into account. In the lattice
reference system, they can be written down as [2, 22]

ΩjA (r) = −D∗Aϕ
∂cA
∂r

+
cAD

∗
A

cV

∂cV
∂r

=

= +KAϕcV
∂cB
∂r

+ cAKA
∂cV
∂r

, (3)

ΩjB (r) = −D∗Bϕ
∂cB
∂r

+
cBD

∗
B

cV

∂cV
∂r

=

= −KBϕcV
∂cB
∂r

+ cBKB
∂cV
∂r

, (4)

ΩjV (r) = (KB −KA)ϕcV
∂cB
∂r
−

− (cAKA + cBKB)
∂cV
∂r

, (5)

where the thermodynamic factor ϕ = cAcB

kT
∂2g
∂c2B

, g is the
free Gibbs energy per solid-solution atom, and Ω is the
atomic volume.

3. In the absence of the Kirkendall effect, the bound-
aries move due to transitions of atoms from one surface
to another rather than due to a shift of the lattice. This
assumption results in the balance equation (similarly to
the second Fick law) in the lattice reference system:

∂cV
∂t

= −1
r

∂

∂r
(rΩjV ) + 0, (6)

∂cB
∂t

= −1
r

∂

∂r
(rΩjB) . (7)

Zero in Eq. (6) indicates the absence of vacancy sinks
and sources inside the nanocylinder.

2.1.2. Boundary conditions

The vacancy distribution cV (r, t) is nonequilibrium in
both the processes of collapse and formation. But its val-
ues at the boundaries (inner and outer surfaces) are equi-
librium and determined by the Gibbs-Thomson equa-
tions

cV (Ri) = ceqV exp
(

+
γΩ
kT

1
Ri

)
,

cV (Re) = ceqV exp
(
−γΩ
kT

1
Re

)
, (8)

where ceqV is the equilibrium vacancy concentration in a
vicinity of the plane surface, γ stands for the surface
tension, k is the Boltzmann constant, T is the temper-
ature, while Ri and Re are the inner and outer radii of
the shell, respectively.

The balance equations for the fluxes at the inner and
outer moving boundaries depend on the experimental
conditions. We consider the case where there is no evap-
oration of atoms from the nanoshell, so all fluxes outside
the shell and inside the pore are absent. The vacancy
flux from the inner boundary to the outer one results in
the motion of these boundaries according to the equa-
tions

dRi
dt

= −ΩjV (Ri) ,
dRe
dt

= −ΩjV (Re) . (9)
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The boundary conditions (8) and (9) are sufficient in
the case of the collapse of a one-component shell. If con-
sidering a binary solution, it is necessary to introduce
additional conditions. As the boundary concentrations
of the basic components are not fixed (there is no analog
of Eq. (8) for components A or B), though the conserva-
tion laws are fulfilled, the sum of the fluxes in the lattice
reference system equals zero: jV + jA + jB = 0. Thus,
only two fluxes are independent. That is why the use of
the balance equation for the fluxes at the inner and outer
moving boundaries for one of the basic components pro-
vides the condition that the fluxes outside the shell are
zero. We obtain, respectively,

−cB (Ri) ΩjV = ΩjB (Ri) ,

−cB (Re) ΩjV = ΩjB (Re) . (10)

After that, the vacancy diffusion is described with the
use of a common stationary approximation that reflects
the hierarchy of characteristic times – the vacancy sub-
system adopts rather fast to the slow redistribution of
the basic components and the motion of the boundaries
(except for the last collapse stage that is very rapid):

∂cV
∂t
≈ 0 ⇒ rΩjV (r) =

ΩJV
2πH

= const for r (11)

(JV is the total vacancy flux determined from the bound-
ary conditions, and H is the cylinder length).

To simplify the further mathematical transformations,
it is convenient to use new variables

t′ = t; ξ =
lnRe − ln r
lnRe − lnRi

, 0 < ξ < 1, (12)

∂

∂t
=

∂

∂t′
+
ξ 1
Ri

dRi

dt + (1− ξ) 1
Re

dRe

dt

ln Re

Ri

∂

∂ξ
,

r
∂

∂r
= − 1

ln Re

Ri

∂

∂ξ
. (13)

Using Eqs. (11, 5, 12, and 13), we obtain

∂cV
∂ξ

=
(KB −KA)φcV
cAKA + cBKB

∂cB
∂ξ

+
ln Re

Ri

cAKA + cBKB

ΩJV
2πH

.

(14)

If the profile cB (ξ) is known, then Eq.(13) will have
the standard form

dcV (ξ)
dξ

= f (ξ) cV +
const
ψ (ξ)

, (15)

where

ψ (ξ) = cA (ξ)KA (ξ) + cB (ξ)KB (ξ) ,

f (ξ) =
(KB −KA)ϕ
cAKA + cBKB

∂cB
∂ξ

, const =
ΩJV
2πH

ln
Re
Ri
,

(16)

and can be solved for the unknown function cV (ξ):

cV (ξ) = exp

( ξ∫
0

f(ξ′)dξ′
)(

ceqV exp
(
− γΩ
kTRe

)
+

+ ln
Re
Ri

ΩJV
2πH

ξ∫
0

dξ′

ψ (ξ′)
exp

(
−

ξ′∫
0

f (ξ′′) dξ′′
))

. (17)

Combining expression (17) with the Gibbs–Thomson
equation (8) for the boundary vacancy concentrations,
we obtain the expression for the total vacancy flux
through the unknown concentration profile of compo-
nent B:

ΩJV
2πH

=
1

ln Re

Ri

×

× ceqV
exp

(
γΩ
kTRi

)
exp

(
−

1∫
0

f (ξ) dξ
)
− exp

(
− γΩ
kTRe

)
1∫
0

exp

(
−

ξ∫
0

f (ξ′) dξ′
)

dξ
ψ(ξ)

.

(18)

Substituting Eq. (13) into Eq. (4), the flux of one
of the basic components can be expressed in terms of
its gradient and the total vacancy flux (that is constant
within the interlayer ∂ξ):

rΩjB (r) = −KBφcV r
∂cB
∂r

+ cBKBr
∂cV
∂r

=

=
1

ln Re

Ri

KAKBφcV
cAKA+cBKB

∂cB
∂ξ
− cBKB

cAKA+cBKB

ΩJV
2πH

. (19)

Thus, the stationary approximation for vacancies to-
gether with the Gibbs–Thomson boundary conditions re-
duce the system of two differential equations (4) and (7)
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with regard for (14) to one, though integro-differential,
equation:

∂cB
∂t′

= −
ξ 1
Ri

dRi

dt + (1− ξ) 1
Re

dRe

dt

ln Re

Ri

∂cB
∂ξ

+

+
1

R2ξ
i R

2(1−ξ)
e

1
ln Re

Ri

∂

∂ξ

(
1

ln Re

Ri

KAKBφ (ξ)
cAKA + cBKB

×

×cV (ξ)
∂cB
∂ξ
− cBKB

cAKA + cBKB

ΩJV
2πH

)
. (20)

The total vacancy flux in Eq. (20) is determined by
Eq. (18). The boundary conditions for the profile of
component B at the inner (ξ = 1) and outer (ξ = 0)
boundaries are determined from Eq. (10) with regard
for Eqs. (18 and 19):

∂cB
∂ξ

∣∣∣∣
ξ=1

= ln
Re
Ri

ΩJV
2πL

cAcB (KB −KA)
KAKBϕ

×

× exp
(
− γΩ
kTRi

)/
ceqV , (21)

∂cB
∂ξ

∣∣∣∣
ξ=0

= ln
Re
Ri

ΩJV
2πL

cAcB (KB −KA)
KAKBϕ

×

× exp
(

γΩ
kTRe

)/
ceqV . (22)

2.1.3. Algorithm of the numerical iteration procedure

The boundary-value problem (20)–(22) is solved with the
help of an explicit finite-difference scheme. The profile of
component B at the previous time step is used to calcu-
late the total vacancy flux (18) substituted into Eq. (20)
to find the profile at the next time step. After that, the
newly calculated profile of component B and the total
vacancy flux are used to derive the new vacancy profile
according to Eq. (17) with boundary conditions (8). The
velocities of the boundaries (new inner and outer radii)
are calculated at each iteration step according to Eq. (9)
based on the just found value of the total vacancy flux
(18).

The choice of a time step in the iteration scheme rep-
resents a rather complicated problem in the simulation
of the described process: there is a risk of obtaining the

invalid time evolution of the system, at which the scheme
remains stable and, at first sight, yields a qualitatively
correct result, though leads to a significant error of the
finite-difference method and the non-conservation of the
mean concentration of the diffusion pair. In addition,
a slight variation of the radial dimensions of the sys-
tem results in the power change of the time scales of the
process (which will be confirmed in what follows by the
simulation results (see Fig. 8). So, to obtain a reach-
able simulation time, the time steps should be chosen
individually (their difference for small and large samples
reached five orders of magnitude, dt = 10−5 ÷ 1s).

The instability of the scheme is caused by the mo-
bile boundaries (9) and the non-uniform scale (12). The
use of the non-uniform coordinate scale results in a low
density of the points of the concentration profiles in a
vicinity of the outer surface. This fact should be taken
into account in the case of the increase of the particle ra-
dius and especially increase of the concentration of the
inner component if the outer one occupies a very narrow
interlayer (with regard for the power dependence of the
volume on the radius).

That is why each calculation with fixed concentration
and outer particle radius was performed, by choosing
such a number of points of the concentration profiles
to provide the deviation of the average concentration at
each time moment within 1%. According to the space
discretization and with regard for the pore formation
rate, we chose a variable time step in the iteration pro-
cedure. The best criterion of stability of the scheme was
the gradient of the average concentration that must not
exceed 10−3 s−1 for cylinders and 10−4 s−1 for spheres.
The technical realization of this criterion was performed
using the predictor-corrector scheme.

2.2. Formation of a hollow nanocylinder in the
core-shell system

To describe the stage of pore formation in a nanowire, it
is enough to change only initial conditions in the above-
proposed model. The only necessary condition of its
applicability is the presence (from the very beginning)
of a small cylindrical void along the cylinder axis. Here,
it is worth noting two warnings with the corresponding
substantiation.

First, in a system with large initial core radius, one
actually observes the simultaneous origination of many
voids at the inner interface of the newly formed solid-
solution interlayer (“bridge model” [5, 6, 11]). That is
why our model can be applied only to studying small
particles characterized by the fast coalescence of initial
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voids and the optimization of the surface energy, which
results in the formation of one central cylindrical void.
The applicability limits of the model can be estimated,
by finding the vacancy supersaturation and the critical
void volume at the origination that determine the size of
the spherical region, from which vacancies are collected
at this time moment. If the radius of the supersaturation
region, from which vacancies are “collected”, is close to
RBA (but does not exceed it!), the only pore will be
formed along the cylinder axis; if it will be much lower,
the formation of several pores will be observed. It is a
subject of a separate study that must be performed by
means of a Monte Carlo simulation on the atomic level.

Second, for a system with a small radius of the fast-
component initial core or a small thermodynamic stim-
ulus, the critical pore radius determined by the compe-
tition of the Frenkel and Gibbs–Thomson effects can ap-
pear lower than the radius Ri0 of the initiated pore [20].
As a result, the system will immediately appear at the
collapse stage, and the model will operate consistently.

To study the formation stage, it is necessary to de-
crease the initial pore size together with the time step in
the finite-difference scheme in order to provide its valid
operation — the process will run much faster for a more
curved trajectory. The collapse at non-physically small
radii of the initial pore (of the order of the interatomic
distance) should be understood as the impossibility of
the pore formation in principle.

Thus, the phenomenological simulation of the forma-
tion process considers a cylindrical core-shell system
with the core radius (pure component B) RBA, shell
radius (pure component A) Re = Re0, and the radius
of the initial pore Ri = Ri0 (of the order of the lattice
constant). The initial profile of component B is specified
as:

t′ = 0, cB (ξ) =
{

1, 0 < ξ < ξBA,
0, ξBA < ξ < 1,

ξBA ≡
lnRe0 − lnRBA
lnRe0 − lnRi0

. (23)

3. Results and Discussion

For the qualitative investigation of the constructed phe-
nomenological model of formation/collapse of hollow
nanotubes and the comparison of the results with those
obtained using a similar model for hollow nanospheres,
we used the parameters given in [17]: ceq

V
= 10−4,

γΩ/kT = 0.375 nm, KA0 = 10−16 m2/s, KB0 = 10−15

m2/s, αA = −4.5, αB = −2, and φ = 1.

The choice of the parameters is somewhat conditional,
but the basic qualitative results do not depend on spe-
cific parameters. Particularly, a decrease of the equilib-
rium vacancy concentration by a factor of n is equivalent
to the renormalization of the time scale (i.e. the char-
acteristic times of formation/collapse of a nanovoid will
increase by a factor of n, as ceq

V
linearly enters all equa-

tions). An increase of the characteristic length in the
Gibbs–Thomson effect γΩ/kT will rise the role of cap-
illary phenomena in the competition of the effects that
determine the void formation and collapse. It is also
worth noting that, according to estimates obtained from
simulations by the molecular dynamics and molecular
statics methods [23, 24], one should expect that the va-
cancy concentration in vicinities of the inner and outer
boundaries of a nanoshell considerably exceeds the equi-
librium concentration in a macrocrystal. That is why
the average vacancy concentration in a nanoshell can
significantly exceed tabular values.

The average concentration of the fast component cB
was varied (0.075, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 0.925) and determined the radius RBA of the B/A
interface (Fig. 1,а). Such an investigation of the pore
formation in the wide range of concentrations can be
useful, because the average concentration can be used as
a regulating parameter for obtaining the desirable sizes
of voids and the times of their existence. The case with a
low concentration of the fast component can be realized
under oxidation/ sulfidation [4, 5, 7–12], at which the
matrix of the slow component can be considered as a
source with infinite power.

The initial outer radius Re0 that determines the radius
of an initial nanowire was logarithmically changed from
3a to 34a (this range of values covers the characteristic
sizes of nanoparticles given in experimental works).

The proposed model does not consider the nucleation
stage. To provide the consistent operation of the numer-
ical phenomenological scheme, we specify, instead of, an
initial pore of non-zero radius Ri0 = a (a is the lattice
constant of the metal of the order of several angströms).
In a restricted open nanosystem, the moving force (su-
persaturation) changes with time, that is why the de-
scription of the nucleation stage represents a separate
problem that will be thoroughly analyzed in another
work. The assumption about the existence of an initial
pore can be considered valid under the condition that
the characteristic time of growth of the pore is much
larger than the time of its origination. That is why we
make the simplest estimates on the basis of the empirical
rules from the pore formation thermodynamics. Namely,
there is a generally accepted empirical rule in the physics
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of materials, according to which the nucleation is possi-
ble during a real time interval only if the height of the
pore formation barrier ΔG∗ is smaller than 60kT [25]
(in some sources, 70kT [26]). The nucleation time of
a new phase is of the order of seconds if the barrier is
30kT − 40kT [27]. If it decreases to kT , then the nu-
cleation takes place immediately (as a result of the first
thermal fluctuation). In our estimates, we neglect the
peculiarities of pore formation in the nanosystem. Both
the critical radius rcr and the barrier height ΔG∗ change
in time:

rcr (t) =
2γΩ

kT ln (cV (t) /ceqV )
,ΔG∗ (t) = 1/3γ4πr2cr. (24)

It is caused by the increase in the concentration of
vacancies accumulated during the process of mutual dif-
fusion due to the difference between the partial diffusion
coefficients:

cV (t) ≈ ceqV +
2

RBA

t∫
0

ΩjV (RBA, t′) dt′. (25)

If DB � DA, then

ΩjV ≈ −ΩjB ≈
√
DB

πt
. (26)

The substitution of (26) into (25) yields

cV (t) ≈ ceqV +
4

RBA

√
DB

πt
. (27)

Let us introduce a reduced nucleation barrier E =
ΔG∗/kT . Combining formulas (24)–(27), we obtain that
the pore formation barrier decreases to the specified
value E during the time

t (E) ≈
(ceqV RBA)2

16DB

(
exp

(
2π
3E

1
Ω

(
2γΩ
kT

)3
)
− 1

)
. (28)

A pore will inevitably originate within the time inter-
val [t (60) , t (1)], during which the barrier height ΔG∗

appears in the range [60kT, kT ]. At the used param-
eters, the upper limit of the time interval is by sev-
eral orders of magnitude smaller than the characteristic
time of growth of the pore at the corresponding radii
RBA = 3

√
cB (R3

e0 −R3
i0) +R3

i0 (Fig. 8). Thus, the ne-
glect of the nucleation stage is valid in this problem.

The time evolution obtained as a result of the phe-
nomenological simulation of the formation and the col-
lapse of a hollow nanocylinder considered as two suc-
cessive stages of the single pore formation process un-
der invariable external conditions (Fig. 2) qualitatively

Fig. 2. Time evolution of a pore in a cylinder and a sphere [17]
– the fast formation stage tform is followed by the slower collapse
stage tshr. Re0 = 15.2a, cB = 0.075

agrees with the similar results obtained for nanospheres
[17]. The crossover point corresponds to the moment of
transition from one stage to another. The stages are re-
spectively characterized by the formation time tform and
the shrinking time tshr, whose relation determines the
relative stability of the pore.

The radius of the maximal pore Rmax
i reached at the

crossover moment (Fig. 2) at the average concentration
cB = 0.075 depends almost linearly on the initial parti-
cle radius Re0 both for spherical and for cylindrical sam-
ples (Fig. 3). The deviation from the linear law at small
initial radii is explained by the existence of the initial
centrally symmetric pore along the cylinder axis with
the radius a, which is a necessary condition for consis-
tent calculations in the given phenomenological model.
It is evident that, for small real core-shell systems with
the prevalence of one of the components, the chemical
moving forces can appear insufficient for the formation
(or even for nucleation [20]) of a pore with an effective
radius exceeding a. In other words, the artificial intro-
duction of an initial pore “makes” the system forming a
void with a radius not less than a.

An increase of the average concentration of the fast
component cB does not result in a change of the linear
character of the dependence Rmax

i (Re0) (Fig. 4). In the
case of large concentrations and small radii, however, the
linear law is again violated. It is caused by a reduction of
the reserve of chemical moving forces in the same way as
at low concentrations. Moreover, the situation worsens
due to the non-symmetry of the mobilities of the compo-
nents (the faster internal component B cannot dissolve
in shell A and the radial vacancy flux coming inside the
cylinder is very small). If introducing a restriction on
cylinders with small radii at the corresponding average
concentrations Rmin

e0 (Table), then the error of the linear
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Fig. 3. Maximum pore radius Rmax
i as a function of the ini-

tial radius of the particle Re0 for spheres (circles) and cylinders
(squares). cB = 0.075
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Fig. 4. Maximum pore radius Rmax
i as a function of the initial

radius of the particle Re0 for cylinders at various average concen-
trations cB

approximation Rmax
i ∼ k (c̄B)Re0 + b (c̄B) at a fixed av-

erage concentration will not exceed 0.2%. To realize a
correct approximation at cB > 0.8, one should consider
cylinders with Re0 > 34a, that is why the Table contains
data for cB ≤ 0.8.

For the specified diffusion parameters of the model,
the slope k (c̄B) of the approximation straight lines
Rmax
i (Re0) in the interval 0 < cB ≤ 0.8 is propor-

tional to the square root of the average concentration
of the fast component: k (c̄B) ∼ 0.75

√
cB (Table). The

obtained approximate dependence demonstrates that a
pore can occupy nearly a half of the initial volume
of the fast component with the initial radius RBA:
π (Rmax

i )2H ∼ π0.56cB (Re0)
2
H ∼ 0.56π (RBA)2H.

This relation yields understated values of the maximal
pore radius Rmax

i at low concentrations (small amount
of the mobile component very rapidly dissolves in the
matrix of the slow one). At high concentrations, these
values are overestimated (chemical moving forces come

0

1

2

3

4

5

6

0 10 20 30 R e0 /a

Fig. 5. Pore formation efficiency Ξ as a function of the initial radius
of the particle Re0 for spheres (circles) and cylinders (squares).
cB = 0.075

to the end much faster than the diffusion homogenization
takes place; at some sets of parameters, a thick interlayer
of pure component B, which had no time to react, is still
observed on the inner surface after the crossover is al-
ready reached). The indicated deviations are corrected
by taking the linear approximation coefficient b into ac-
count (see Table).

To analyze the pore formation efficiency, let us con-
sider the ratio of the volume of the maximal pore at the
crossover moment to the volume of the cylinder (sphere)
without a void:

Ξcyl =
(Rmax

i )2 − (Ri0)
2

(Rmax
e )2 − (Rmax

i )2
; Ξsph =

(Rmax
i )3 − (Ri0)

3

(Rmax
e )3 − (Rmax

i )3
.

One can see from Fig. 5 that the pore formation in
cylindrical samples is more efficient than that in spher-
ical ones. As the initial radius of a particle increases,
this efficiency tends to a certain asymptotic value. That
is why, at large initial radii, the efficiency is determined
by the chemical composition representing a moving force

Linear approximation coefficients of the dependences
Rmax

i (Re0) (Fig. 4) for cylinders at various average con-
centrations of the fast component cB

cB Rmax
e0 /a k(c̄B) b(c̄B)

0.025 15 0.12 0.27
0.075 10 0.22 0.12
0.100 6.75 0.26 0.09
0.200 4.5 0.36 –0.05
0.300 4.5 0.43 –0.14
0.400 3 0.48 –0.26
0.500 3 0.52 –0.45
0.600 4.5 0.56 –0.78
0.700 6.75 0.61 –1.70
0.800 15 0.67 –3.66
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Fig. 6. Pore formation efficiency Ξ as a function of the initial radius
of the particle Re0 for cylinders at various average concentrations
cB

of pore formation (Fig. 6). It is evident that the most
efficient pore formation must be observed in the neigh-
borhood of concentrations of 50 at.% with insignificant
prevalence of the mobile component.

However, an increase of the cylinder radius results in a
shift of the pore formation efficiency toward larger con-
centrations (0.7–0.8), Fig. 6. To our mind, this peculiar-
ity is related to the radial symmetry of particles. For a
particle with fixed outer radius Re0, a rise of the con-
centration leads to the growth of the radius RBA that
determines the area of the reaction surface and, respec-
tively, provides a higher pore formation efficiency.

The effect of the chemical composition on the pore
formation efficiency can be traced by considering the
dependences of Ξ on the average concentration of the
fast component (Fig. 7): as the radius of a cylindrical
particle increases, the efficiency grows with the gradual
shift of the maximum toward higher concentrations. The
asymmetry of Ξ (cB) is related to the asymmetry of the
diffusion core-shell pair and different mobilities of the
components.

It is evident that the formation and the collapse of
a larger void require more time. The formation time
tform and the shrinking time tshr (introduced in Fig. 2)
grow according to the power law with increase in the
initial cylinder radius Re0 (Fig. 8). Moreover, a more
rapid increase of the shrinking time as compared to the
formation one (larger exponent) testifies to the fact that
voids in cylinders of larger radii are more stable.

For the quantitative description of the stability of hol-
low shells (which is important for technological applica-
tions of nanotubes), let us analyze the ratio tshr/ttotal of
the absolute time of existence of a void before its collapse
tshr to the total lifetime ttotal = tform + tshr. If the stage
of void formation is longer than that of its collapse, then

0

10

20

30

0.0 0.2 0.4 0.6 0.8 c B

Fig. 7. Pore formation efficiency Ξ as a function of the average
concentration cB at various initial cylinder radii: small (Re0 =

6.75a, diamonds) and large (Re0 = 34.2a, triangles)

Fig. 8. Void formation time tform (circles) and shrinking time tshr

(crosses) as functions of the initial radius of the particle Re0 for
cylinders. cB = 0.075

tshr/ttotal < 0.5. In the opposite case, tshr/ttotal > 0.5.
The closer the proposed ratio to 1, the more stable the
pore.

One can see from Fig. 9 that, at small initial radii
Re0 = 3a ÷ 6.75a, a pore collapses easier than it is
formed (tform/tshr < 0.5). At large radii, the shrink-
ing time is by an order of magnitude higher than the
formation time (tform/tshr ∼ 0.9). In this case, the max-
imum stability is reached at the average concentration
cB ∼ 0.5, in contrast to the maximum efficiency reached
at 0.7 ÷ 0.8. Such a non-coincidence at a significant
concentration prevalence of the faster component can be
due to its excess in the form of a thick interlayer in a
vicinity of the inner surface at the crossover moment. In
the case of a solid solution, this accelerates the collapse
rather than impedes it.

In contrast to cylinders, the ratio tshr/ttotal for spheri-
cally symmetric shells has a stronger dependence on the
radius of an initial particle, which is explained by the
different radius dependences of the volume (square for
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Fig. 9. Ratio tshr/ttotal as a function of the initial cylinder radius
Re0 at various concentrations cB

cylinders and cubic for spheres). As a result, spherical
nanoshells very unstable at low radii (with the shrinking
time twice larger than the formation one) reach the ra-
tio tshr/ttotal ∼ 0.9 with increase in the radius and even
exceed the corresponding characteristic for cylindrically
symmetric voids (Fig. 10). A rise of the concentration
leads to a shift of the point, at which the stability of
spheres starts exceeding that of cylinders, toward larger
Re0.

4. Conclusions

The phenomenological simulation allowed us to succes-
sively describe the stages of formation and collapse of
a void in a cylindrical sample under constant external
conditions. It was performed under the assumption that
a void is formed along the cylinder axis and grows simul-
taneously over the whole length without partition into
separate pores. The radius of the maximal cylindrical
pore has a nearly linear dependence on the radius of the
initial cylinder. The slope of such linear functions is pro-
portional to the square root of the average concentration
of the sample (in the interval 0 < cB ≤ 0.8).

The pore formation efficiency depends on the average
concentration and radius of the initial particle: as the
initial radius of the cylinder increases, the maximum ef-
ficiency is reached at a higher concentration of the fast
component (a rise of the latter results in the growth of
the radius RBA =

√
cBRe0 of the cylindrical interface of

the core-shell system that determines the area of diffu-
sion contact). In the case of a significant concentration
prevalence of one of the components, the chemical mov-
ing forces get weaker, which, in turn, leads to the abrupt
decrease of the pore formation efficiency. In cylindrical
samples, this efficiency is larger than that in those with
spherical symmetry.

0.2

0.4

0.6

0.8

1.0

0 10 20 30 R e0 /a

t shr /t total

Fig. 10. Ratio tshr/ttotal as a function of the initial cylinder radius
Re0 for spheres (circles) and cylinders (squares). cB = 0.075

The ratio of the void shrinking time in a nanoparti-
cle to the total time of its existence is a function of the
radius of the initial particle, average concentration, and
shape: (1) the larger the particle radius, the more stable
the shell); (2) the most stable are voids in samples with
concentrations close to 50%; (3) at a specified concentra-
tion composition, there exists a critical initial radius: at
lower radii, the stability of cylinder shells exceeds that
of spherical ones and vice versa.
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ФОРМУВАННЯ I СТЯГУВАННЯ ПОРОЖНИН
У НАНОДРОТАХ

О.М. Подолян, Т.В. Запорожець

Р е з ю м е

У межах феноменологiчної моделi твердих розчинiв описано
двостадiйний процес утворення порожнистих нанодротiв у си-
стемi “ядро/оболонка” i їх стягування як результат конкурен-
цiї ефектiв Френкеля, Гiббса–Томсона та оберненого ефекту
Кiркендала. Дослiджено залежностi швидкостi та ефективно-
стi процесу пороутворення вiд початкового радiуса цилiндра та
концентрацiї швидкого компонента. Дано порiвняння з анало-
гiчними результатами, отриманими для сферичносиметричних
частинок.

Показано, що пороутворення ефективнiше проходить у
зразках цилiндричної форми порiвняно зi сферичною, а час
iснування порожнини залежить вiд радiуса нанооболонки.
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