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The threshold value for the electrical Friedericksz transition in
a nematic liquid crystal cell with the periodic energy of director
anchoring with the cell surface has been derived, and the above-
threshold spatial distribution of the director in the applied electric
field has been determined. The threshold value was shown to de-
pend nonmonotonously on the number s of anchoring energy peri-
ods across the cell length. The above-threshold distribution of the
director at integer s traces a periodic variation of the anchoring
energy. The amplitude of the director’s periodic deviation grows
with the reduction of the ratio between the cell thickness and the
anchoring energy period.

1. Introduction

A considerable interest in the uniform threshold reorien-
tation of the director in nematic liquid crystals (NLCs)
by external fields is associated with a widespread use of
nematic cells as basic components in electron-optical de-
vices [1–3]. In an external electric or magnetic field,
there can also emerge a threshold spatially periodic
structure of the director field in an NLC cell. In par-
ticular, in works [4, 5], the emergence of a spatial peri-
odic structure of the director was studied at its thresh-
old reorientation from the planar into the homeotropic
state in a flexoelectric nematic cell with infinitely rigid
boundary conditions. The influence of the finite energy
of anchoring of the director with the surface in a flexo-
electric NLC on the threshold and the period of a spatial
distribution of the director that arises at the director re-
orientation in an electric field from the planar state into
the homeotropic one [6] and vice versa [7], as well as
at the planar-planar director reorientation [8], was con-
sidered. It was also found that, depending on the ratio

between the Frank elastic moduliK1 andK2, the thresh-
old spatially periodic structure of the director can arise
in the absence of flexoelectric properties as well, at both
the planar-homeotropic [6, 9–12] and planar-planar [13]
director reorientations. The threshold periodic-in-space
reorientation of the director in a homeotropic nematic
cell in a light field with spatially modulated intensity
was considered in work [14]. In work [15], a possibility
to obtain a spatial periodic structure of the director at
its planar-planar reorientation in a light field was demon-
strated. The appearance of spontaneous spatial periodic
distortions of the director in a planarly oriented NLC
cell and the influence of the elastic constant K24 on them
were considered in works [16–18].

Although the spatial periodic reorientation of the di-
rector is a bulk effect, its character depends, however,
considerably on the strength and the type of NLC in-
teraction with the cell surfaces. In the works mentioned
above, the conditions imposed on the director were as-
sumed uniform, with either finite or infinite anchoring
energy. In work [19], the influence of a modulation of
the easy-orientation axis of the director at the cell sur-
face on the spatial periodic distribution of the director
field in a flexoelectric nematic was studied. In work
[20], spontaneous transitions between two orientational
states in a semiinfinite nematic with periodically alter-
nating planar and homeotropic boundary conditions at
the surface were studied. The influence of a periodicity
in the energy of director anchoring with the cell surface
on the phase transition nematic–isotropic liquid was con-
sidered in work [21]. The interaction between substrates
in an NLC cell with periodically alternating planar and
homeotropic boundary conditions was studied in work
[22], and the influence of the anchoring energy periodic-
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ity and thermal fluctuations of the director on this in-
teraction in work [23]. In work [24], the emergence of
domain structures in thin nematic films with periodic
homeotropic planar boundary conditions was examined.

In this work, the emergence of a spatial periodic struc-
ture of the director in an NLC cell with a periodic dis-
tribution of the anchoring energy, which is induced by a
constant electric field, has been considered.

2. Director Equations

Consider a plane-parallel cell with a nematic liquid crys-
tal confined by the planes z = −L/2 and z = +L/2.
The initial planar orientation of the director is along the
axis Ox. The cell is embedded into an external uniform
static electric field; the field strength vector E0 is di-
rected along the axis Oz. We assume that the anchoring
energy of the director with the cell surfaces at its re-
orientation in the plane xOy (the azimuthal energy) is
infinitely high, and the anchoring energy connected with
director deviations in the plane xOz (the polar energy) is
a periodic function of the coordinate y. For definiteness,
it can be presented in the form

W (y) = W0 + V cos
2πy
d
, (1)

where W0 and V are constants (0 < V < W0). Then,
in the one-constant approximation, the free energy of an
NLC cell can be written down in the form

F = Fel + FE + FS ,

Fel =
1
2

∫
V

{
K
(
(div n)2 + (rotn)2

)
−

−K24 div
(
ndiv n + [n× rotn]

)}
dV,

FE = − εa

8π

∫
V

(
nE
)2
dV,

FS = −1
2

∫
S

W (y)(ne)2 dS, (2)

where Fel is the Frank elastic energy, FE is the contribu-
tion to the free energy from the electric field, FS is the
surface free energy of a nematic selected in the form of

the Rapini potential [25], K and K24 are the elastic con-
stants of the nematic, n is the director, εa = ε‖−ε⊥ > 0
is the anisotropy of the static dielectric permittivity, and
e is a unit vector of the easy-orientation axis of the di-
rector at the cell surface (e ‖ Ox).

As was shown in work [6] in the one-constant ap-
proximation, the Friedericksz transition occurs in the
plane “external electric field–initial director orienta-
tion”provided that the flexopolarization is absent and the
azimuthal anchoring energy is infinitely large. Therefore,
we assume below that the reorientation of the director
occurs in the plane xOz. Since the system is translation-
invariant along the Ox-axis, the director in the NLC bulk
can be searched in the form

n = i cos θ(y, z) + k sin θ(y, z), (3)

where i and k are the unit vectors of the Cartesian co-
ordinate system. Minimizing the free energy (2) with
respect to the angle θ, we obtain the equation

∂2θ

∂y2
+
∂2θ

∂z2
+ εE2

z sin θ cos θ = 0 (4)

and the corresponding boundary conditions[
±K∂θ

∂z
+
(
W0 + V cos

2πy
d

)
sin θ cos θ

]
z=±L/2

= 0,

(5)

where ε =
εa

4πK
. As is seen from Eq. (4) and boundary

conditions (5), the elastic coefficient K24 gives no con-
tribution to the spatial reorientation of the director in
the adopted geometry of the problem.

Equations (4) and (5) for the director must be solved
together with the electrostatic equations rot E = 0 and
div D = 0 for the electric field E = (0, Ey, Ez) in the
cell bulk.

3. Electric Field Threshold

Let the linear dimension D of a cell along the axis
Oy be much larger than the cell thickness L, so that
the boundary effects at the lateral cell surfaces can be
neglected. We impose the cyclic boundary conditions
with respect to the coordinate y on the function θ:
θ(y + D, z) = θ(y, z). Since the function W (y) is even
(see Eq. (1)), the function θ(y, z) can be taken in the
form

θ(y, z) =
∞∑

n=0

θn(z) cos(qny) , (6)
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where qn = 2πn/D.
To determine the threshold value for director reori-

entation, it is enough to confine the consideration to
the linearized problem. Substituting expansion (6) into
Eqs. (4) and (5) linearized in the angle θ with regard
for the mutual linear independence of the functions
cos(qny), we obtain the equation for the unknown co-
efficients θn(z),

d2θn

dz2
+ (εE2

0 − q2n)θn = 0 (7)

and the corresponding boundary conditions[
±Kdθn

dz
+W0θn + V

∞∑
m=0

αnmθm

]
z=±L/2

= 0,

n = 0, 1, 2, . . . , (8)

where

αnm(s) =
s

2π
(2− δn0)×

× sin(πs)
[

(−1)n+m

s2 − (n+m)2
+

(−1)n−m

s2 − (n−m)2

]
, (9)

and s = D/d is the number of anchoring energy periods
contained along the cell length.

Substituting the general solution of Eq. (7), θn(z) =
an cos(

√
εE2 − q2n z), into the boundary conditions (8),

we obtain the following system of homogeneous algebraic
equations for the unknown coefficients an:(

cos ξn −
2
ε
ξn sin ξn

)
an + v

∞∑
m=0

αnmam cos ξm = 0,

n = 0, 1, 2, . . . . (10)

Here, the notations ε =
W0L

K
, v =

V

W0
, ξn =√

p2 −
(
πnL

D

)2

, and p =
π

2
E0

E∞
were used, and E∞ =

π

L
√
ε

is the threshold value for the Friedericksz transition

at the infinitely rigid uniform anchoring of the director
with the cell surface [1, 3].

A condition for the system of equations (10) to have a
nontrivial solution brings about a determinant equation
for the electric field threshold,

Δ =

∣∣∣∣∣∣∣∣∣
L0 vα01 vα02 . . .
vα10 L1 vα12 . . .
vα20 vα21 L2 . . .

...
...

...
. . .

∣∣∣∣∣∣∣∣∣ = 0 , (11)

where Ln = 1 + vαnn −
2
ε
ξn tan ξn.

We consider small nonuniformities in the anchoring
energy, which satisfy the condition v � 10εL2/D2.
Then vαml � g1 < g2 < g3 < . . . for all m, l =
0, 1, 2, 3, . . . . We seek the solution of Eq. (11) in the
form p = p0 + δ, where p0 is the solution at v = 0, and
|δ| � p0. Supposing the quantity δ to be of the same
order of magnitude as vαml, we present the diagonal el-
ements of Eq. (11) in the form

L0 = vα00 − f0δ − h0δ
2 + o(δ2) ∼ vα00,

Ln = gn + vαnn +O(δ), if n > 1, (12)

where

f0 =
ε

2p0

(
1 +

2
ε

+
4p2

0

ε2

)
, h0 =

2
ε
(1+ ε)

(
1 +

ε2

4p2
0

)
,

(13)

gn = 1− 2
ε

√
p2
0 −

(
πnL

D

)2

tan

√
p2
0 −

(
πnL

D

)2

. (14)

Consider the determinant Δ of the N -th order in
Eq. (11). Expanding it along the bottom row, we ob-
tain

ΔN = LN−1ΔN−1 + v

N−2∑
i=0

(−1)N+i+1αN−1,iMN−1,i ,

(15)

where Mij is the complementary minor of the ij-th ele-
ment in the determinant. It is easy to see that the minor

MN−1,0 = (−1)Nvα0,N−1 LN−2LN−3 . . . L1 + o(vαml)

is a quantity of the first order of smallness in vα0,N−1,
and all minors MN−1,i (1 6 i 6 N − 2) are small quan-
tities of the order of v2α2

ml. Confining expansion (15) to
the terms of the order of v2α2

ml, we obtain the recurrent
formula

ΔN = LN−1ΔN−1−

−v2αN−1,0α0,N−1 L1L2 . . . LN−2 + o(v2α2
ml) (16)

which connects the determinants of the N -th and (N −
1)-th orders. After applying the obtained recurrent re-
lation N times to expression (15), the latter looks like

ΔN = L1L2 . . . LN−1

(
L0 − v2

N−1∑
i=1

αi0α0i

gi

)
. (17)
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Finding the solution of Eq. (11) and taking Eq. (17) into
account, we obtain the value for δ and the threshold of
orientational instability for the director,

E0th = EW0+
2v
π
E∞

[
α00

f0
− v

(
h0α

2
00

f3
0

+
2
f0

∞∑
i=1

α2
0i

gi

)]
,

(18)

where EW0 = 2p0E∞/π is the threshold for the Fried-
ericksz transition in the case of uniform finite anchoring
energy W0, and p0 is the minimal positive root of the
equation p0 tan p0 = ε/2. As our calculations demon-
strate, the sum over i in expression (18) converges; there-
fore, we may confine the consideration to a finite number
of terms with an arbitrary prescribed accuracy.

In Fig. 1, the dependences of the dimensionless
threshold field E0th/E∞ on the number s of anchoring
energy periods contained along the cell length calculated
numerically by formula (18) are depicted for various ra-
tios L/D at ε = 100 and v = 0.1. One can seen that
the electric field threshold oscillates as the parameter s
grows, with the oscillation amplitude diminishing to the
threshold value EW0 for the Friedericksz transition ob-
tained in the case of uniform (s → ∞) finite anchoring
energy W0. At s & 5, the threshold values become prac-
tically independent of the L/D-ratio at the fixed param-
eters ε and v. The threshold value is maximal at s = 0
(in the case of uniform finite anchoring energy W0 + V )
and, in accordance with expressions (18) and (9), can be
presented in the form

EW0+V =
2E∞
π

(
p0 +

v

f0
− h0v

2

f3
0

)
, (19)

where the parameters f0 and h0 are defined by expres-
sions (13).

If the cell length includes an integer number of anchor-
ing energy periods, i.e. if s = k ∈ N , then α00(k) = 0,
α2

0i(k) = δik/4, and, in accordance with expressions (18),
the threshold is

E0th = EW0 −
v2E∞
πf0gk

, (20)

where the quantities f0 and gk are determined by formu-
las (13) and (14), respectively. Unlike the case of arbi-
trary s-values, only the terms that are quadratic in v give
a contribution to the threshold value. As is seen from
Fig. 1 and formula (20), the threshold values E0th(k)
turn out lower by magnitude than the value EW0 for the
case of uniform finite anchoring energy W0. If the in-
teger number k of anchoring energy periods across the

0 2 4 6 8 10

0,9790

0,9795

0,9800

0,9805

0,9810

0,9815

0,9820

 

 

 

1

2
3

s

E
0th

/E
∞

Fig. 1. Dependences of the electric field threshold E0th/E∞ on the
parameter s at ε = 100, v = 0.1 (solid curve) and various L/D =

0.03 (1 ), 0.04 (2 ), and 0.05 (3 ). The squares mark the threshold
values at integer s. Dashed line corresponds to the threshold in
the case of the uniform finite anchoring energy W0

cell length increases, the threshold value E0th(k) grows
monotonously, and, at k � 1, it is approximately deter-
mined by the formula

E0th = EW0 −
v2E∞

πf0

(
1 +

2π
ε

L

d

) .
Again, in the case of integer values s = k, the angle of

a director deviation from its nonperturbed orientation is
determined by only two terms in series (6), namely,

θ(y, z) = θ0(z) + θ1(z) cos(2πy/d). (21)

Hence, there arises a spatial periodic structure of the
director along the axis Oy, and the structure period is
equal to that of the anchoring energy.

4. Spatial Distribution of a Director

Now, let us find a spatial distribution of the director in
the cell, provided that the Friedericksz transition thresh-
old is exceeded a little. Let the electric field E in the
nematic bulk be expressed in terms of the potential
ϕ(y, z) = −(z+ψ(y, z))E0, where ψ(y, z) is an unknown
function. From the equation div D = 0 and the bound-
ary conditions for the electric field at the cell surface,
we obtain an equation for the function ψ(y, z) and the

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 9 883



M.F. LEDNEY, O.S. TARNAVSKYY

corresponding boundary conditions,

∂2ψ

∂y2
+
∂2ψ

∂z2
= −2

εa

ε⊥
sin θ cos θ

∂θ

∂z
,

∂ψ

∂z

∣∣∣∣
z=±L/2

= 0 . (22)

Consider the case where the cell length includes an in-
teger number of anchoring energy periods, i.e. D/d =
k ∈ N . If the anchoring energy nonuniformity is low,
so that the condition v � 10εL2/d2 is satisfied, we take
the function θ(y, z) in the form (21), where |θ1| � |θ0|.
Imposing the periodic condition ψ(y + d, z) = ψ(y, z)
on the function ψ(y, z), we seek it in a form similar to
expression (21),

ψ(y, z) = ψ0(z)+ψ1(z) cos(2πy/d), where |ψ1| � |ψ0|.
(23)

According to the problem symmetry, the following re-
lations must be satisfied: θ(y,−z) = θ(y, z) and
ψ(y,−z) = ψ(y, z).

Substituting Eqs. (21) and (23) into expressions (4),
(5), and (22) and confining the consideration to the
terms of the order of θ3, we obtain the following equa-
tions and boundary conditions for the unknown func-
tions:
for θ0(z),

d2θ0
dz2

+ εE2
0

(
θ0 −

2
3
θ30 + 2θ0

dψ0

dz

)
= 0, (24)

[
±Kdθ0

dz
+W0

(
θ0−

2
3
θ30

)
+

1
2
V θ1(1−2θ20)

]
z=±L/2

= 0,

(25)

for ψ0(z),

d2ψ0

dz2
= −2

εa

ε⊥
θ0
dθ0
dz

, (26)

dψ0

dz

∣∣∣∣
z=±L/2

= 0, (27)

for θ1(z),

d2θ1
dz2

+
(
εE2

0 −
4π2

d2

)
θ1 = 0, (28)

[
±Kdθ1

dz
+W0θ1 + V θ0

]
z=±L/2

= 0, (29)

and for ψ1(z),

d2ψ1

dz2
− 4π2

d2
ψ1 = −2

εa

ε⊥

(
θ0
dθ1
dz

+ θ1
dθ0
dz

)
, (30)

dψ1

dz

∣∣∣∣
z=±L/2

= 0. (31)

Integrating Eq. (24) once over z, and taking systems (26)
and (27) into account, we obtain

L2

4p2

(
dθ0
dz

)2

= (1 +αθ20s)(θ
2
0m− θ20)− γ(θ40m− θ40), (32)

where θ0s = θ0(z = ±L/2), θ0m = θ0(z = 0) is the
maximal value of the function θ0(z) reached at the cell

center (z = 0), α = 2
εa

ε⊥
, and γ =

1
3

+
εa

ε⊥
.

Integrating Eq. ((32), we find

2p|z|
L

√
1 + αθ20s =

=
(

1 +
3γθ20m

4(1 + αθ20s)

)
arccos

θ0
θ0m

+
γθ0
√
θ20m − θ20

4(1 + αθ20s)
. (33)

Provided that v � 10εL2/d2, the amplitude θ1(z) of the
first harmonic, which is determined by system (28) and
(29), looks like

θ1(z) = − vθ0s

cos ξk
cos

2ξkz
L

. (34)

Consider the case of strong anchoring between the di-
rector and the cell surface (ε� 1). From the boundary
conditions (25) with regard for Eq. (32) and expressions
(34), we obtain, to an accuracy of quantities linear in
1/ε,

θ0s =
2pθ0m

ε

(
1 +

v2

2

)(
1− γ

2
θ20m

)
. (35)

Substituting this value into Eq. (33) written down for
the cell surfaces z = ±L/2, we obtain, in the linear in
1/ε approximation,

θ20m =
4
3γ

(
E0

E0th
− 1
)
, E0 > E0th, (36)
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Fig. 2. Director deviation angle at the cell center, z = 0, as a
function of the coordinate y for various L/d = 0.1 (1 ), 0.2 (2 ), 0.3
(3 ), 0.4 (4 ), and 0.5 (5 )

where E0th = EW0

(
1− v2

ε

)
is the threshold value (see

Eq. (20)) for the electric field, written down to an accu-
racy of linear in 1/ε quantities. In the limiting case of
absolutely rigid anchoring between the director and the
substrates (W = ∞), the value of θ0m, as follows from
Eq. (36), coincides with that found in work [26].

Substituting expression (35) into Eq. (33) and keep-
ing small terms up to the order of θ30m, we obtain the
expression for the function θ0(z)

θ0(z) = θ0m cos
(πzE0

LE∞

)
+

+
γθ30m

8
sin
(πzE0

LE∞

)[
6
πzE0

LE∞
+ sin

(
2
πzE0

LE∞

)]
, (37)

where θ0m is given by formula (36).
From systems (26), (27) and (30), (31), taking expres-

sions (34) and (37), respectively, into account, we find
explicit forms for the functions ψ0(z) and ψ1(z):

ψ0(z) =
εaLθ

2
m

4ε⊥

(
cos
(πE0

E∞

) 2z
L
− E∞
πE0

sin
(2πzE0

LE∞

))
,

(38)

ψ1(z) = − εavpLθ
2
m

ε⊥ε cos ξk

{[
2 cos p cos ξk

(πL/d)2
−

-1,0 -0,5 0,0 0,5 1,0
0,00

0,02

0,04

0,06

0,08

0,10

0,12

 

 

 2z/L

θ
0

a

-1,0 -0,5 0,0 0,5 1,0
-0,007

-0,006

-0,005

-0,004

-0,003

-0,002

-0,001

0,000

 

 

 

1

2

3
4
5

678

2z/L

θ
1

b
Fig. 3. Dependences of the quantities θ0 (a) and θ1 (b) on the
reduced cell thickness 2z/L at ε = 100, v = 0.1, E0 = 1.01E0th,
and various L/d = 0.1 (1 ), 0.2 (2 ), 0.3 (3 ), 0.4 (4 ), 0.5 (5 ), 1 (6 ),
2 (7 ), and 5 (8 )

− cos(p− ξk)
(p− ξk)2 + (πL/d)2

− cos(p+ ξk)
(p+ ξk)2 + (πL/d)2

]
×

×πL sh(2πz/d)
d ch(πL/d)

−
(p− ξk) sin

(
2(p− ξk)z/L

)
(p− ξk)2 + (πL/d)2

−

−
(p+ ξk) sin

(
2(p+ ξk)z/L

)
(p+ ξk)2 + (πL/d)2

}
. (39)
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Formulas (38), (39), and (23) describe the distribution
of the electric field potential in the cell bulk.

Formula (21) together with expressions (34) and (37)
describe the distribution of the director field above the
threshold of orientational instability. In Fig. 2, the di-
rector distributions at the cell center are depicted for a
number of ratios L/d. In calculations, we put ε = 100,
v = 0.1, and E0 = 1.01E0th.

The function θ0(z) in formula (21) for the solution
θ(y, z) depends implicitly (through θ0m (36)) on the
nonuniformity parameter v. Therefore, this function
cannot be considered as corresponding to the uniform fi-
nite anchoring energy W0. The function θ0(z) describes
the director field at W (y) = W0 only in the limiting
case v → 0. Note also that the function θ0(z) does not
depend on the ratio L/d at any parameter v and has a
profile depicted in Fig. 3,a.

The amplitude θ1(z) of the spatial periodic director
distribution (see formula (34)), which arises along the
axis Oy, is linear in the parameter of anchoring energy
nonuniformity v and essentially depends (through the
parameter ξk) on the parameter L/d (the ratio between
the cell thickness and the period of anchoring energy).
In Fig. 3,b, the dependences θ1(z) calculated for various
values of this parameter are shown. As is seen from the
figure, the absolute value of θ1 monotonously grows, as
the ratio L/d decreases. The most substantial depen-
dence of θ1 on L/d is observed at small values of this
parameter.

The authors express their gratitude to I.P. Pinkevich
for his useful remarks, while discussing the results of this
work.
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ЕЛЕКТРИЧНИЙ ПЕРЕХIД ФРЕДЕРIКСА В НЕМАТИЧНIЙ
КОМIРЦI З ПЕРIОДИЧНОЮ ПОЛЯРНОЮ ЕНЕРГIЄЮ
ЗЧЕПЛЕННЯ

М.Ф. Ледней, О.С. Тарнавський

Р е з ю м е

Отримано значення порога i запороговий просторовий розподiл
директора в електричному полi в нематичнiй комiрцi з перiоди-
чною енергiєю зчеплення директора з її поверхнею. Показано,
що значення порога немонотонно залежить вiд числа s перi-
одiв енергiї зчеплення, що вкладаються на довжинi комiрки.
Запороговий розподiл директора при цiлих значеннях s вiд-
слiдковує перiодичну змiну енергiї зчеплення. Амплiтуда перi-
одичного вiдхилення директора росте зi зменшенням вiдноше-
ння товщини комiрки до перiоду енергiї зчеплення.

886 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 9


